DSpace Repository

Short Utterance PLDA Speaker Verification using SN-WLDA and Variance Modelling Techniques

Show simple item record

dc.contributor.author Ahilan, K.
dc.contributor.author Dean, D.
dc.contributor.author Sridharan, S.
dc.date.accessioned 2021-03-15T05:17:20Z
dc.date.accessioned 2022-06-27T10:02:19Z
dc.date.available 2021-03-15T05:17:20Z
dc.date.available 2022-06-27T10:02:19Z
dc.date.issued 2014
dc.identifier.citation Kanagasundaram, A., Dean, D., & Sridharan, S. (2014). Short utterance PLDA speaker verification using SN-WLDA and variance modelling techniques. In Proceedings of the 15th Australasian International Conference on Speech Science and Technology (SST 2014) (pp. 155-158). New Zealand Institute of Language, Brain and Behaviour (NZILBB). en_US
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/1863
dc.description.abstract This paper proposes a combination of source-normalized weighted linear discriminant analysis (SN-WLDA) and short utterance variance (SUV) PLDA modelling to improve the short utterance PLDA speaker verification. As short-length utterance i-vectors vary with the speaker, session variations and phonetic content of the utterance (utterance variation), a combined approach of SN-WLDA projection and SUV PLDA modelling is used to compensate the session and utterance variations. Experimental studies have found that a combination of SNWLDA and SUV PLDA modelling approach shows an improvement over baseline system (WCCN[LDA]-projected Gaussian PLDA (GPLDA)) as this approach effectively compensates the session and utterance variations. en_US
dc.language.iso en en_US
dc.subject speaker verification en_US
dc.subject session variation en_US
dc.title Short Utterance PLDA Speaker Verification using SN-WLDA and Variance Modelling Techniques en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record