dc.contributor.author |
Kannan, K |
|
dc.date.accessioned |
2014-02-02T09:23:35Z |
|
dc.date.accessioned |
2022-06-28T06:46:01Z |
|
dc.date.available |
2014-02-02T09:23:35Z |
|
dc.date.available |
2022-06-28T06:46:01Z |
|
dc.date.issued |
2003 |
|
dc.identifier.issn |
13118080 |
|
dc.identifier.uri |
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/227 |
|
dc.description.abstract |
Let G be a countable exact discrete group. We show that G has the approximation property if and only if C* u(G, S) G = Cλ(G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H, we have where C* u(G) is the uniform Roe algebra. This answers a question of J. Zacharias. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Academic Publications, Ltd |
en_US |
dc.subject |
Invariant approximation property |
en_US |
dc.subject |
Strong invariant approximation property |
en_US |
dc.subject |
Uniform Roe algebras |
en_US |
dc.title |
Strong invariant approximation property for discrete groups |
en_US |
dc.type |
Article |
en_US |