dc.contributor.author | Ahilan, K. | |
dc.contributor.author | Dean, D. | |
dc.contributor.author | Sridharan, S. | |
dc.date.accessioned | 2021-03-15T07:46:22Z | |
dc.date.accessioned | 2022-06-27T10:02:19Z | |
dc.date.available | 2021-03-15T07:46:22Z | |
dc.date.available | 2022-06-27T10:02:19Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Kanagasundaram, A., Dean, D., & Sridharan, S. (2015, April). Improving out-domain PLDA speaker verification using unsupervised inter-dataset variability compensation approach. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4654-4658). IEEE. | en_US |
dc.identifier.uri | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/1880 | |
dc.description.abstract | Experimental studies have found that when the state-of-theart probabilistic linear discriminant analysis (PLDA) speaker verification systems are trained using out-domain data, it significantly affects speaker verification performance due to the mismatch between development data and evaluation data. To overcome this problem we propose a novel unsupervised inter dataset variability (IDV) compensation approach to compensate the dataset mismatch. IDV-compensated PLDA system achieves over 10% relative improvement in EER values over out-domain PLDA system by effectively compensating the mismatch between in-domain and out-domain data. | en_US |
dc.language.iso | en | en_US |
dc.subject | speaker verification | en_US |
dc.subject | PLDA | en_US |
dc.title | Improving out-domain plda speaker verification using unsupervised Inter-dataset variability compensation approach | en_US |
dc.type | Article | en_US |