dc.contributor.author | Jeyakumar, V | |
dc.contributor.author | Lee, G.M | |
dc.contributor.author | Srisatkunarajah, S | |
dc.date.accessioned | 2014-02-01T08:08:47Z | |
dc.date.accessioned | 2022-06-28T06:46:00Z | |
dc.date.available | 2014-02-01T08:08:47Z | |
dc.date.available | 2022-06-28T06:46:00Z | |
dc.date.issued | 2010-01 | |
dc.identifier.issn | 13489151 | |
dc.identifier.uri | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/167 | |
dc.description.abstract | We provide simple necessary, and sufficient conditions for a local minimizer to be a global minimizer of quadratic functions with mixed variables. We fully distinguish global minimizers from local minimizers in the case when the quadratic function is a sum of squares by providing a necessary and sufficient global optimality condition. We discuss examples to illustrate the significance of our conditions for identifying a global minimizer among local minimizers. Finally we apply our criteria for identifying global minimizers of a class of fractional programming problems. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Yokohama Publishers | en_US |
dc.subject | Global optimality conditions | en_US |
dc.subject | Mixed va | en_US |
dc.subject | Quadratic programs | en_US |
dc.subject | Weighted least squares | en_US |
dc.title | Distinguishing a global minimizer from local minimizers of quadratic minimization with mixed variables | en_US |
dc.type | Article | en_US |