DSpace Repository

The stability properties of strong invariant approximation property

Show simple item record

dc.contributor.author Kannan, K
dc.date.accessioned 2014-02-02T09:28:27Z
dc.date.accessioned 2022-06-28T06:46:02Z
dc.date.available 2014-02-02T09:28:27Z
dc.date.available 2022-06-28T06:46:02Z
dc.date.issued 2013
dc.identifier.issn 13118080
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/228
dc.description.abstract Let G be a countable exact discrete group. G has the strong invariant approximation property(SIAP) if and only if C* u(G, S)G = C*λ(G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H. We shall use results of Haagerup and Kraus on the approximation property (AP) to investigate some permanence properties of the SIAP for discrete groups. This can be done most efficiently for exact groups. In this paper we describe that the stability properties of the SIAP property pass to semi direct products, and extensions for discrete exact groups. en_US
dc.language.iso en en_US
dc.publisher Academic Publications, Ltd en_US
dc.subject Invariant approximation property en_US
dc.subject Strong invariant approximation property en_US
dc.subject Uniform Roe algebras en_US
dc.title The stability properties of strong invariant approximation property en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record