DSpace Repository

Explainable Deep Learning Approach for Multi label Classification of Antimicrobial Resistance with Missing Labels

Show simple item record

dc.contributor.author Mukunthan, T.
dc.contributor.author Brian, G.
dc.contributor.author Roberto La, R.
dc.contributor.author Anil, F.
dc.date.accessioned 2023-12-29T05:54:16Z
dc.date.available 2023-12-29T05:54:16Z
dc.date.issued 2022
dc.identifier.uri http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10015
dc.description.abstract PredictingAntimicrobialResistance(AMR)fromgenomicsequencedatahasbecomea significantcomponentofovercomingtheAMRchallenge,especiallygivenitspotentialforfacilitatingmore rapiddiagnosticsandpersonalisedantibiotictreatments.Withtherecentadvancesinsequencingtechnologies andcomputingpower,deeplearningmodelsforgenomicsequencedatahavebeenwidelyadoptedtopredict AMRmorereliablyanderror-free.TherearemanydifferenttypesofAMR;therefore,anypracticalAMR predictionsystemmustbeabletoidentifymultipleAMRspresentinagenomicsequence.Unfortunately, mostgenomicsequencedatasetsdonothaveallthelabelsmarked,therebymakingadeeplearningmodelling approachchallengingowingtoitsrelianceonlabelsforreliabilityandaccuracy.Thispaperaddresses thisissuebypresentinganeffectivedeeplearningsolution,Mask-Loss1Dconvolutionneuralnetwork (ML-ConvNet),forAMRpredictionondatasetswithmanymissinglabels.Thecorecomponentof ML-ConvNetutilisesamaskedlossfunctionthatovercomestheeffectofmissinglabelsinpredicting AMR.TheproposedML-ConvNetisdemonstratedtooutperformstate-of-the-artmethodsintheliteratureby 10.5%,accordingtotheF1score.Theproposedmodel’sperformanceisevaluatedusingdifferentdegrees ofthemissinglabelandisfoundtooutperformtheconventionalapproachby76%intheF1scorewhen 86.68%oflabelsaremissing.Furthermore,theML-ConvNetwasestablishedwithanexplainableartificial intelligence(XAI)pipeline,therebymakingitideallysuitedforhospitalandhealthcaresettings,wheremodel interpretabilityisanessentialrequirement. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.subject Multi label classification en_US
dc.subject Deep neural network en_US
dc.subject Multi-drug AMR en_US
dc.subject Missing labels en_US
dc.subject Explainable AI en_US
dc.title Explainable Deep Learning Approach for Multi label Classification of Antimicrobial Resistance with Missing Labels en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record