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The purpose of this study was to introduce the inner product over fuzzy matrices. By virtue of this definition, a-norm is defined
and the parallelogram law is proved. Again the relative fuzzy norm with respect to the inner product over fuzzy matrices is
defined. Moreover Cauchy Schwarz inequality, Pythagoras, and Fundamental Minimum Principle are established. Some equivalent

conditions are also proved.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [1] in 1965.
Biswas [2] and El-Abyad and El-Hamouly [3] first tried to
give a meaningful definition of fuzzy inner product space
and associated fuzzy norm function. Also those definitions
are restricted to the real linear space only. Felbin [4], Ragab,
and Emam [5] introduced fuzzy 2-normed linear spaces.
Meenakshi and Cokilavany [6], Bag and Samanta [7], and
so forth have given different definitions of fuzzy normed
linear spaces. Gani and Kalyani [8] introduced the concept
of binormed sequences in fuzzy matrices. Gani and Kalyani
[9] introduced the properties of fuzzy m-norm matrices.
Gani and Kalyani Introduced the definition of fuzzy equiv-
alence relation. Recently Majumdar and Samanta [10] and
Hasankhani et al. [11] have introduced a definition of fuzzy
inner product space whose associated norm is of Felbin
type. Somasundaram and Beaula [12] defined the 2-fuzzy
2-normed linear space. Some standard results in fuzzy 2-
normed linear spaces were extended. The organization of
the paper is as follows. Section 2 provides some preliminary
results which are used in this paper. In Section 3, we
study some results on inner product over fuzzy matrices
and the parallelogram law is proved. Section 4 is devoted
to establishing Cauchy Schwarz inequality, Pythagoras, and
Fundamental Minimum Principle theorem in fuzzy setting.

In this paper, we have introduced the new concept of
inner product over fuzzy matrices on M, (F), the set of all
fuzzy sets of P*(M,(F)). We introduce the notion of «-
norm on an inner product over fuzzy matrices. With the
help of it, the standard parallelogram law is proved. Some
important results on inner product over fuzzy matrices are
proved. Moreover Cauchy Schwarz inequality, Pythagoras,
and Fundamental Minimum Principle are established. Some
equivalent conditions are also proved.

2. Preliminaries

We consider F = [0, 1] the fuzzy algebra with operation [+, -]
and the standard order “<” where a+b = max{a, b} anda-b =
min{a, b} for all g, b in F. F is a commutative semiring with
additive and multiplicative identities 0 and 1, respectively. Let
M, (F) denote the set of all m x n fuzzy matrices over F. In
short, M,,(F) is the set of all fuzzy matrices of order n. Define
“+” and scalar multiplication in M, (F) as A + B = [a;; + b;],
where A = [aij] and B = [b,»j], and cA = [cay;], where ¢ is in
[0, 1]; with these operations M,,(F) forms a linear space.

3. m-Norm and Binorm Fuzzy Matrices

Definition 1. Let M, (F) be the set of all (n x n) fuzzy matrices
over F = [0, 1]. For every A in M, (F) define m-norm of A



denoted by [|A]l,, as
|Al,, = max [aij] , where A = [aij] or

lA],,, = max [all,alz, s Gy .,a,m] or

1AL, =YY ay.

i=1j=1

)

Definition 2. Let A be in M, (F) and let « be in [0, 1] such
that [|All,,, = a. Then the pair (A, ) is called a fuzzy point in
M, (F) and it is denoted by P§. The dual fuzzy point for P} is

the point with a-norm (1 — ) denoted by P* = P'™%,

Definition 3. The set of all fuzzy points in M,,(F) is given by
P*(M,(F)) = {P5/A € M,(F),« € [0,1]}.

In F we follow the usual < order relation; correspondingly
we define an order relation in P*(M,,(F)) as follows.

Definition 4. We define P§ < Pg if and only if « < f3 and
P = Pg if and only if A = B (then automatically a = f3).

Definition 5. A binorm with respect to the m-norm in M, (F)
is a real valued function 6 defined on P* (M,,(F))x P*(M,,(F))
to [0, 1] satisfying the following conditions:
(i) 6(P,, P,) = 0ifand only if P, = P,.
(i) 6(P,, P,) = 6(Py, P)").
(iii) O(aP,, P,) = aB(P;, P,), Vo € [0,1].
(iv) O(P, + P,, P;) < O(P,, ;) + O(P,, P;).
Then (M, (F), 0) is called a fuzzy binormed linear space with
respect to the m-norm.
[0(P,, P,) is defined for P, = P, as 0 (by (i)). Therefore
0(P,, P,) # 0 is defined for P, < P,].
(i) When P, = P, both the fuzzy points coincide.
Therefore 6(P;, P,) = 0.

Conversely 6(P;, P,) = 0 = both fuzzy points should
coincide P, = P,.

() P<P=2a<y=>1l-a<l-a =P <P
Therefore 6(P,, P,) = 6(P,, P").

(iii) Case (i): let x < ay;

0(aP,P,) = aP, <P, = aa, <a, = a <,

2
(since a < a; < @),
af (P,P) = aa; <o, > a<a = a<a,
3)
(since a < o < @)
From (2) and (3),
0 (aP,,P,) = af (P, P,). (4)
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Case (ii): let oy < a5

0(aP,,P)) = aP, <P, = aa; <o, = a < a,

(5)
(since a < ) < ay),
af(P,P,) = aa, < aa, = a, < a,
(6)
if ¢y < o (since a < a; < ).
From (5) and (3),
0 (aPy,P)) = b (P, P,). (7)
(iv) Case (i): let oty < oy
P +P<P=
o+, <oy =
(8)
o <oy =
P, < P,
O(P,+P,,P)=0(P,Py). 9)
Case (ii): let &) < ay;
P +P<P=
o o, <oy =
(10)
A <oy =
P, < P,
0 (P, + Py, P;) =60 (P,, P;). (11)

From (9) and (11),

0 (P, + P,, P;) = either O (P, P;) or O(P,,P;).  (12)

Therefore (P, + P,, P;) < 0(P,, P;) + 0(P,, P;).
Since 8(P,, P;) > 0, [in fact O(P, + P,, P;) = O(P,, P;) +
0(P,, Py)].

Thus 0 is a fuzzy binorm with respect to the m-norm in
M,,(F) and hence M, (F) is a fuzzy binormed linear space with
respect to the m-norm.

Definition 6. Let M,,(F) be a linear space over K (the field is
real or complex number). A fuzzy subset 0 of M, (F) x R is
called a fuzzy norm of M, (F) if and only if, for all P,, P €
P*(M,(F)) and cin K.

(0,) Forall s € Rwith s <0,0(Py,s) =0.

(0,) Foralls € Rwith s > 0,0(Py,s) = 1.

(0;) For all s € Rwiths > 0, 0(cPy,s) = O(Py,s/lc]), if

c#0.

(0,) Foralls,t € R, P, Py € P*(M,(F)),0(P,+Pg,s+t) >
min{0(P,, s), 6(Pg, 1)}.
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(05) O(P,,-) isanondecreasing function of R and lim 6(P,,
s)=1lass — oo.

The pair (M, (F),0) will be referred to as a fuzzy normed
linear space.

Theorem 7. Let M, (F) be nonempty and P*(M,,(F)) be the
set of all fuzzy sets in M,(F). If P*(M,,(F)) = {P{/A € M, (F)
and « € [0, 11} and P, is a bounded function for |P,| < 1.

Let K be the space of real numbers; then M,(F) is a
linear space over the field K; where the addition and scalar
multiplication are defined by

Py+ Py ={(A,a)+ (B, p)}

_{(A+B,oc/\[3)

= A € P,, (B,p) € PB} ,

(13)

————~ ¢ PA} , where k in K.

Proof. M, (F)is said to be fuzzy normed space if to every P, €
P*(M,,(F)) there is an associated nonnegative real number
0(P,) called the a-norm of P, in such a way that

()
(P, =0 iff P,=0,
0(Py)=0=

{PI?GM,,(F),(XE[O,H}ZOE (14)

A=0,

ain [0,1] =

therefore 8(P,) = 0 if and only if [P4] = 0;
(ii) one has

0(kP,) = |k|0(P,), VkinK,

_ [6k(4,0)
0 (kP,) = { (o) < Mn(E) ke K} 15)
S {HOAD (), we o],
0 (kP,) = k|0 (P);
(iii) one has
0 (P, + Py) < 0(P,) +0(P)
(16)

for every, P,, Py € P* (M, (F)).

For
0 (P, + Pp)

0 (B,B)

A

:{G(A,oc)+ ,BeMn(F),oc,[}e[O,l]}

(A+B,anp)
={T,BeMn(F), a,ﬁe[o,l]} 17)
0(B,anpB)

< {6(A,oc/\ﬁ)+ A

@) em, o)
0 (Py+Pg) <60(P,)+6(Pp).
Therefore (M,,(F), 0) is a fuzzy normed linear space. O

4. Inner Product over Fuzzy Matrices

Definition 8. Let M, (F) be a linear space over the filed C.
The fuzzy subset # defined a mapping from P*(M,,(F)) x
P*(M,(F)) x C to [0,1] such that, for all Py, Pg,P, €
P*(M,(F)), « € C:

(i) Fors,t € C, 11(PA+PB,Pg, [s|+]t]) = min{n(PA,Pg, [s]),
I/I(PBS Pg) |t|)}
(ii) For s,t € C, (P, + Pg,|st]) = min{rn(Py, Py, s?),
T'I(PB, PB’ |t|2)}
(iii) For s,t € C, n(Py, Py, s) = y(Pg, Py, ).

(iv) For s € C, 5(kPy4, Py, |sl) = 5(Py4, Py, s/lkl), for all
a(#0) € C.

(v) n(P4, Py,s) = 0 foralls € C\ R".
(vi) (P4, Py, s) = 1 forall s > 0 if and only if P, = 0.

(vii) n(Py, Py,-) : R — I(= [0; 1]) is a monotonic nondec-
reasing function of R and lim#(P,, P,,s) = 1 as s —
0.

Then # is said to be 2-fuzzy inner product (2-FIP) on M, (F)
and the pair (M,,(F), 0) is called a 2-fuzzy inner product space
(2-FIPS).

Example 9. 1f

(0.8 0.3 0.27
P,=106 09 06|,
0.1 0.7 0.8

70.2 0.3 0.77
Py=107 05 06|,
0.8 0.6 0.7

(0.3 0.6 0.77
P =101 05 02],
0.2 0.6 0.3




[0.7 0.4 0.57
s=104 08 02],
L0.1 0.6 0.7

[0.6 0.4 0.27
t=104 05 03],
L0.5 0.3 0.4

[0.8 0.3 0.27
pP,=106 09 06|,
L0.1 0.7 0.8

0.9 0.6 0.6 0.6
HRM=Q8[ ]+03

0.7 0.8 0.1 0.8

0.6 0.9
+0.2
0.1 0.7

=0.8[0.8 + 0.6] + 0.3[0.6 + 0.1]

+0.2[0.6 +0.1]
=0.8+03+0.2,

[P4] = 0.8,

02 03 0.7
Pp=10.7 05 06|,
0.8 0.6 0.7

0.5 0.6 0.7 0.6
|Ps|| = 0.2 +0.3
0.6 0.7 0.8 0.7
0.7 0.5
7
0.8 0.6
=0.2[0.5+0.6] +0.3[0.7 + 0.6]
+0.7[0.6 + 0.5]
=0.2+0.3+0.6,
[P = 06,

0.3 0.6 0.7
0.1 05 0.2,
0.2 0.6 0.3

0.5 0.2
H%H:03[0603]+06

0.1 0.5
+0.7
0.2 0.6

o
Il

0.1 0.2
0.2 0.3
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=0.3[0.3+0.2] +0.6[0.1 +0.2]

+0.7[0.1+0.2]

=03+02+0.2,
I =05

0.7 0.4 0.5
s=|04 08 02

0.1 0.6 0.7

Isll = 0.7,

0.7 04 0.1
s=104 08 06|,
0.5 0.2 0.7

) 0.8 0.6 0.4 0.6
5 = 0.7 +0.4
02 0.7 0.5 0.7

0.4 0.8
+0.1
0.5 0.2

=0.7[0.7 + 0.2] + 0.4 [0.4 + 0.5]

+0.1[0.2+0.5]

=0.7+04+0.1,
5l = 0.7,
(18)
therefore ||s|| = ||s|| = 0.7. Consider
0.6 0.4 0.2
t=104 05 03],
0.5 0.3 04
]l = 0.4,
0.6 0.4 0.5
t=104 0.5 03],
0.2 0.3 04 (19)

; 0.5 03 04 03 04 0.5
£l = 0.6 +04[ ]+a5[ ]

0.3 0.4 02 0.4 02 0.3
=0.6[0.4+0.3] +0.4[0.4 + 0.2] + 0.5 [0.3 + 0.2]

=04+04+0.3,

£l = 0.4.
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Therefore ||t|| = [[£]| = 0.4. One has the following: Proof. (i) For s,t € Cand P4, Py, P, € P*(M,,(F)), we have

(i) Fors,teC, i (Pa+ Py P ls| + 1t])

7 (Py + Py, Py Is| + |11 =i (Py + Py Py Is| + [t] +0)

> min {1 (P4, P,y |s|) 7 (Po> P 1)} = =0 (P, +Pglsl +1t)) VO(P,,0) 03)
7 (0.8 +0.6,0.3,0.7 + 0.4) =0(Py + Py, |s| +t])

> min {5(0.8,0.4,0.7),7(0.6,0.3,0.4)} =  (20) > min {0.(P,, 1s1), 0 (P I£])}
1(0.8,0.3,0.7)

= min {7’ (Py, Pg, |s]), 7' (Pg, Py It])} -
> min {#(0.8,0.4,0.7),%(0.6,0.3,0.4)} =

Therefore n'(PA +Pp, Py, Is| + |t]) = min{n'(PA, Py, Is]), 11'(PB,
1(0.8,0.3,0.7) > #(0.6,0.3,0.4). P, It])}.

(ii) One has

(ii) For s,t € C,
' (P4, Py, |st]) = 0 (P, |st]) = 0 (Pg, |st|)

7 (Py + Py st]) = min { (P, P Isl?) = min {0 (P, 1st]), 0 (Pg Ist])}
(26)
1 (Pp, Py [t1°)} = > min {0 (P, Is*) .0 (P, 1¢°)}
1(0.8 + 0.6, (0.7) (0.4)) = min {#' (P, Pa, IsI°) .71 (P, Py 1)} -
i (21)
> min {1 ((0.8) (0.8),(0.7) (0.7)), (i) One has
7((0.6) (0.6), (0.4) (0.4))} = .
’7’ (P> Pp,s) = 0 (Py, Isl) = 0 (Py, Is1)
7(0.8 +0.6,0.4) > min {77 (0.8,0.7),7 (0.6,0.4)} = . )
1 (Pas Py, £) = 0 (P, [£])
7(0.8,0.4) > 7(0.6,0.4). , B (27)
=1 (Pg, Py [t]),
(iii) Fors,t € C, 7' (P4, Pg,5) = 1 (Pg, Py,5).
1 (Pa, P, s) = 11 (Pg, Py, 5) = (iv) One has
7(0.8,0.6,0.7) = 1 (0.6,0.8,0.7) = (22) X
' (kP,, Pg,s) = 0 (kP,, :G(P,—> k+0],
1(0.8,0.6,0.7) = 1 (0.8,0.6,0.7) . 1 (kPas Py ) = 0 (kP 1s1) A1k [k # 0]
(28)
/ o S
(iv) Fors,t € C, 1 (kPa> P, s) =1 <PA’PB’ |k| >
s v) One has
1 (kPy, Py, Is|) = 1 (PA’PB’ m) : (23) ™)
# (P, Pys) =0 Vtin C. (29)
For (vi) One has
k=09= 0 (PyPys)=0 VE>0=
1((0.9) (0.8),0.6,0.7) = 7(0.8,0.6,(0.7) (0.9)) =  (24) 0(Pus)=1 Vi>0— (30)
1(0.8,0.6,0.7) = 1(0.8,0.6,0.7) . P, =0,
Theorem 10. If a 2-fuzzy inner product (2-FIP) on M, (F) (vii) Since #'(P4,Ps-) = O(Py,-) and O(P,,-) is a

is strictly convex, and if min{0(P,,|st|),0(Ps,|stl)} >  monotonic nondecreasing function of R and lim (P,, s) = 1,
min{6(P,, Is|?), 0(Pg, [t|*)}, then 6 are 2-fuzzy inner product this implies that M' has also the property. Thus 11' is a 2-fuzzy
on M, (F). inner product on M, (F). O



Definition 11. Let (M, (F),0) be a 2-FIP satistying the condi-
tion {#(P4, Pg,s) > 0, when t > 0} implying that f = 0.
Then, for all « in [0, 1], define O(P}) = inf{t : (P4, P, §%) >
«a} as a crisp norm on M, (F), called the a-norm on M, (F)
generated by #. Now using these definitions let one define
fuzzy norm on M, (F) and verify the conditions as follows.

Theorem 12. Let 0 be a 2-FIP on M, (F); then 0 : M,(F) x
R — [0, 1] defined by

0(Py,s)=1 (PA, P, sz) when sin R, s >0,

(31
0(P4,s) =0, whensinRand s<0
is a fuzzy a-norm on M, (F).
Proof. (i) O(P,,s) =0forall sin Rands < 0.
(ii) For all s > 0, #(Py, Py, §?) = lifand onlyif P, = 0.
It follows that 8(P,,s) = 0 if and only if P, = 0.
(iii) For all s > 0 and k # 0,

0 (kPy»s) = 1 (kP o, kP4, %),

§2 (32)
e(kPA,S) :’1<PA’PA’ m).

(iv) One has
0 (P4 + Pg,s+1) > min {0 (Py,s),0 (Pg, t)}
for every s,t € R',
P, PsePx (M, (F) =

0 (Py+ Pg.s+1t) =1 (Py + Py, Py + P, (s +1)°)

= ;7(PA+PB,PA+PB,52+st+st+t2) )
=1 (Py, Pa»s>) + 11 (P Py st) + 17 ( Py, Py, )
> 11 (P Pars”) + 1 (P, Ppr5°),
O(Py+ Pg,s+t)=0(Py,s)+0(Pgt).
O

Theorem 13 (Cauchy Schwarz inequality). Let 0 be a 2-fuzzy
inner product on M, (F), « € [0,1], and let 0 be a «-
norm generated from 2-FIP nj on M,,(F); then |y§(P,, Py, st)| <
O(Py, s)0(Pg, t), for all P4, Py € P s (M, (F)).
Proof. We can assume that Py > 0 Vr € R" =
0<6(Py—rPs(s+1)°)
=n (PA —rPg, Py — rPB,s2 —st—st+ t2)
<7 (PA, P, 52) + 1 (P4, —1Pg, —st)

+1(~1Pg, Py, —st) + 17 (—rPB, ~rPp, t2)
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st
=11 (Py Py s™) + 11 <pA, PB,—m>

+|rln <PB,PA, —%) +7 (rPB, rPpg, tz)
=7 (PA, PA,SZ) = |r] 1 (Py, Pg, 2st)

+ |7 1 (Py, Ppo 1) .
(34)

We can find a fuzzy sequence

1 (Py> P, st)

_, 35
1 (Pg, Pg, t?) (3)

Then, taking limit into the above,

[ (P Py, 3st))|
1 (Pg, Pg, t?)

+ |’7 (Py, Py, 25t)| (36)
n (PB’ Py, tz)

|1 (Pa> Pg, st)| < 17 (Pyy Pars*) 11 (P, P, £).

0<7(Py, Py, s%)

Therefore [7(Py, Py, st)| < 0(Py, s)0(Pg, t). ]
Theorem 14 (parallelogram law). Let 0 be a 2-fuzzy inner
product on M, (F), « € [0, 1], and let 0 be a a-norm generated
from 2-FIP 1 on M,,(F); then O(P, + Py)> + 0(Py — Pp)’ =
21(Py, PA,SZ) + 21(Pg, P, ).

Proof. Consider

2 2
0 (Py+ Pg), +0(Py—Py),
= inf {52,5 €R", O(Py+Pgs) > (x} (37)
+inf {£*,t € R*, 6(P, - Pp,t) 2 a},

where 0 is the fuzzy a-norm induced from 7.

One has the following:

O (Py+ Py), +0(Py— Pg)2 =inf {s + 17, 5.t

€R', 0(Py+Pgs) 2, 0(Py— Pyt) 2 af,
O (Py+Py)s +0(Py—Pg), =inf {s* +1°, s,

€R", 6(Py+ Py, s) N0 (Py - Pyt) 2 a} =
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0 (Py+ Py). +60(Py—Py). =0 (Py + Pg,5) 0 (P,
+ Py, t) =1 (Py+ Pp Py + Py, (s +1)°) +17(Py
— Py, Py~ Py, (s—1)*) =57 (Py + Py, Py + Py, s°
+st+st+t2) +11(PA—PB,PA—PB,52 —st—st
+12) =1 (Pyy Py, s”) + 17 (Py, Py, st) + 17 (Pg, Py,
st) + 1 (Pg, P, t*) + 1 (Pa» Pars”) + 17 (P, —Pps
— st) + 1 (~Pg, Py, st) + 11 (~Pg, —Pg, ) = 17 (P,

Py, s”) + 11 (Py, Py, st) + 17 (Pg, Py, st) + 11 ( Py, P,

t2) + 1 (P> Py s”) +17 <PA,PB, —%) +7 <PB,

P, —&) +1(Pg, Pg t?) = 11 (Py, Py, 5°)
+17(Pas Py, st) + 1 (Py, Py, st) + 1 (Pp, P, )
+ 11 (Pas Py s*) = 11 (P, Py st) = 11 (Pg, Py, st)
+1 (P, Ppt*) = 17 (Py, Py s°) + 17 (Pgs Pyo )
+11(Pyy Pars”) + 11 (Pg, Py t”),

6 (Py + Py, +0/(Pa— Py), = 27 (Pa, P, 5°)

+217 (Pg, Pg, t).
(38)

Therefore, O(P, + Pg)> + O(P, — Pg)2 = 2y(P,, Py, s°) +
25(Pg, Py, t%). O
Theorem 15 (Pythagoras). Let 0 be a 2-fuzzy inner product on
M, (F), « € [0,1], and let 0 be a a-norm generated from 2-FIP
1 on M,,(F); then O(P, + Py)2 = 0(P,)> + 0(Pp)?.

Proof. Consider the following:
0 (P,), =inf {s’,s € R*, 6(Py,s) 2 a},

0 (Pg), = inf {t,t € R*, 6(Pp.t) 2 a},

(39)
0 (P, + Py)’
= inf {52 +1°, 5,t € R, O(Py,s) +6 (Pyt) = oc},
O(P, + PB)i
(40)

:inf{52+t2, s,t € RT, O(Py+ Pg,s+1) 20(},

7
6 (Pa); + 0 (Py),
= inf {52,5 €R", O(Py,s) oc}
+inf {£,t € R*, 0(Py,t) > a}
= inf {52,5 €R', 1y (PA, P,, 52) > (x} (41)
+inf {t*,t € R*, #(Pg, Py, t*) 2 a}
= inf«{s2 +1, st € R, O(Py+ Pg,s+1t) > (x}
< inf{s2 +1t°, st €R", O(Py+ Pgs+1) > oc},
0(P,)> +0(Py). <O(Py+Ps). [From (40)]. (%)
Also
0(Py)z +0(Ps), = 1 (Pas Pars) + 17 (P, Py, 1)
=1 (P, Ppo5) + 17 (P, Po ) + 17 (Ps Py, st)
+ 17 (Pg, Py, st) (42)

> inf {17 (P, + Pp, Py + Py, (s + 1)’ )}
zinf{sz+t2, s,t €RY, O(P, + Pg,s+1) zoc},

0(P,)> +0(Py). = 0(Py+Pg)>  [From (40)]. (%)

From () and (),
0(Py+ Py). = 0 (Py). +6 (Py). (43)

O

Definition 16. A sequence {P,,} in a fuzzy a-normed linear
space (M,,(F),0) is called a Cauchy sequence with respect to
2-norm if lim 6(P,,,, Pg,,), = 0 as n, m — co.

Definition 17. A sequence {P,,} in a fuzzy a-norm linear
space (M,,(F), 0) is called a convergent sequence with respect
to 2-norm if there exists P,, € P*(M,(F)), such that
lim O(P,,, Py, ), = 0.

Definition 18. A fuzzy 2-normed linear space (M,,(F),0) is
said to be complete if every Cauchy sequence converges.

Definition 19. A complete fuzzy 2-normed linear space
(M, (F),0) is called 2-fuzzy Banach space.

Definition 20. A complex 2-fuzzy Banach space (M,,(F),0) is
said to be 2-fuzzy Hilbert space if its norm is induced by the
2-fuzzy inner product.

Theorem 21 (Fundamental Minimum Principle). A
nonempty closed convex fuzzy subset ¢ of a fuzzy Hilbert
space M,,(F) has a unique element of smallest x-norm.



Proof. If ¢ is a 2-fuzzy convex set.
It contains (P, + Pg)/2 whenever it contains P, and Pyg;
we know that

c(AP, + (1= A)Pg) > min{c(P,),c(Pp)}. (44)

And so,
c(PA;PB> >min{c(P,),c(Pp)}. (45)
Letd = inf{0(P,), : P, € C} where 6(P,), = inf{s > 0 :

7(P,, PA,sz) > af.

Let P,, Py be a closed convex fuzzy set C, inside a fuzzy
Hilbert space, so that both | P, | and | Pg| are within € > 0 of the
inf d of the a-norm in C. Then there exists a sequence {P,,,}
in C such that 6(P,,), — d +e.

By parallelogram law,

O(PA+PB)3¢+0(PA_PB)¢2;¢

2 2 (46)
=2(0(Py). +0(Py).)-

Since c is convex,

c(@) > min {c (Py,),c (Pg,)} >

pP,,+P
SO%EC,

9(@) >d+te=
0(Py, +Pg,)22(d+e),
G(PA_PB)i = Z(Q(PA)i +9(P3)i) (47)

—0(Py+Py).  [from (46)]

<2(6 (P2 + O(PB)i) —4(d+e)
=2(d+e’+d+e))
—4(d+e),

O(Py—Py).=4(d+e) —4(d+e)=0.

{P,,} is a 2-fuzzy Cauchy sequence in C, since M, (F) is
complete and c is closed convex. Thus ¢ such that P,, — Pj;
also 6(P,,), = 0(lim P,,) = lim6(P,,,), = d, which implies
that P, € C with smallest a-norm. Now let us prove the
uniqueness part. Suppose that there exists a P € C other
than P, with the same a-norm d.

Again, by parallelogram law,

6<PAn+PBm>2_Q(PA)i_I_e(PB)(zx
2 2 2
_0(Pa—Py), (48)
2
2 2
s(d+€) +(d+8) <(d+e).

2 2
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Which is a contradiction to the definition of d + &:
O(Py, +Pg,)=2(d+e). (49)

Hence there exists a unique element P, € P*(M,(F)) of
smallest a-norm. O

Theorem 22. The 2-FIP P,, Py € P* (M, (F)) is a continuous
function on P*(Mn1 (F)) x P* (M, (F)).

Proof. Let M, (F) be a 2-FIP and let {[P4,]} and {[Pg,]} be

sequence in P*(M,,(F)) such that G(PAn)a = 0(P,), and
lim 6(Pg ), = 6(Pg),; then,

0 (([Pan] > [Ps,]) -

= ([Pan] - [P5]) +

< 60 (([Pan] > [Psa)) -

([Pal [Pg])) = 0 (([Pan]» [Pp,])
([Pan] [Ps]) = ([Pa] . [P5]))
([Pan] [P5])

+ 60 (([Pa,] [Ps]) = ([Pal. [P5])) (50)
= 0 (([Pan] ([P5,] - [P5])))
+ 60 (([Pan] = [Pal) - [Pg]) < 0 ([Pa,]) 6 ([Pg,]
= [Pg]) + 6 ([Pa,] - [Pa]) 0 ([P5]) -

Since {[P,]} and {[Pg,]} converge,

im0 (Py, — P,), =0,
(51)

lim 6 (Pg,, — Pg),, = 0.
O

Theorem 23. Let M, (F) be a 2-FIP and 0 is indeed a a-norm
on P*(M,,(F)). It also satisfies

(i) O(P,) > O for every nonzero P, € P*(M,(F)) ,

(i) 6((P,. P,).Py) < O(P,P)8(P,), for all P, ¢
P*(M,(F)) and P, P, € P*(M,(F)).

Proof. Consider

0(tP,) = 0 (tP,,tP,)

= [t]0 (Py,tP )
(52)
<|t|0(P,) 6 (tP,),
O(tP,) < |t|6(Py).
For A > 0,
1 1
o(p,) =6 <?tPA> < 0P, -

6(tP,) <|t|60(P,) VP, €P*(M,(F)), tinR".
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Also,

G(PA"'PB)i =0 ((Ps+ Pg),(Py + Pg))
< 6(Py (P4 + Pp)) +0 (P (Py + Pg))
< 0(P,)0(Py+ Pp)
(54)
+0(Pg) 0 (P4 + Pg)

< (0(Ps) +0(Pg)) 0 (Py + Py),

6 (P, +Pg) <0(P,)+6(Pp).

(i) Let P, € P*(M,,(F)) be a nonzero element in M,,(F);
then P, - P, > 0 and hence 8(P,) = 6(P, - Py)"/* > 0
in P*(M,,(F)).

(ii) Let P, P, € P"(M,(F));

6((P.P,).P) =6(P.P,) Ps0(P.P,) Py

) (55)
=0((PoP,) (PasPy)).
Since (M,,(F), 0) is a fuzzy norm,
2 2
0((PoP,) (PaPa)) <0(PoP,) 0 (Py Ps)
(56)
= 6(P.P,) 0 (P,
The square roots exist and are unique in P*(M,,(F)).

Therefore 0((P,, P),Py) < o(p,, Py)G(PA). O

Theorem 24 (polarisation identity).
2-FIPS (M,,(F),n), then

If P4, Py are element of

417 (P, Pg, st) :e(PA"'PB)i_e(PA_PB)i

(57)

+i0 (P, +iPp). —i0 (P, + iPg)’.

Proof. Consider
0 (Py+Py). —0(Py— Py)l +i6 (P +iPy).

—i0 (Py +iPg). = 11 (Py + Pg, Py + Py, (s + 1))

—1(Py — P, Py — Py, (s — 1)?)

+ i (Py + iPp, Py + iPg, (s +1)°)

—1(Py—iPg, Py — iPp, (s - 1)°)

=1 (Py+ Pp. Py + P, s” + st + st +1°)

—n(PA—PB,PA—PB,sz—st—st+t2)

+in +1PB,PA+1PB,S +st+st+t)

—in (P, —iPg, P, — zPB,

(Pa
(

—st—st+1%)

7 (Pas Pars”) + 1 (Py, Py, st) + 1 (Py, Py st)
+1(Pp, Py, t*) =11 (Pa, Py s°) = 17 (Pa, =P, —st)
1 (=PyPa=st) 1 (PP )

+ i) (Pas Pay s*) + i (Pa, iPg, st) + in (iPp, Py, st)
+ i (P, 1Py, 1" ) = in) (Pa, Pas”)

— it (Py, ~iPp, —st) — i (~iPp, Py, —st)

— ity (=iPp, —iPp, ") = 1 (Py, Ps>s”)

+ 1 (Py, Py, st) + 1 (Pg, Py, st) + 1 (Pg, Py, t)

S_f>
1]

’7< Py, Py, - |1|> W(PBaPB’ )

+in (P ,Pys )+111 (P4, iPg, st) +in (iPg, Py, st)

_”(PA>PA’52)_’7<PA’PB’_

+z;7(1PB,1PB, ) ”’](PA>PA’ )

st
_> 1;1<1PB,PA, |1|>

— it (iPg,iPp, t*) = 1 (Pg> Pg, st) + 17 (Pg, Py, st)
=1 (Pa> Py, —st) — 17 (Pg, Py, —st) + it (P, iPp, st)

in (P4, iPp, —st)

—in (PA, iPg, —

+in (iPg, Py, st) —
—in (iPg, P4, —st) = 1 (P4, P, st) + 1 (Pg, Py, st)
+1(Pa, P, st) + 17 (Pp, Py, st)

+1i(=i) 17 (Py, P, st) +i (i) 7 (Pg, Py, st)

+1i(—i) 17 (Py, P, st) +i (i) (Pg, Py, st)

=1 (Py, Pg, st) + 1 (Pg, Py, st) + 11 (Py, Py, st)
+1(Pp, Py, st) = 11 (Pa, Pg, st) + 17 (P, Py, st)

+ 1 (Pa> Py st) =1 (Py, P, st) = 417 (Py, Py, st) .

(58)
Therefore,

4TI(PAsPB,St):Q(PA+PB):¢_9(PA_PB)2 (59)

+i6 (P, +iPg)> —i0 (P, + iPg)’.
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5. Concluding Remarks

In this paper the concept of inner product over fuzzy matrices
has been discussed. We plan to extend our research work to
(1) orthogonal of fuzzy matrices and (2) the Moore Penrose
inverse and spectral inverse of fuzzy matrices.
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