Please use this identifier to cite or link to this item:
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10022| Title: | Astra: Autonomous Server less Analytics with Cost-Efficiency and QoS-Awareness |
| Authors: | Jananie, J. Li Chen Fei Xu BoLi |
| Keywords: | Cloudcomputing;Serverless computing;Resource provisioning;Modeling;Optimization |
| Issue Date: | 2021 |
| Publisher: | IEEE |
| Abstract: | Withtheabilitytosimplifythecodedeployment withone-clickuploadandlightweightexecution,serverlesscomputinghasemergedasapromisingparadigmwithincreasing popularity.However,thereremainopenchallengeswhenadapting data-intensiveanalyticsapplicationstotheserverlesscontext,in whichusersofserverlessanalyticsencounterwiththedifficultyin coordinatingcomputationacrossdifferentstagesandprovisioningresourcesinalargeconfigurationspace.Thispaperpresents ourdesignandimplementationofAstra,whichconfiguresand orchestratesserverlessanalyticsjobsinanautonomousmanner, whiletakingintoaccountflexibly-specifieduserrequirements. Astrareliesonthemodelingofperformanceandcostwhich characterizestheintricateinterplayamongmulti-dimensional factors(e.g.,functionmemorysize,degreeofparallelismat eachstage).Weformulateanoptimizationproblembasedon user-specificrequirementstowardsperformanceenhancementor costreduction,anddevelopasetofalgorithmsbasedongraph theorytoobtainoptimaljobexecution.WedeployAstrainthe AWSLambdaplatformandconductreal-worldexperimentsover threerepresentativebenchmarkswithdifferentscales.Results demonstratethatAstracanachievetheoptimalexecutiondecision forserverlessanalytics,byimprovingtheperformanceof21% to60%underagivenbudgetconstraint,andresultingina costreductionof20%to80%withoutviolatingperformance requirement,whencomparedwiththreebaselineconfiguration algorithms. |
| URI: | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10022 |
| Appears in Collections: | Computer Engineering |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| AstraAutonomousServerlessAnalyticswith Cost-EfficiencyandQoS-Awareness.pdf | 454.34 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.