DSpace Repository

Optimal generalized logistic estimator

Show simple item record

dc.contributor.author Varathan, N.
dc.contributor.author Wijekoon, P.
dc.date.accessioned 2021-11-29T04:30:33Z
dc.date.accessioned 2022-06-28T06:46:05Z
dc.date.available 2021-11-29T04:30:33Z
dc.date.available 2022-06-28T06:46:05Z
dc.date.issued 2018
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4271
dc.description.abstract In this paper, we propose a new efficient estimator namely Optimal Generalized Logistic Estimator (OGLE) for estimating the parameter in a logistic regression model when there exists multicollinearity among explanatory variables. Asymptotic properties of the proposed estimator are also derived. The performance of the proposed estimator over the other existing estimators in respect of Scalar Mean Square Error crite rion is examined by conducting a Monte Carlo simulation. en_US
dc.language.iso en en_US
dc.publisher University of Jaffna en_US
dc.subject logistic regression; en_US
dc.subject biased en_US
dc.subject multicollinearity en_US
dc.subject estimator en_US
dc.subject Optimal generalized logistic estimator en_US
dc.subject Scalar mean square error en_US
dc.title Optimal generalized logistic estimator en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record