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Abstract—With the ability to simplify the code deployment
with one-click upload and lightweight execution, serverless com-
puting has emerged as a promising paradigm with increasing
popularity. However, there remain open challenges when adapting
data-intensive analytics applications to the serverless context, in
which users of serverless analytics encounter with the difficulty in
coordinating computation across different stages and provision-
ing resources in a large configuration space. This paper presents
our design and implementation of Astra, which configures and
orchestrates serverless analytics jobs in an autonomous manner,
while taking into account flexibly-specified user requirements.
Astra relies on the modeling of performance and cost which
characterizes the intricate interplay among multi-dimensional
factors (e.g., function memory size, degree of parallelism at
each stage). We formulate an optimization problem based on
user-specific requirements towards performance enhancement or
cost reduction, and develop a set of algorithms based on graph
theory to obtain optimal job execution. We deploy Astra in the
AWS Lambda platform and conduct real-world experiments over
three representative benchmarks with different scales. Results
demonstrate that Astra can achieve the optimal execution decision
for serverless analytics, by improving the performance of 21%
to 60% under a given budget constraint, and resulting in a
cost reduction of 20% to 80% without violating performance
requirement, when compared with three baseline configuration
algorithms.

Index Terms—Cloud computing, serverless computing, re-
source provisioning, modeling, optimization

I. INTRODUCTION

Serverless computing has gained its popularity due to its
compelling properties of lightweight runtime, ease of manage-
ment, high elasticity and fine-grained billing. With serverless
architectures, which facilitate Function-as-a-Service (FaaS) in
cloud computing, developers are able to concentrate only on
the logic, free from the burden of configuring environments,
managing virtual machine (VM) clusters and paying for VM
instances even though they are idle. Such a favorable computa-
tion mode has been deployed by cloud providers such as Ama-
zon Lambda [1], Google Cloud Functions [2], and Microsoft
Azure Functions [3], widely utilized in applications such as
real-time video encoding [4], Internet-of-Things applications
[5], interactive data analytics [6], and etc.

The research was supported in part by grant from Louisiana Board of
Regents under the contract LEQSF(2019-22)-RD-A-21, NSFC grant under
No. 61972158, RGC RIF grant R6021-20, and RGC GRF grants under the
contracts 16207818 and 16209120.

However, when adapting data-intensive analytics applica-
tions (e.g., MapReduce, Spark jobs) in serverless platforms,
there have emerged a number of challenges, and one particular
challenge is how to efficiently process the massive amount
of intermediate data, also referred to as ephemeral data in
contrast to the persistent input and output data. Such inter-
mediate data requires to be shared between stateless functions
in different stages. For instance, unlike the traditional VM-
to-VM or server-to-server transmission of intermediate data in
the MapReduce shuffle phase, function-to-function networking
in serverless platforms does not support bulk data transfer,
aligned with the original design philosophy of serverless
computing. Consequently, a mapper function needs to output
the intermediate data into the external storage, such as the
object store S3 [7] or the distributed cache Redis [8], to be
later fetched as the input for reducer functions. The cost and
latency imposed by the ephemeral data sharing above raise
serious application performance and cost efficiency issues in
utilizing the serverless analytics.

Existing efforts have proposed a number of ephemeral data
storage solutions for serverless analytics ( [6], [9]–[11], etc.).
For example, Pocket [9] is designed and implemented as a
distributed storage system shared by serverless jobs, which
places data across multiple tiers of storage to offer high-
throughput and low-latency services. Locus [6], a data ana-
lytics framework customized for the serverless environment,
orchestrates the shuffling of intermediate data in a serverless
MapReduce job, leveraging a hybrid of fast and slow storage.

Despite these research efforts, there is no general guidance
on the coordination and resource provisioning for serverless
analytics among the large configuration space, including the
memory size of each function, the degrees of parallelism
in each computation stage, and etc. Cloud users may easily
deploy their serverless analytics suboptimally, at the risk of
violating their Quality of Service (QoS) objectives (e.g., re-
sponding within a latency threshold) or incurring extra billing
cost which could have been avoided by a better configuration.
Essentially, users still encounter with the critical challenge of
serverless provisioning for big data analytics: given a large
configuration space and different types of user requirements
(latency-oriented or budget-driven), how could users take ad-
vantage of the salient features of serverless computing without
concerning about the underlying complexities (ephemeral data
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management and resource configuration), while achieving the
maximum gain with respect to the performance or cost? More
specifically, how to achieve the best possible job performance
with a limited budget, and how to minimize the cost without
violating the QoS objective? To address this challenge, we
argue that a general framework, in the middle of developers
for data analytics and cloud providers for FaaS, needs to be
built, to judiciously handle the job deployment and hide the
underlying complexity. A comprehensive solution is expected
to automatically and optimally configure and orchestrate the
serverless analytics jobs, according to flexibly-specified re-
quirements from users, which is the focus of this work.

We design a general framework, called Astra, which au-
tomatically configures and orchestrates lambda functions for
data analytics jobs to navigate the tradeoff between perfor-
mance and cost. Astra derives mathematical models for both
the monetary cost and the job completion time for a job
upon submission, based on the user-specific objectives. The
configurations characterized in the models include the number
of stages in the job workflow, the degree of parallelism in
each stage, i.e., the number of lambda functions in each stage,
the type of lambda function, i.e., the memory size of the
requested lambda, which are coupled with the orchestration
of all the functions invoked for a job. Building upon the
model, Astra obtain the optimal job execution plan based
on the graph theory. Specifically, we construct two Directed
Acyclic Graphs (DAGs) models for the completion time and
the monetary cost, respectively, to formulate two optimization
problems: (1) given a budget constraint, a configuration and
job execution optimization is formulated with the objective
of minimizing the job completion time, (2) under a Quality
of Service requirement, a configuration and job execution
optimization is formulated with the objective of minimizing
monetary cost.

We have implemented and deployed Astra on Amazon
Lambda and evaluated its performance with real-world ex-
periments on various workloads, including Wordcount with
different input sizes, Sort, and Query over the Uservisits
dataset [12]. Upon the submission of an analytics job, Astra
calculates the best configuration for resource allocation and
task assignment by solving an optimization problem towards a
specific objective. Extensive experimental results have demon-
strated that Astra can optimize the job performance (i.e.,
minimize the completion time) constrained by a budget, and
minimize the monetary cost without violating a performance
requirement. Compared with three baselines, Astra achieves
the performance improvement of about 50% to 60% for
Wordcount benchmarks with three different input sizes, up
to 21% for Sort, and at least 50% improvement for Query
benchmark. With respect to cost, a reduction up to 80% is
achieved for Wordcount, up to 21% reduction for Sort, and at
least 20% reduction for Query benchmark. As evidenced, Astra
successfully navigates the tradeoff between job completion
time and monetary cost according to flexible requirements,
outperforming existing solutions which are either suboptimal
or incomplete.

The rest of the paper is organized as follows. Sec. II presents
the background of serverless analytics and examines the intri-
cate interplay among cost and performance factors. Sec. III
models the performance and monetary cost for a MapReduce
job in the serverless platform. Sec. IV designs algorithms for
Astra to optimize job completion time or monetary cost. Sec. V
implements Astra and demonstrates its advantages over three
baselines with real-world experiments. Sec. VI discusses the
related work and Sec. VII presents concluding remarks.

II. BACKGROUND AND MOTIVATION

In this section, we present the background of serverless
computing, with a particular focus on data analytics. Having
observed the current limitations in serverless analytics, we
seek to understand the application performance (i.e., job
completion time) of big data analytics running in the serverless
platform, as well as the incurred monetary cost.

A. Serverless Computing for the Next Generation of Cloud

Serverless computing has recently emerged as a popular
computing pattern in cloud computing, facilitating higher-
level and finer-grained Function-as-a-Service to cloud users.
With serverless platform, users simply upload their code and
dependencies with a click on a button, and pay for the total
runtime of their computation. Compared with traditional cloud
computing by renting VMs, users in serverless computing no
longer deal with the deployment and maintenance complex-
ities, and no longer pay for VM runtime when there is no
computation workload.

Due to the favorable properties of serverless computing,
the past several years have witnessed a wide array of real-
world applications transformed and deployed in the serverless
environment, including data analytics [13], software compi-
lation [14], machine learning [15], and etc. For example, a
data analytics application has been implemented on serverless
infrastructure, which can process real-time data from vari-
ous sources with serverless functions and generate analytical
results in real time to the user [16]. Moreover, it has also
been shown that data analytics applications which require
concurrent handling of massive data are feasible in serverless
computing [17].

B. Serverless Analytics in AWS Lambda

Facilitated by cloud service providers, serverless functions,
such as AWS Lambda [1], Google Cloud Functions [2] and
Microsoft Azure Functions [3], are essential in serverless
computing. With AWS Lambda as an example, a user uploads
the code, which will be scaled and executed by the server-
less infrastructure transparent to the user. The default limit
for concurrent executions is a maximum of 1000 lambdas,
512MB of temporary storage and 900 seconds of timeout
[18], which makes it challenging to accommodate large-
scale data analytics in the serverless environment [6]. The
state-of-the-art serverless implementation for the MapReduce
framework leverages S3 as the remote storage for intermediate
data and AWS Lambda as the computation environment for

757



1 2 3 4 5 6 7 8 9 10
Number of Objects

0.0

0.4

0.8

1.2

1.6

Jo
b 

co
m

pl
et

io
n 

tim
e 

(s
)

128
1536
3008

Fig. 1: Job completion time with the number of objects processed per lambda
in three types of memory allocation.
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Fig. 2: Monetary cost with the number of objects processed per lambda in
three types of memory allocation.

mapping and reducing [19]. This framework uses three types
of lambda functions, namely the mapper, the coordinator and
the reducer. Concurrent mappers and asynchronous reducers
will communicate through a coordinator, which calculates the
numbers of objects to be handled by the mappers and the
reducers, and the number of steps required in the reducing
phase, based on the memory limit of each function.

However, there is no general guidance on the coordination
and resource allocation for serverless analytics. Among the
large space of design, including the type of function memory,
the degrees of parallelism in each computation phase, etc.,
cloud users may easily specify suboptimal deployment for
their serverless analytics, at the risk of violating their QoS
objectives (e.g., responding within a latency threshold), or
incurring extra billing cost which could have been avoided
by a better configuration. Essentially, the problem is that the
user still has to deal with the complexities of resource config-
uration, which compromises the salient features of serverless
computing.

Therefore, we are motivated to provide a framework that
takes over the challenging tasks and hides complexities from
users, so that well-planned orchestration and optimal resource
configuration could be generated according to the user-specific
concern about application performance and monetary cost. In
what follows, we will use an experimental example to illustrate
and analyze the important factors impacting performance and
cost, which will be further characterized in our modeling.

C. Factors Impacting Performance and Cost

With MapReduce on AWS Lambda as a simple example,
we next present the completion time and monetary cost of
the job given different configurations, to understand the key
factors in the workflow that impact cost and performance.
This job is implemented with three types of lambda functions
as mapper, coordinator and reducer, following the framework
aforementioned [19], with a total of 10 objects with 2MB total
size in S3 as input data. Based on the total amount of data to be
processed by each lambda function, i.e., the number of objects
in this setting, the job can be executed with different degrees
of parallelism. Table I presents five orchestration examples,
when we vary the number of objects handled by each function.

TABLE I: Partial orchestration of a MapReduce job for 10 input objects used
in motivation experiments in AWS Lambda.

number of objects per mapper 1 2 3 4 5
number of mappers 10 5 4 3 2
number of objects per reducer 1 2 3 4 5
step 1 (number of reducers) 1 3 2 1 1
step 2 (number of reducers) - 2 1 - -
step 3 (number of reducers) - 1 - - -
step 4 (number of reducers) - - - - -

For instance, as shown in the second column entry in Table I,
given that each mapper processes 2 objects, a total of 5 mapper
functions will be invoked to process the 10 input objects,
which generate 5 objects as intermediate data. Then, given that
each reducer handles 2 objects, 3 reducers will be launched in
step 1, and their output of 3 objects will be further processed
by 2 reducer lambdas in step 2. Finally, a reducer lambda reads
the 2 objects from the previous step and generates the final
result in step 3.

The resource allocation for a lambda function mainly refers
to the memory allocation, which can be specified from 128
MB to 3008 MB in 64 MB increments in AWS Lambda. The
monetary cost incurred by a lambda function depends on the
duration of the lambda, which is impacted by the memory
allocation, and the PUT and GET requests made from the
lambda [20].

Fig. 1 and Fig. 2 illustrate the experimental results of the
job performance and cost, when we alternate the lambda
orchestration (with different number of objects processed per
lambda) and the memory allocation, respectively. The job
performance relies on the completion time, which is impacted
by when the slowest mapper finishes, the number of steps for
reducing, and when the slowest reducer finishes in each step.
The runtime of each lambda relies on both its computation
time and the network transfer time when reading from and
writing to S3. With respect to the cost, the job consists of the
lambda invocation cost, lambda runtime cost, S3 storage cost
and S3 request cost, which depend on the number and size of
objects, and the number and memory type of lambdas.

As observed in the figures, when we vary the configuration
setting, there is a complicated interplay among multiple factors
that collectively determine the final job completion time and
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Fig. 4: Workflow of a serverless MapReduce job in AWS Lambda. The job
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cost. More specifically, when the number of objects per lambda
increases from 1 to 4, the job completion time exhibits a
decreasing trend as shown in Fig. 1. This is because with each
lambda processing more data, the number of sequential reducer
steps will decrease. Although each lambda takes a bit longer to
process more data, the time reduction on the reducing phase
dominates, leading to faster job completion. Similarly, with
each function processing more data (the number of objects
increasing from 1 to 4), the total number of lambdas becomes
smaller and the number of S3 read/write decreases, resulting
in the cost reduction as shown in Fig. 2. When increasing the
number of objects beyond 5, the number of lambdas and the
coordination no longer change, but the data distribution among
lambdas becomes more skewed. For example, the numbers of
objects processed by mappers become (5,5), (6,4), (7,3), (8,2)
and (9,1), when the number of objects per lambda is set from
5 to 9. The skewness will cause unbalanced computation time
and data transfer time, prolonging the completion time and
increasing the cost, as observed.

We further present a microscopic analysis by decomposing
the job completion time in Fig. 3, with two sample configura-
tions. The mapping phase completes when the slowest mapper
finishes, and the coordinator is then launched to coordinate the
reducing phase. When each lambda function handles 3 objects
with 128 MB memory, there will be 4 mappers according to
Table I, followed by two steps of reducing, each with 2 and
1 reducer lambda(s), respectively. The second configuration
sets the number of objects as 2 and memory as 3008 MB
for each lambda, resulting in 5 mappers followed by 3, 2 and
1 reducer(s) in three consecutive steps. Although the number
of reducer steps increases from Fig. 3(a) to Fig. 3(b), each
function with the largest memory block is much faster, which
eventually leads to a shorter job completion time.

Even with such a toy example with an incomplete ex-
ploration in the configuration space, we have witnessed the
intricate interplay among multi-dimensional factors. Clearly, it
is challenging for cloud users to identify the best configuration
according to their flavor on performance boost or cost saving.
In this paper, we argue that cloud users should be hidden from
such complexities to completely enjoy the ease of management
burden. Therefore, we are motivated to design and implement
a framework, called Astra, to automate the deployment of

serverless analytics in an optimal manner according to user-
specific requirements. In particular, we hope to explore the
whole design space of the coupled orchestration and configura-
tion of lambdas, to seek optimal solutions regarding improving
latency performance and reducing monetary cost. With the
knowledge of key factors, we will leverage mathematical
modeling to characterize the inter-dependencies in the next
section, and formulate the optimization problems with flexible
objectives and constraints.

III. MODELING SERVERLESS DATA ANALYTICS

In this section, we present our modeling of job completion
time and monetary cost for serverless data analytics, with
a MapReduce job implemented in Amazon Lambda as an
example. More specifically, we consider a job processing N
number of input objects with D size, which are stored in AWS
S3. The job consists of three types of lambda functions, to
map, coordinate1 and reduce, respectively, as shown in Fig. 4.
Our modeling is easily adapted to a general serverless data
analytics setting, to be discussed later.

A. Performance of Completion Time

1) Lifetime of Mappers: As illustrated by Fig. 3 in Section
II, a number of identical mapper lambdas will be launched in
parallel, each performing computation for kM ≤ N objects.
As there are N objects in total, the number of mapper lambdas
can be represented as N/kM , which has a maximum value
of λM . For a mapper lambda, the lifetime is determined by
both the S3 requests and the computation. Specifically, the
time it takes to get and put objects in S3 depends on the data
transfer time between lambda and S3, which is determined
by the network bandwidth B and the sizes of objects to read
and write. Intuitively, if we have a larger number of mapper
lambdas, the data size in transmission of each mapper will
be smaller. Given a total of j mappers, we use djm and ejm
to denote the input size and output size, respectively, for the
mapper m, and the output size is proportional to the input size.
Thus, the time associated with S3 requests of this mapper is
represented as (djm + ejm)/B.

1An alternative to the coordinate lambda is to use AWS step functions [21],
which allows the coordination of multiple services into serverless workflows.
As step function involves state transaction cost, we choose to use a coordinate
lambda which is more flexible and cost-efficient for Astra.
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TABLE II: The calculation derived by the coordinator for the number of
objects processed by each step, the number of reducers in each step, and the
sizes of the input and output objects at each step.

Step No. of No. of Input Output
Objects Reducers Get (MB) Put (MB)

1 j g1 = j/kR q0 = S q1
2 g1 g2 = g1/kR q1 q2
.......
P gP−1 gP q(P−1) qP

The computation time of a mapper lambda relies on the
computation workload and the processing power of the partic-
ular lambda. In AWS Lambda, we can allocate memory for a
lambda from 128MB to 3008MB in 64MB increments, which
impacts its processing speed in proportion. We use binary
variable xi, (i = 1, 2, · · · , L) to specify whether the i-th type
of memory is allocated (for mapper lambdas) out of the L
categories. Intuitively, we have

xi ∈ {0, 1}, ∀i ∈ {1, 2, · · · , L};
∑L
i=1 xi = 1, (1)

which indicates that only one category of memory allocation
can be assigned by nature. We further use nj to specify
whether we launch j lambdas as mappers. In a similar vein,
we have

nj ∈ {0, 1}, ∀j ∈ {1, 2, · · · , λM};
∑λM

j=1 nj = 1. (2)

The computation workload for mapper m given j mappers
is determined by the input size djm. Therefore, we can express
its computation time as

cj,im = djm
∑L
i=1 xiui, ∀i, j. (3)

where ui is the processing time of unit-size object given i-th
resource allocation.

The completion time of the mapping phase, denoted as T j,i1 ,
is determined by the slowest mapper, which can be represented
as the maximum computation time among all the concurrent
ones as follows:

tj,im = (djm + ejm)/B + cj,im ,

T j,i1 =
∑λM

j=1 nj(maxm∈{1,2,··· ,j} t
j,i
m ), ∀i, j. (4)

According to Equation (4), the mapping phase completion time
is dependent on the number of lambdas running in parallel (j)
and the type of lambda in terms of the memory allocation (i).

2) Lifetime of Coordinator: After the mapping phase, a
coordinator lambda will be launched to determine the number
of reducing steps, denoted as P , and the number of reducers
to be called in each step, denoted as gp for each step
p, (p = 1, 2, · · · , P ). In each step, the coordinator stores a
reducer state object of size l in S3, which contains the count
of reducers and the information about intermediate objects to
be used by the reducers. Intuitively, the state object has the
same size for all the steps.

Similar to the memory allocation for mapper lambdas
among L types within the range of 128MB to 3008MB, we use
the binary variable ya, (a = 1, 2, · · · , L) to specify whether
the a-th memory allocation is chosen:

ya ∈ {0, 1}, ∀a ∈ {1, 2, · · · , L};
∑L
a=1 ya = 1. (5)

For the coordinator lambda, the lifetime is determined by its
computation time before the beginning of the reducer phase,
the data transfer time before each reducer step to write state
information, and the sum of lifetime of the first P −1 reducer
steps, as shown in the timeline in Fig. 3. The total data
transfer time incurred by S3 put requests across P steps can
be represented as P ∗ l/B, given the network bandwidth B.
The computation time of the coordinator will be determined
by the computation power and workload, which are impacted
by the lambda memory type and the total number of objects
as input for the reducing phase. As the lifetime of the P-1
reducers will be included in the reducing phase in the next
subsection, we denote T g,a2 as the lifetime of the coordinator
phase which excludes the overlapping time with reducers:

tg,a2 = cg,a2 + Pj,g ∗ l/B, T g,a2 =
∑L
a=1 yat

g,a
2 , ∀a, j, g. (6)

3) Lifetime of Reducers: The reducing phase will be exe-
cuted in P steps and each lambda will handle the same amount
of objects. The calculations of each step are shown in Table II,
including the total number of objects to be handled, the total
number of reducer lambdas to be launched, the total size of
input objects to retrieve, and the total size of output objects
to store.

In the first step of the reducing phase, a total number of
j objects, resulted from j mappers, need to be read as input.
Given the number of objects, denoted as kR ≤ j, to be handled
by each reducer, we need to launch g1 = j/kR lambdas
in this step, which read the total amount of data (q0 = S)
generated from the mapping phase and write q1 amount of
data for further processing of the next step. In a general step
p, the number of reducers is denoted as gp. The total number
of objects is equal to the total number of reducers from the
previous step, gp−1, and the size of the total input objects (Get)
is equal to the size of the total output objects (Put) from the
previous step, qp−1. We represent the total number of reducers
as g, which can be derived as

∑P
i=1 gp.

Given the same set of memory allocations in L types, we
use binary variable zs, (s = 1, 2, · · · , L) to specify whether
the s-th memory allocation is selected for reducer lambdas or
not, which naturally has the following constraints:

zs ∈ {0, 1}, ∀s ∈ {1, 2, · · · , L};
∑L
s=1 zs = 1. (7)

Similarly, we use wg to specify whether or not we launch
g lambdas as reducers.

wg ∈ {0, 1}, ∀g ∈ {1, 2, · · · , λM};
∑λM

g=1 wg = 1. (8)

The lifetime of the reducing phase depends on the total
data transfer time and the lambda computation time. Given a
total of g reducers in P steps, let QgP denote the total input
object size, which can be expressed as

∑P−1
i=0 qp, according

to Table II. Similarly, the total output object size
∑P
i=1 qp is

denoted by RgP . The total computation time in the reducing
phase can be represented as:

og,sP = QgP
∑L
s=1 zsus, ∀s ∈ {1, 2, · · · , L},
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where us is the processing time of unit-size object given s-
th resource allocation. The data transfer time of the reducing
phase, denoted as dg,s3 , can be expressed as:

dj,g3 = (QgP +RgP )/B,

which depends on the total size of input data, output data, and
the bandwidth B. Finally, we obtain the lifetime of the reduc-
ing phase, T g,sP , as the summation of the total computation
time and data transfer time:

T g,sP =
∑λM

g=1 wg(d
j,g
3 + og,sP ), ∀s, g. (9)

B. Monetary Cost

The monetary cost for the serverless analytics job is incurred
by the Get and Put requests from S3, the storage of the input
and intermediate objects, the invocation of lambdas and their
execution times.

1) Requests cost of lambdas: Given j mappers in the
mapping phase, the cost for S3 requests, U j1 , is determined by
kM Get requests and one Put request from each mapper. The
cost for coordinator, denoted as U j,g2 , is incurred by writing
reducer state object in S3, determined by the total number
of the reducer steps. U j,gP denotes the requests cost for the
reducing phase, incurred by each reducer getting kR number of
objects and putting one object in S3. With the standard pricing
[22] of $0.005 per 1000 Put requests (F ) and $0.004 per 10000
Get requests (G) in S3, we have the following expressions of
S3 requests cost for each phase:

U j1 = j(kM ∗G+ 1 ∗ F ), U j,g2 = Pj, g ∗ P,
U j,gP = g(kR ∗G+ 1 ∗ P ). (10)

2) Storage cost of objects: Apart from the cost incurred by
Put and Get requests, the storage of objects in S3 depends on
the size of data and the duration for storage. In our considered
serverless MapReduce job, the input objects will be stored
in S3 until the completion of the job. In addition to the
storage cost for input objects, the coordinator and reducers
will generate storage cost for intermediate objects. We denote
the storage costs for the three phases as V j,i1 , V g,a2 and V g,sP ,
respectively, given j mappers, g reducers and the lambda
resource types (i for mappers, a for the coordinator and s
for reducers). The size of objects handled by the coordinator

is denoted as S, and the unit price for storage (per unit size
and unit time) is represented as H . Thus, we have:

V j,i1 = DT j,i1 H, V g,a2 = T g,a2 (D + S +QgP )H,

V g,sP = T g,sP (D + S +RgP )H. (11)

3) Runtime cost of lambdas: The runtime cost of lambdas
for the MapReduce job consists of the invocation cost and the
computation cost. The invoking price for a lambda is $0.20 per
1 million requests [20] and represented as E. Let us denote
the invoking costs for the three phases as Ij1 , Ij,g2 and Ij,g3

respectively, each of which depends on the number of lambdas
of the particular phase, expressed as:

Ij1 = j ∗ E, Ij,g2 = 1 ∗ E, Ij,g3 = g ∗ E. (12)

The computation cost of each lambda is determined by the
price of the allocated memory and the duration it runs. We use
vi, va and vs to represent the price of the particular type of
lambda. Intuitively, the runtime costs of lambdas for the three
phases, denoted as W j,i

1 , W g,a
2 and W g,s

P , respectively, can be
expressed as follows:

W j,i
1 =

∑
i∈L vixiT

j,i
1 + Ij1 (13)

W g,a
2 =

∑
a∈L vaya(T

g,a
2 + T g,sP−1) + Ij,g2 (14)

W g,s
P =

∑
s∈L vszsT

g,s
P + Ij,g3 (15)

With the comprehensive modeling for completion time and
monetary cost of a serverless analytics job, we are now ready
to formulate optimization problems according to particular
objectives in the next section.

IV. OPTIMIZATIONS FOR PERFORMANCE ENHANCEMENT
AND COST REDUCTION

In this section, we formulate optimization problems accord-
ing to user requirements, and design solutions based on graph
theory to navigate the cost-performance tradeoff.

A. Performance Optimization Given A Budget

Constrained with a particular budget, we aim to optimize
application performance, which means minimizing the job
completion time, formulated as follows:

min
x,y,z,n,wx,y,z,n,wx,y,z,n,w

fff = T j,i1 + T g,a2 + T g,sP (16)

s.t. Eq. (1), (2), (5), (7), (8) (17)
D + S +QgP ≤ O, j ≤ R (18)

U j1 + U j,g2 + U j,gP + V j,i1 + V g,a2 + V g,sP +

W j,i
1 +W g,a

2 +W g,s
P ≤ J (19)

In this optimization problem, the objective of job comple-
tion time is the summation of the mapping phase duration T j,i1 ,
the total coordinator time between reducing steps, T g,a2 , and
the total lifetime of reducing steps, T g,sP , of which the expres-
sions have been derived in the previous section. Constraint
(17) regulates the nature of the binary variables. Constraint
(18) indicates the limits in AWS Lambda for maximum storage
size (O, which is currently 5TB) and for the maximum number
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of requested lambdas (R). The budget limit (J), represented
by Constraint (19), can be flexibly specified by the user.

This problem has binary variables and is intuitively NP-
hard [23]. To solve this problem, we propose a strategy based
on graph theory [24], an effective tool in resource allocation
and scheduling. Our problem formulation naturally maps to
the shortest path problem. We construct a directed acyclic
graph (DAG) as shown in Fig. 5. The vertices of the graph
represent the resource allocation for lambda functions along
the workflow, and the edge weights are the resulted completion
times for particular phases.

With this graph, a flow starting from the source node S will
go through five nodes to reach the destination D. Each of the
five nodes along the flow path represents an allocation of a
particular resource. In particular, the five columns of vertices
along the DAG in order represent the memory allocation
for mapper lambdas, the number of mappers, the number of
objects per reducers, the memory allocation for coordinator
lambda and the memory allocation for reducer lambdas.

The edge weights are set as the completion times that
are associated with the resource allocations specified by the
connected vertices. For the first set of edges between the
first two columns of vertices, the edge weight represents the
resulted mapper completion time (Eq. (4)). For example, the
weight of the edge between vertices x1 and j3 means the
completion time of each mapper, if there are j3 lambdas
allocated as mappers, each with x1 type of memory allocation.
Similarly, weights of the second set of edges are specified as
the aggregation of the data transfer time of the coordinator and
the reducing phases (dj,g2 + dj,g3 ). For the third set of edges,
weights are assigned as the coordinator phase computation
time (cg,a2 ). Finally, weights of edges between the fourth and
fifth column of vertices represent the computation time of the
reducing phase (Eq. (9)).

With such an edge weight assignment, optimizing job
completion time is equivalent to finding the shortest path. We
develop Algorithm 1 to find the optimal resource allocation
towards minimized job completion time, based on the shortest
path algorithm [25].

B. Cost Minimization with Quality-of-Service

We next consider the following cost minimization problem,
given a threshold for the purpose of meeting Quality-of-
Service (QoS) requirement.

min
x,y,z,n,wx,y,z,n,wx,y,z,n,w

hhh = U j1 + U j,g2 + U j,gP + V j,i1 + V g,a2 + V g,sP +

W j,i
1 +W g,a

2 +W g,s
P (20)

s.t. Eq. (1), (2), (5), (7), (8), and (18) (21)
T j,i1 + T g,a2 + T g,sP ≤ E (22)

The objective is the total monetary cost that needs to be paid
for the running of the serverless job, including the requests
costs, storage costs and runtime costs incurred by mappers,
coordinator and reducers. Similar to the previous optimization
problem, we have the constraints for binary variables and for
resource upper limits. Constraint (22) regulates that the job

Algorithm 1 Astra: Finding the Optimal Resource Allocation
(by minimizing the completion time)
Input: W (u, v): time, C(u, v): costs (edge constraint from equation (19)),

F (u, v): storage, Source S, Destination D
Output: Best performance path with acceptable cost.

1: procedure FIND-OPTIMAL-PATH(G(v,E))
2: P ← Dijkstra(G,W,F )
3: cost← 0, storage← 0, u← S
4: while u 6= D do
5: cost← cost+ C(u, v), storage← storage+ F (u, v)
6: if cost ≥ budget then
7: E ← E − E[v][u]
8: P ← Find-optimal-path (G(v,E))
9: else

10: u← v
11: return P

performance should satisfy the QoS objective, which means
that the job completion time does not exceed a user-specified
threshold (E).

To construct the DAG for cost minimization, the vertices
are the same with the completion time optimization, as we
have the same set of resource allocation variables. The edges
of the DAG are associated with the weights that denote
the monetary costs of the three phases resulted from the
corresponding resource allocation. Specifically, the weights of
the first set of edges in Fig. 5 represent the costs of the mapper
phase (U j1 + V j,i1 +W j,i

1 ). The second set of edges gives the
aggregation of requests costs and invoking costs during the
coordinator and reducer phase (U j,g2 +U j,gP + Ij,g2 + Ij,g3 ). The
next set of edges is associated with coordinator storage cost
(V g,a2 ) and lambda cost (Cg,a2 ). The last set of edges represents
the aggregation of the storage and lambda costs (V g,sP +W g,s

P )
of the reducing phase. Similarly, Alg. 1 can be used to identify
the shortest path as the optimal solution.

V. PERFORMANCE EVALUATION

In this section, we present the design and implementation
of Astra, and evaluate its performance with real-world exper-
iments.

Design and Implementation. Astra is designed and imple-
mented in AWS Lambda. When a user submits a data analytics
job, Astra will model the performance and cost for the job
using Performance Predictor and Cost Predictor mod-
ules. With the modeling and the user-specified requirement,
Astra provisions resources based on the algorithm described
in Sec. IV, to navigate the cost-performance tradeoff. Finally,
Astra deploys the user code according to the best orchestration
and configuration plan, and the job will be executed accord-
ingly in the serverless environment.

Experimental Setup. In the two modules of performance
modeling, we use the following settings. The reducer state
object written by the coordinator to S3 before each reducer
step normally has one line to specify the number of reducers
and the number of objects. Thus, it is assumed as 1 MB in
size. The computation time of each lambda is proportional to
its memory size, which ranges from 128 MB to 3008 MB,
with 64MB increments [18] in AWS Lambda. Each lambda
has a limit of 900 seconds for execution.
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Fig. 6: The change of completion time, mapper phase time and monetary cost
with memory allocation.

There are three baselines implemented to compare with
Astra, based on the experimental observation of serverless
Wordcount as shown in Fig. 6. Without modeling the intricate
inter-dependencies among various factors, this observation
simply provides some vague sense about the general behavior
of performance and cost with respect to memory allocation,
serving as a rough guideline for the baselines. Since the
memory blocks greater than 1536 MB are not showing much
improvement in completion time, as observed in Fig. 6, 1536
MB is allocated for all lambdas in Baseline 1, and the number
of objects per mapper is set as 1 to realize the maximum
degree of parallelism for mappers. We randomly allocate the
number of objects per reducer as 2. Baseline 2 is implemented
with a setting from the cost point of view. With a preference
for cost saving, the lambdas are naively allocated with the
smallest memory block 128 MB, and the objects allocations
are maintained the same as Baseline 1. The third baseline
has a hybrid consideration of both performance and cost. It
follows the same setting as Baseline 2 for parallel mappers,
each with 128 MB to process one object. For the reducing
phase, Baseline 3 allocates 1536 MB to three reducer lambdas
in two steps, and the two reducers in the first step each process
half of the total objects.

Workloads. We have conducted our experiments under
three different workloads. The big data benchmarks include:
i) Query over the uservisits dataset [12] with the size of
25.4 GB, stored in S3 as 202 objects. The dataset has 155
million individual rows, each consisting of sourceIP, visitDate,
adRevenue, userAgent, countryCode, languageCode, search-
Word and duration. ii) Wordcount, with the input sizes of 1
GB, 10 GB and 20 GB, respectively. iii) Sort, with 100 GB.

Results and Analysis. To begin with, we evaluate the
behavior of Astra in identifying the optimal resource config-
uration and orchestration for performance optimization, given
a cost budget.

Fig. 7 presents the completion time achieved by Astra, in
comparison with the three baselines, for different workloads.
The budget constraints and the resulted costs (by Astra) are
shown with 2-tuples above the bar groups for each benchmark.
As clearly shown in Fig. 7, Astra outperforms all the three
baselines in terms of reducing the completion time for all
the workloads, without exceeding budgets. Baseline 1, with

TABLE III: The resource allocations achieved by Astra, for the three bench-
marks when optimizing job performance.

Wordcount
(1GB)

Wordcount
(10GB)

Wordcount
(20GB)

Sort
(100GB)

Query
(25.4GB)

Map.,
Co., Red.
memory

256,
256,
1024

128,
1024,
1024

256,
1024,
1024

256,
256,
1024

128,
256,
1024

Obj. (map.) 2 8 4 4 1
Obj. (red.) 2 11 2 8 11
Mappers 10 3 10 50 202
Reducers 11 1 11 7 22
Red. steps 4 1 4 1 4

the highest memory allocation for lambdas, outperforms the
other two baselines with shorter completion times for all the
workloads, but is still far from competitive with Astra. More
specifically, for the Wordcount benchmark with increasing
scales of 1GB, 10GB, and 20GB, Astra achieves performance
improvement over Baseline 1 of 46.27%, 42.14%, and 54.73%,
respectively. Similarly, for Query and Sort, Astra outperforms
Baseline 1 by at least 49.45% and 9.36%, respectively. Con-
sidering all the three baselines, Astra achieves 42 − 68%
improvement for Wordcount in all scales, up to 21% for
Sort, and 57% for Query benchmark, respectively. To further
illustrate how Astra works and analyze its advantages, Table III
presents the budget-constrained performance-optimal resource
provisioning in Astra, for the three workloads with different
scales. Specifically, the resource allocation includes specifying
the memory type for mapper and reducer lambdas, the number
of objects processed per mapper and the number of objects
processed per reducer, which can further determine the number
of (mapper or reducer) lambdas and the number of reducer
steps.

For the Query benchmark, the number of objects per mapper
is allocated as 1 by Astra, resulting in 202 mappers with a
maximum degree of parallelism. If the number of objects per
mapper is more than one, there will be fewer mappers, each
processing more input data, and the data transfer time will be
longer, impacting the job completion time. 128 MB memory
is allocated for each mapper, which is sufficient to process
one object and cost-effective. For the reducing phase, if the
number of objects per reducer is too small, then a large number
of reducers will be required in the first step, followed by a
relatively large number of subsequent steps, which prolongs
the job completion. On the other hand, if the number of objects
per reducers is more than 15, there will be one reducer in
the second step that needs to handle all the objects from the
first step, which incurs large data transfer time and increases
the completion time. Astra judiciously sets the number of 11,
resulting in 22 reducers within 4 steps, and allocates 1024 MB
memory, to speed up the job.

For the Sort benchmark, the total size of the input is 100
GB, and each of the 200 objects is as large as 500 MB. If
the number of objects increases to 5 or more, then the size
of the objects processed by each lambda will be larger, which
thus increase the data transfer time. Astra sets 4 objects per
mapper, each with 256 MB memory, to achieve a good balance
between computation time decrease (per mapper) and transfer
time increase. Similarly, for the reducer phase, Astra sets 8
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Fig. 7: Job completion time achieved by Astra and three baselines, for
Wordcount (3 scales), Sort and Query workloads, given a budget constraint.
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Fig. 8: Monetary cost achieved by Astra and three baselines, for Wordcount
(3 scales), Sort and Query workloads, given a completion time threshold.

objects per reducer, each with 1024 MB, to finish within 1
step, as the outcome from optimizing completion time given
the budget.

Similarly, when aiming at minimizing the monetary cost
incurred by the job given a particular threshold of job com-
pletion time, Astra manages to find the optimal resource con-
figurations to orchestrate lambda functions, as demonstrated in
Fig. 8. For each workload, the job completion time threshold
(for QoS purpose) is indicated by the first element in the
2-tuple above each workload bar group, where the second
element represents the actual job completion time with Astra.
It is easily verified that without exceeding the threshold, Astra
results in the smallest cost for each benchmark. Baseline 2
is intuitively designed for cost saving, and thus results in a
smaller cost than the other two baselines for all the workloads.
Still, Astra achieves nearly 58%, 19%, and 17% cost reduction
over Baseline 2, for the three Wordcount benchmarks. For Sort
and Query benchmarks, about 8% and 20% cost savings are
exhibited, compared to Baseline 2. In summary, compared with
the three baselines, Astra achieves the cost reduction of at least
20%, up to 87% for those three different benchmarks.
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Fig. 9: Job completion time and cost achieved with EMR and Astra, for
Wordcount (20 GB) and Sort (100 GB) benchmarks, respectively.

Finally, we compare Astra with the VM-based solution.
We use the Amazon Elastic MapReduce (EMR) with three
m3.xlarge on-demand VM instances, and the number of
concurrent mapping tasks is 100. The workloads include
Wordcount with 20GB input and Sort with 100GB. As shown
in the left side of Fig. 9, Astra outperforms the VM-based
solution by 76.56% and 5.22% for Wordcount and Sort bench-

marks, respectively. The right side of Fig. 9 shows that Astra
minimizes the cost, with 64.52% and 11.83% cost savings over
the EMR solution, for the same two benchmarks, respectively.

Discussion. Intuitively, if DAG fully characterizes the
choices, dependencies and impacts of the configuration se-
quences along the job workflow, deriving the shortest path
results in the optimal execution and configuration with the
objectives of the minimum job completion time or the cost.
As Astra sees more types of workloads, the modeling and
DAG construction could be dynamically adjusted and refined
to achieve better accuracy. The overhead of Astra is incurred
by our algorithm to solve the constrained optimization problem
formulated given user requirements, which is within a few sec-
onds on a laptop (Intel®Core™i7-8750H CPU@2.20GHz×12,
2×8GiB memory). It is expected that the running time is
negligible (in milliseconds) on a more powerful commodity
server. Though implemented in AWS Lambda, Astra can be
adapted to Google Functions and Azure Functions by using
their respective platform quotas and pricing mechanisms. Astra
relies on S3 for the exchange of intermediate data. When other
types of data storage are considered for intermediate data,
such as serverless databases (AWS Aurora) or serverless in-
memory data storage (AWS ElasticCache), our modeling needs
to be adjusted by analyzing the characteristics and cost of the
particular storage. Function-to-function communication is also
an open topic to be explored. Finally, Astra is suitable for other
data analytics workloads which are directly in or convertible
to the MapReduce form. This is evidenced by our preliminary
experiments with WordCount and SQL (aggregation query)
workloads in Spark, where Astra achieves at least 92% cost
reduction without performance degradation over VM-based
vanilla Spark.

VI. RELATED WORKS

Function as a service (FaaS) is popular at present where
users can deploy and run their applications without worrying
about the infrastructure. Although a number of applications
have easily and successfully transitioned into the serverless
environment (e.g., [4]), there still remain open challenges
for data analytics jobs to be implemented with serverless
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architecture, due to their heavy demand for the storage of
intermediate data [6], [15].

PyWren [10] presents a prototype to execute MapReduce
jobs with lambda functions, using S3 as intermediate data stor-
age. Similarly, Flint [26] enhances the PySpark MapReduce
framework in the serverless environment, and leverages the
Amazon Simple Queue Service (SQS) [27] for the shuffling
of intermediate data. Extending the idea of Elastic MapReduce
(EMR) [28], Amazon AWS presented a serverless architecture
[19] for MapReduce jobs with S3 as intermediate storage.
MARLA [11] follows the same architecture and handles the
invoking of multiple mapper lambdas in a different way.

On the other hand, there are research efforts on enhancing
the intermediate data storage. Pocket [9] uses EC2 VMs as
ephemeral storage, enables auto-scaling and provides pay-per-
use service to cloud functions. Locus [6] leverages a small
number of expensive fast ElastiCache (Redis) [8] instances
combined with the much cheaper S3 service. Gadepalli, et
al. [29] applied serverless computing at the edge at near-
native speed, while having a small memory footprint and
optimized invocation time. InfiniCache [30] presents the first
in-memory object cache for serverless functions to improve
I/O performance. Amoeba [31] switches between the IaaS-
based and serverless-based deployment by monitoring loads
and predicting the CPU and memory usage of these platforms.
Different from all the existing works, we present a framework
to automatically configure and orchestrate the MapReduce job
in serverless environment towards flexibly specified objectives.
Our work is for the provisioning of a single job from the
user perspective given a serverless platform, orthogonal to the
job schedulers, such as Skippy [32], that operate within the
serverless platform from the provider perspective.

VII. CONCLUDING REMARKS

This paper presents an optimization framework, Astra, to
navigate the cost-performance tradeoff for serverless analytics
jobs. Astra relies on the modeling of completion time perfor-
mance and monetary cost of a job to formulate optimization
problems towards user-specified objectives. Astra identifies the
optimal solutions of resource configuration and Lambda func-
tion orchestration based on graph theory, to either minimize the
job completion time with a budget limit, or minimize monetary
cost with a performance threshold. We have implemented and
deployed Astra in AWS Lambda. Our experimental results
with three representative benchmarks have demonstrated the
effectiveness of Astra in optimal resource provisioning: Astra
achieves 21% to 60% performance improvement without ex-
ceeding the budget constraint, and 20% to 80% cost reduction
without violating the QoS objective.
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