DSpace Repository

Strong invariant approximation property for discrete groups

Show simple item record

dc.contributor.author Kannan, K
dc.date.accessioned 2014-02-02T09:23:35Z
dc.date.accessioned 2022-06-28T06:46:01Z
dc.date.available 2014-02-02T09:23:35Z
dc.date.available 2022-06-28T06:46:01Z
dc.date.issued 2003
dc.identifier.issn 13118080
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/227
dc.description.abstract Let G be a countable exact discrete group. We show that G has the approximation property if and only if C* u(G, S) G = Cλ(G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C* u(G) is the uniform Roe algebra. This answers a question of J. Zacharias. en_US
dc.language.iso en en_US
dc.publisher Academic Publications, Ltd en_US
dc.subject Invariant approximation property en_US
dc.subject Strong invariant approximation property en_US
dc.subject Uniform Roe algebras en_US
dc.title Strong invariant approximation property for discrete groups en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record