DSpace Repository

Strong Invariant Approximation Property for Discrete Groups

Show simple item record

dc.contributor.author Kannan, K.
dc.date.accessioned 2023-04-17T04:47:49Z
dc.date.available 2023-04-17T04:47:49Z
dc.date.issued 2013
dc.identifier.issn 1311-8080 (printed version)
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/9317
dc.description.abstract Let G be a countable exact discrete group. We show that G has the approximation property if and only if C ∗ u (G, S) G = C ∗ λ (G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C ∗ u (G) is the uniform Roe algebra. This answers a question of J. Zacharias. en_US
dc.language.iso en en_US
dc.publisher International Journal of Pure and Applied Mathematics en_US
dc.subject Strong invariant approximation property en_US
dc.subject Uniform Roe algebras en_US
dc.subject Invariant approximation property en_US
dc.title Strong Invariant Approximation Property for Discrete Groups en_US
dc.type Article en_US
dc.identifier.doi http://dx.doi.org/10.12732/ijpam.v85i6.11 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record