dc.contributor.author |
Kannan, K. |
|
dc.date.accessioned |
2023-04-17T04:47:49Z |
|
dc.date.available |
2023-04-17T04:47:49Z |
|
dc.date.issued |
2013 |
|
dc.identifier.issn |
1311-8080 (printed version) |
|
dc.identifier.uri |
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317 |
|
dc.description.abstract |
Let G be a countable exact discrete group. We show that G has
the approximation property if and only if
C
∗
u
(G, S)
G = C
∗
λ
(G) ⊗ S
for any Hilbert space H and closed subspace S ⊆ H, we have where C
∗
u
(G) is
the uniform Roe algebra. This answers a question of J. Zacharias. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
International Journal of Pure and Applied Mathematics |
en_US |
dc.subject |
Strong invariant approximation property |
en_US |
dc.subject |
Uniform Roe algebras |
en_US |
dc.subject |
Invariant approximation property |
en_US |
dc.title |
Strong Invariant Approximation Property for Discrete Groups |
en_US |
dc.type |
Article |
en_US |
dc.identifier.doi |
http://dx.doi.org/10.12732/ijpam.v85i6.11 |
en_US |