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Abstract: We have been thinking also about the possibility of getting a
direct proof of Invariant Approximation Property for amenable groups that
uses some averaging procedure and does not use von Neumann algebras as in
John Roe book. This sounds that like there is a special version of the Invariant
Approximation Property (IAP) for von Neumann algebras which is different to
the standard one.
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1. Introduction

We assume that the reader is familiar with the basic notions in operator algebras
and operator spaces, see Roe [9], Anantharaman-Delaroche [1],and Kannan [5],
[6], [7] and [8] for the details on the invariant approximation property. We say
that the uniform Roe algebra, C∗

u(G), is the C∗− algebra completion of the
algebra of bounded operators on ℓ2(X) which have finite propagation.

According to Roe [9] G has the invariant approximation property (IAP) if

C∗

r (G) = C∗

u(G)G.

In this paper, we will check that for amenable groups that use some averaging
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procedure, and that do not use Von Neumann algebras not passing Invariant
Approximation Property. We can define invariant elements in C∗

u(G) using the
fact that G is amenable. We want to use an averaging procedure as in BNW
(see [3] and [2]). The main purpose of this paper is to prove that the Theorem:

Theorem 1.1. The amenable group does not have IAP for von Neumann

algebras which is different to the standard one.

2. Preliminaries

Coarse geometry is the study of the large scale properties of spaces. The notion
of large scale is quantified by means of a coarse structure. First we recall the
following definitions:

Definition 2.1. (see [9]) Let X, Y be metric spaces and f : X −→ Y a
not necessarily continuous map.

1. The map f is called coarsely proper (or metrically proper), if the inverse
image of a bounded set is bounded.

2. The map f is called coarsely uniform (or uniformly bornologous), if for
every r > 0 there is s(r) > 0 such that for all x1, x2 in X

d(x1, x2) ≤ r =⇒ d(f(x1), f(x2)) ≤ s(r).

3. The map f is called a coarse map, if it is coarsely proper and coarsely
uniform.

4. Let S be a set. Two maps f, g : S −→ X are called close if there is C > 0
such that for all s inS

d(f(s), g(s)) < C.

5. A subset E of X×X is called controlled (or entourage), if the coordinate
projection maps π1, π2 : E −→ X are close.

Definition 2.2. (see [9]) A coarse structure on a set X is a collection
of subsets of X × X, called the controlled sets or entourages for the coarse
structure, which contains the diagonal and is closed under the formation of
subsets, inverses, products, and (finite) unions.

It is easy to see that the controlled sets associated to a metric space X have
the following properties:



AMEANBLE ACTION AND INVARIANT MEAN 229

1. Any subset of a controlled set is controlled;

2. The transpose Et = {(x, y) : (y, x) ∈ E} of a controlled set E is controlled;

3. The composition E1 ◦E2 of controlled sets E1 and E2 is controlled; where
E1 ◦ E2 := (x, z) ∈ X ×X : ∃ y ∈ X, (x, y) ∈ E1 and
(y, z) ∈ E2;

4. A finite union of controlled sets is controlled;

5. The diagonal ∆X := {(x, x) : x ∈ X} is controlled.

Definition 2.3. (see [9]) Let (X, d) be a metric space, we say the metric
d induces a coarse structure on X, which is called a bounded coarse structure.
More precisely, we can define the bounded coarse structure induced by the
metric d as follows: Set

Dr := {(x, y) ∈ X ×X : d(x, y) < r} .

Then E ⊆ X ×X is controlled, if E ⊆ Dr for some r > 0.

The following is an example of coarse structure.

Example 2.4. (see [9]) Let G be a finitely generated group. Then the
bounded coarse structure associated to any word metric on G is generated by
the diagonals

∆g = {(h, hg) : h ∈ G}

as g runs over G.

Let us briefly recall basic definitions and facts concerning positive and neg-
ative type kernels and functions.

Definition 2.5. Let X be a set. A symmetric kernel on X is a function
f : X ×X −→ R with f(x, y) = f(y, x)

Definition 2.6. (see [9]) A kernel f has conditionally positive type if for
all m ∈ N, all m−tuples x1, x2, . . . , xm of points of X and for all real scalars
λ1, λ2, . . . , λm, one has

m
∑

i,j=1

λiλjf(xi, xj) ≥ 0.

Definition 2.7. (see [9]) A kernel f has conditionally negative type if for
all m ∈ N, all m−tuples x1, x2, . . . , xm of points of X, and for all real scalars
λ1, λ2, . . . , λm such that

∑

λi = 0, one has
∑

i,j

λiλjf(xi, xj) ≤ 0.
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A conditionally negative kernel on a group G is a conditionally negative
kernel on the set of elements of G such that for any g, h, k, in G,

f(gh, gk) = f(h, k).

The following result in [9], which relates positive and negative type kernels, is
known as Schoenberg’s Lemma.

Lemma 2.8. (see [9]) Let f be a symmetric kernel on a space X. The

following statements are equivalent.

1. The kernel f is of negative type.

2. For each t > 0 the kernel exp(−tf) is of positive type.

Remark 2.9. (see [9]) Let G be a group; by definition the positive function
on G defined by φ : G −→ R, (x, y) 7−→ φ(x−1y), is a kernel of positive type

We next recall some basic fact about uniform Roe algebra and metric prop-
erty of a discrete group. Next we recall the following definitions; Let X be a
discrete metric space.

Definition 2.10. (see [9]) We say that discrete metric spaceX has bounded
geometry if for all R there exists N in N such that for all x ∈ X, |BR(x)| < N ,
where B(x, r) = {x ∈ X : d(y, x) ≤ r}.

Definition 2.11. (see [9]) A kernel φ : X ×X −→ C

• is bounded if there, existsM > 0 such that |φ(s, t)| < M for all s, t ∈ X

• has finite propagation if there exists R > 0 such that φ(s, t) = 0 if
d(s, t) > R.

Let B(X) be a set of bounded finite propagation kernels on X ×X. Each
such φ defines a bounded operator on ℓ2(X) via the usual formula for matrix
multiplication

φ ∗ ζ(s) =
∑

r∈G

φ(s, r)ζ(r) for ζ ∈ ℓ2(X).

Next, we show the operator associated with a bounded kernel is bounded.

Lemma 2.12. (see [8]) Let X be bounded geometry metric space. An

operator associated with a bounded finite propagation kernel is bounded.

We shall denote the finite propagation kernels on X by A∞(X).

Definition 2.13. The uniform Roe algebra of a metric space X is the
closure of A∞(X) in the algebra B(ℓ2(X)) of bounded operators on X.
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If a discrete group G is equipped with its bounded coarse structure intro-
duced in Example 2.4 then one can associated with it uniform Roe algebra
C∗

u(G) by repeating the above. Next we recall the left and right regular rep-
resentation: An important class of C∗− algebras arise in the study of groups.
Let G be a discrete group, then the characteristic function δg(s) of g, s ∈ G is
defined as follows [4]:

δg(s) =

{

1 if g = s,
0 if g 6= s.

If we assume that the G is a discrete group then the functions δg form a
basis for the Hilbert space ℓ2(G) of square summable functions on G.

The group ring C[G] consists of all finitely supported complex-valued func-
tions on G, that is of all finite combinations

f =
∑

s∈G

ass

with complex coefficients.
The convolution product and the adjoint are defined as follows:

(

∑

s∈G

ass

)(

∑

t∈G

att

)

=
∑

s,t∈G

asatst

(

∑

s∈G

ass

)

∗

=
∑

s∈G

ass
−1.

Denote by B(ℓ2(G)) the C∗− algebra of all bounded linear operator on the
Hilbert space ℓ2(G). We may distinguish between the left regular representa-
tion, which is induced by the left multiplication action, and the right regular
representation, which is comes from the multiplication on the right.

Definition 2.14. (see [4]) The left regular representation

λ : C[G] → B(ℓ2(G))

is defined by
λ(s)δt(r) = δt(s

−1r) = δst(r) for s, r ∈ G.

The right regular representation is given by

ρ(s)δt(r) = δt(rs) = δts−1(r) for s, r ∈ G.
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The left regular representation is implemented using the familiar convolu-
tion formula

(δg ∗λ δh)(s) =
∑

t∈G

δg(st
−1).δh(t) = δgh(s).

It follows that for any function f ∈ ℓ2(G) the left action by δg is given by

(δg ∗λ f)(s) =
∑

t∈G

δg(st
−1).f(t) = f(g−1s).

We can define the following right convolution:

(δg ∗ρ δh)(s) =
∑

t∈G

δg(t
−1s).δh(t) = δhg(s),

which gives rise to the right regular representation:

(δg ∗ρ f)(s) =
∑

t∈G

δg(t
−1s).f(t) = f(sg−1).

We note that:

δg ∗ρ δh(s) =
∑

t∈G

δg(t
−1s).δh(t)

=
∑

t∈G

δh(s((t
1)−1).δg(t

1)

= δh ∗λ δg(s),

and hence:
δg ∗ρ δh(s) = δh ∗λ δg(s).

Proposition 2.15. The left and right representations commute,

that is for all s, t ∈ G:

ρ(s)λ(t) = λ(t)ρ(s).

Proof. We have:

ρ(s)λ(t)δr = ρ(s)δtr

= δtrs−1

= λ(t)δrs−1

= λ(t)ρ(s)δr.

Thus
ρ(s)λ(t) = λ(t)ρ(s).
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Remark 2.16. The left regular representation λ of the group ring C[G]
assigns to each element f ∈ C[G] a bounded operator λ(f) which acts on any
ζ ∈ ℓ2(G) by convolution:

λ(f)(ζ) = f ∗ ζ.

and

λ(f∗) = (λ(f))∗ .

The image λ(C[G]) of the group ring under the left regular representation
is a ∗− subalgebra of the algebra B(ℓ2(G)) of bounded operators on ℓ2(G).

Lemma 2.17. The left and right regular representations λ and ρ are ∗−
homomorphisms.

Proof. Let f, g ∈ C[G],

λ(f)(ζ) = f ∗ ζ and λ(g)(ζ) = g ∗ ζ.

Consider

λ(f ∗ g)(ζ) = (f ∗ g) ∗ ζ

= f ∗ (g ∗ ζ)

= f ∗ (λ(g)ζ)

= (λ(f)λ(g)(ζ).

Thus

λ(f ∗ g) = λ(f)λ(g) for all f, g ∈ C [G] .

Thus λ satisfies the product. Consider

(λ(f) + λ(g)(ζ) = λ(f)(ζ) + λ(g)(ζ)

= f ∗ ζ + g ∗ ζ

= (f + g) ∗ ζ

= λ(f + g)(ζ)

Thus

λ(f + g) = λ(f) + λ(g) for all f, g ∈ C [G] .

Thus λ satisfies the sum. It is easy to prove scalar multiplication, and adjoint.
Therefore λ satisfies the properties of an ∗− homomorphisms. The proof for ρ
is similar.
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Lemma 2.18. The left and right regular representations λ and ρ are

unitary bounded representations.

Proof. Let us define an operator

λg : ℓ
2(G) −→ ℓ2(G)

which for any function ζ ∈ ℓ2(G) is given by

λgζ(t) = (δg ∗ ζ)(t) = ζ(g−1t).

We have

〈λgζ, η〉 =
∑

t∈G

λgζ(t)η(t)

=
∑

t∈G

ζ(g−1t)η(t)

=
∑

t
′
∈G

ζ(t
′

)η(gt′)

=
〈

ζ, λg−1η
〉

.

This means that

λ∗

g = λg−1 .

We have for every g ∈ G, ζ ∈ ℓ2(G):

‖λgζ‖
2 =

∑

t∈G

∣

∣ζ(g−1t)
∣

∣

2

=
∑

t∈G

|ζ(t)|2

= ‖ζ‖2

therefore, λg is a unitary bounded representation. The proof for ρ is similar.

Lemma 2.19. The left regular representation λ is a faithful representa-

tion.

Proof. Let us assume that, for some f ∈ C[G],

λ(f∗ ∗ f)(δg)(s) = 0, ∀ g, s ∈ G.
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Then using the fact that λ is a ∗− homomorphisms we have that

λ(f∗ ∗ f)(δg)(s) = λ(f∗).λ(f)δg(s)

=
∑

t∈G

f∗(t)(λ(f)δg)(t
−1s)

=
∑

t∈G

∑

t
′
∈G

f∗(t)f(t
′

δg)(t
′

)−1(t−1s)

=
∑

t∈G

∑

t
′
∈G

f(t−1)f(t−1sg−1)

= ‖f‖22

From this we deduce that ‖f‖2 = 0, and so f = 0, which implies that λ is
faithful.

The same argument can be used to show that ρ is a faithful representation
as well.

The reduced C∗− algebra C∗

λ(G) of a group G (which we shall assume to be
discrete) arises from the study of the left regular representation λ of the group
ring C[G] on the Hilbert space of square-summable functions on the group.

Definition 2.20. (see [4]) The reduced group C∗− algebra G, denoted by
C∗

λ(G) is the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖λ = ‖λ(c)‖

The reduced C∗− algebra C∗

ρ(G) of a group G (which we shall assume to be
discrete) arises from the study of the right regular representation ρ of the group
ring C[G] on the Hilbert space of square-summable functions on the group.

Definition 2.21. The reduced group C∗− algebra G, denoted by C∗

ρ(G)
is the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖ρ = ‖ρ(c)‖ .

A discrete group G has a natural coarse structure which allows us to define
the uniform Roe algebra C∗

u(G). A group G can be equipped with either the
left or right-invariant of the metric. A choice of one of the determines whether
C∗

λ(G) or C∗

ρ(G) is a sublagebra of the uniform Roe algebra C∗

u(G) of G as we
now explain. First we show that if the metric on G is right-invariant then

C∗

λ(G) ⊂ C∗

u(G).
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Let d1 be the right-invariant metric on G

d1(x, y) = d1(xg, yg) ∀ g ∈ G.

For every g ∈ G, the operator λ(g) is given by the matrix.
Let:

Aλ
g (x, y) =

{

1, if x = yg,
0, otherwise..

Indeed,

Aλ
g δt(s) =

∑

y∈G

Aλ
g (s, y)δt(y)

= δt(g
−1s)

= δgt(s).

Note that Aλ
g is right-invariant

Aλ
g (xt, yt) =

{

1, if xt = ygt ⇐⇒ x = yg,
0, otherwise.

Therefore:

Aλ
g (x, y) = Aλ

g (xt, yt).

If the metric on G is right-invariant, Aλ
g is of finite propagation and Aλ

g ∈ C∗

u(G),

because Aλ
g (x, y) is non-zero when y−1x = g and so

d1(x, y) = d1(y
−1x, e) = d1(g, e).

Hence any element of C[G] will give use to finite propagation and this assign-
ment extends to an inclusion

C∗

λ(G) →֒ C∗

u(G).

Next we show that if the metric on G is left-invariant then

C∗

ρ(G) ⊂ C∗

u(G).

Let d1 be the left-invariant metric on G

d1(x, y) = d1(gx, gy) ∀ g ∈ G.
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For every g ∈ G, the operator ρ(g) is given by the matrix.
Let:

Aρ
g(x, y) =

{

1, if x = gy,
0, otherwise..

Indeed,

Aρ
gδt(s) =

∑

y∈G

Aρ
g(s, y)δt(y)

= δt(sg
−1)

= δtg(s).

Note that Aρ
g is left-invariant

Aρ
g(tx, ty) =

{

1, if tx = tgy ⇐⇒ x = gy,
0, otherwise.

Therefore:

Aρ
g(x, y) = Aρ

g(tx, ty).

If the metric on G is right-invariant, Aρ
g is of finite propagation and Aρ

g ∈ C∗

u(G),
because Aρ

g(x, y) is non-zero when xy−1 = g and so

d1(x, y) = d1(xy
−1, e) = d1(g, e).

Hence any element of C[G] will give use to finite propagation and this assign-
ment extends to an inclusion

C∗

ρ(G) →֒ C∗

u(G).

Let us now choose a right invariant metric for G so that C∗

λ(G) →֒ C∗

u(G).
The right regular representation ρ gives use to the adjoint action on C∗

u(G)
defined by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1

for all t ∈ G, T ∈ C∗

u(G). Our remarks above show that elements of C∗

λ(G)
are invariant with respect to this action and so C∗

λ(G) is contained in invariant
subalgebra C∗

u(G)G.

Lemma 2.22. If T ∈ C∗

u(G) has kernel A(x, y), then Adρ(t)T has kernel

A(xt, yt)
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Proof. We have that:

(Adρ(t)Tζ)(s) = ρ(t)(Tρ(t)∗ζ)(s)

= Tρ(t)∗ζ(st)

=
∑

x∈G

A(st, x)(ρ(t)−1ζ)(x)

=
∑

x∈G

A(st, x)ζ(xt−1).

Now A(st, x) is non-zero whenever x, y, t ∈ G are such that y = xt−1,
so x = yt and we have

(Adρ(t)Tζ)(s) =
∑

x∈G

A(st, yt)ζ(y)

Thus, Adρ(t)T has kernel A(st, yt).

In general, if T ∈ C∗

u(X) then ∀ x, y ∈ G:

〈Ad(ρ(t))Tδx, δy〉 =
〈

ρ(t)Tρ(t−1)δx, δy
〉

=
〈

Tρ(t−1)δx, ρ(t
−1)δy

〉

= 〈Tδxt, δyt〉 .

So the operator T is Adρ− invariant if and only if

∀ x, y ∈ X ∀ t ∈ G 〈Tδxt, δyt〉 = 〈Tδx, δy〉 .

We now define the invariant approximation: property (IAP)

Definition 2.23. (see [9]) We say that G has the invariant approximation

property(IAP) if
C∗

λ(G) = C∗

u(G)G

3. Amenable Action and Invariant Mean

For example, if a finite group G acts on a vector space V , then ∀ v ∈ V

V =
∑

g∈G

gv

is invariant under action on G.
For a discrete group G, we write Prob(G) for the space of all probability mea-
sures on ℓ1(G).
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Definition 3.1. We define

Prob(G) =







µ ∈ ℓ1(G) : µ(g) ∈ [0, 1] s.t
∑

g∈G

µ(g) = 1







.

The group G acts on Prob(G) by the left translation:

(sµ)(t) = µ(s−1t) for s, t ∈ G and µ ∈ Prob(G).

For a countable discrete group G this is equivalent to the Reiter condition [3]
and [2].

Definition 3.2. We say that G is amenable if and only if for each g ∈ G
and each n ∈ N there is an element fn(g) ∈ Prob(G) of finite support with

1. hfn(g) = fn(hg),

2. for all g0, g1, ‖fn(g1)− fn(g0)‖ℓ1 −→ 0 as n −→ ∞.

We shall denote by ℓ1(G)∗ the space of probability measures on G and by
ℓ2(G) the unit sphere of ℓ2(G). For f : G −→ C and t ∈ G the function tf is
defined by (tf)(s) = f(t−1s).

Definition 3.3. (see [3] and [2]) We say that an invariant mean on a
countable discrete group G is a positive linear functional on ℓ∞(G) which is
normalised by the requirement that it pairs with the constant function 1 to
give 1, and which is fixed by the natural action of G on the space ℓ∞(G)∗.
This means that we define linear functional µ : ℓ∞(G) −→ C on ℓ∞(G), which
satisfies the following conditions:

1. µ(x∗x) ≥ 0 ∀ x ∈ ℓ∞(G),

2. ‖µ‖ = 1 µ(x∗x) ≥ 0 ∀ x ∈ ℓ∞(G),

3. µ(gv) = µ(v) ∀ x ∈ ℓ∞(G) ∀ g ∈ G.

We define the invariant kernels on G×G:

f 7−→ uf (x, y) = f(x−1y),

where f ∈ C[G], which is left invariant, and

uf (hx, hy) = f(x−1h−1hy)

= f(x−1y)
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= uf (x, y)

if uf (hx, hy) = uf (x, y). Then

(Adρ(t)uf )(x, y) = uf (hx, hy)

= uf (x, y).

We have been thinking also about the possibility of getting a direct proof of In-
variant Approximation Property for amenable groups that uses some averaging
procedure and does not use von Neumann algebras as in John Roe book [9].
This sounds that like there is a special version of the Invariant Approximation
Property(IAP) for von Neumann algebras which is different to the standard
one. The main puropose of this paper is to prove that the Theorem.

Theorem 3.4. The amenable group have IAP for von Neumann algebras

which is different to the standard one.

Proof. First, we need to show that

C∗

λ(G) ⊆ C∗

u(G)G

if

T ∈ C∗

u(G)G = R(G)
G

then

T /∈ C∗

λ(G).

Let

un(x, y) ∈ C∗

λ(G).

Thus C∗

λ(G) is given by left invariant kernels. Right invariant kernels are
Adρ(t)− invariant.

The family of {fn} of functions as an approximation of µ: Since ℓ1(G)∗ ∼=
ℓ∞(G) and also

ℓ∞(G)∗ ∼= ℓ1(G)∗∗ ⊇ ℓ1(G)

µ is the weak −∗− topology. We think of µ as being given by the limit of {fn}.
We define

un(x, y) =
∑

g∈G

fn(xy
−1)(g)u(xg, yg).

We show that these kernels converge to an invariant kernel.

Adρ(t)un(x, y) = un(xt, yt)
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=
∑

g∈G

fn(xt)(yt)
−1(g)u(xtg, ytg)

=
∑

g∈G

fn(xy
−1)(g)u(xtg, ytg)

=
∑

g∈G

fn(xy
−1)(t−1g)u(xg, yg)

=
∑

g∈G

(tfn(xy
−1))(g)u(xg, yg)

=
∑

g∈G

fn(txy
−1)(g)u(xg, yg),

so

∑

g∈G

∣

∣fn(txy
−1)(g) − fn(xy

−1)(g)
∣

∣ |u(xg, yg)| < M
∥

∥fn(txy
−1)− fn(xy

−1)
∥

∥

ℓ1

Thus

|Adρ(t)un(x, y)− un(x, y)| < M
∥

∥fn(txy
−1)− fn(xy

−1)
∥

∥

ℓ1

By Lemma 2.12,

∃ M > 0 s.t |u(xg, yg)| < M for all g ∈ G

Since G is amenable, by Reiter condition (see Definition 3.2)[3] and [2]

for all g0, g1, ‖fn(g1)− fn(g0)‖ℓ1 −→ 0 as n −→ ∞

This means:

Adρ(t)un(x, y) = un(x, y)

Therefore

un(x, y) ∈ C∗

u(G)G.

This implies

C∗

λ(G) ⊆ C∗

u(G)G.

if

T ∈ C∗

u(G)G = R(G)
G

where R(G) is the Roe kernel and T is invariant. Then

∀g ∈ G Ad(ρg)(T ) = ρgTρg
−1
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where T ∈ C∗

u(G),

∃ Tn ∈ R(G) such that Tn −→ T in norm.

We assume that G is amenable, so we have a Reiter sequence fm and we apply
the averaging to each un for all T ∈ C∗

u(G), get un ∈ R(G)

umn (x, y) =
∑

g∈G

fm(xy−1)(g)un(xg, yg)

Thus
un = weak− lim

m−→∞

umn

and also
Tn = weak− lim

m−→∞

Tm
n .

Thus
〈Tm

n δx, δy〉 −→
〈

Tnδx, δy
〉

as n −→ ∞

and
〈(

Tm
n − Tn

)

δx, δy
〉

−→ 0 as n −→ ∞

Define the semi norm

Pxy(T ) = 〈Tδx, δy〉

Then
Pxy(T

m
n − Tn) =

〈(

Tm
n − Tn

)

δx, δy
〉

−→ 0 as n −→ ∞

and
Pxy(Tn − T ) = 〈(Tn − T ) δx, δy〉 −→ 0 as n −→ ∞

Since

|un(xg, yg)| ≤ M for all ∈ G.

Consider

|umn (x, y)− un(xg, yg)| =

∣

∣

∣

∣

∣

∣

∑

g∈G

fm(xy−1)(g)un(xg, yg) − un(xg, yg)

∣

∣

∣

∣

∣

∣

≤







∑

g∈G

∣

∣fm(xy−1)(g)
∣

∣ + 1







|un(xg, yg)|

= {‖fm‖ℓ1 + 1} |un(xg, yg)|

≤ 2M.



AMEANBLE ACTION AND INVARIANT MEAN 243

Thus umn (x, y) does not convege to un(xg, yg) as m −→ ∞. Consider

∑

g∈G

fm(xy−1) 〈Tm
n δx, δy〉 −

∑

g∈G

fm(xy−1) 〈Tnδx, δy〉

∑

g∈G

fm(xy−1) 〈(Tm
n − Tn) δx, δy〉

This does not convege to zero as m −→ ∞. Therefore

Pxy(T
m
n − Tn) = 〈Tm

n − Tnδx, δy〉 does not converge 0 as n −→ ∞.

consider

Pxy(Tn − T ) ≤ Pxy(Tn − Tm
n ) + +Pxy(T

m
n − Tn) + Pxy(Tn − T )

Thus Pxy(Tn − T ) does not converge 0 as n −→ ∞. Therefore Tn 6= T .

T /∈ C∗

ρ(G),

Since
T ∈ C∗

u(G)G,

Thus
C∗

u(G)G 6= C∗

λ(G).

Therefore G hasnot IAP.
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