DSpace Repository

Improving out-domain plda speaker verification using unsupervised Inter-dataset variability compensation approach

Show simple item record

dc.contributor.author Ahilan, K.
dc.contributor.author Dean, D.
dc.contributor.author Sridharan, S.
dc.date.accessioned 2021-03-15T07:46:22Z
dc.date.accessioned 2022-06-27T10:02:19Z
dc.date.available 2021-03-15T07:46:22Z
dc.date.available 2022-06-27T10:02:19Z
dc.date.issued 2015
dc.identifier.citation Kanagasundaram, A., Dean, D., & Sridharan, S. (2015, April). Improving out-domain PLDA speaker verification using unsupervised inter-dataset variability compensation approach. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4654-4658). IEEE. en_US
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/1880
dc.description.abstract Experimental studies have found that when the state-of-theart probabilistic linear discriminant analysis (PLDA) speaker verification systems are trained using out-domain data, it significantly affects speaker verification performance due to the mismatch between development data and evaluation data. To overcome this problem we propose a novel unsupervised inter dataset variability (IDV) compensation approach to compensate the dataset mismatch. IDV-compensated PLDA system achieves over 10% relative improvement in EER values over out-domain PLDA system by effectively compensating the mismatch between in-domain and out-domain data. en_US
dc.language.iso en en_US
dc.subject speaker verification en_US
dc.subject PLDA en_US
dc.title Improving out-domain plda speaker verification using unsupervised Inter-dataset variability compensation approach en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record