dc.contributor.author | Muraleetharan, B. | |
dc.contributor.author | Sabadini, I. | |
dc.contributor.author | Thirulogasanthar, K. | |
dc.date.accessioned | 2021-11-30T06:16:51Z | |
dc.date.accessioned | 2022-06-28T06:46:06Z | |
dc.date.available | 2021-11-30T06:16:51Z | |
dc.date.available | 2022-06-28T06:46:06Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4318 | |
dc.description.abstract | In this paper we define the quaternionic Cayley transformation of a densely defined, symmetric, quaternionic right linear operator and formulate a general theory of defect number in a right quaternionic Hilbert space. This study investigates the relation between the defect number and S-spectrum, and the properties of the Cayley transform in the quaternionic setting. | en_US |
dc.language.iso | en | en_US |
dc.publisher | University of Jaffna | en_US |
dc.subject | quaternions | en_US |
dc.subject | Quaternionic Hilbert spacesq | en_US |
dc.subject | symmetric operator | en_US |
dc.subject | cayley transform | en_US |
dc.subject | s -spectrum | en_US |
dc.title | S-Spectrum and the quaternionic Cayley transform of an operator | en_US |
dc.type | Article | en_US |