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Abstract

The purpose of this paper is to provide an illustration of an interest-
ing and nontrivial interaction between analytic and geometric properties
of a group. We prove that the Crystallographic groups need not be weak
amenable.
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1 Introduction

From the point of view of noncommutative geometry, a C∗− is always consid-
ered as an algebra of continuous functions on some space. In this case of the
reduced C∗− that space is a space of representations of the group. We detail
provide a short survey of approximation properties of operator algebras asso-
ciated with discrete groups. There are various notions of finite dimensional
approximation properties for C∗− algebras and more generally operator alge-
bras. Some of the notations(approximation properties) is defined in this paper,
the reader is referred to [2], [12], [13], [6] and [19]: Haagerup discovery that is
the reduced C∗− algebra, Fn has the metric approximation property, Higson
and Kasparov’s resolution of the Baum-connes conjecture for the Haagerup
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groups. Weak amenability is strictly weaker than amenability and passes to
closed subgroups. It is proved by De Canni‘ere - Haagerup, Cowling and Cowl-
ing - Haagerup [5], [4] that real simple Lie groups of real rank one are weakly
amenable (See also [18]), and by Haagerup [9] that real simple Lie groups of
real rank at least two are not weakly amenable. For the latter fact, Haagerup
proves that SL(2,Z) o Z2 is not weakly amenable (See also [10]). The notion
of weak amenability for groups was introduced by Cowling and Haagerup [4].
Author had prove that the Discrete Heisenberg group does not have the weakly
amenable.

This paper is organized as follows. In section 2 we recall and prove some
results about Approximation Property(AP), Weakly amenable and Herz- Schur
multipliers.

Section 3 provides some detail of Crystallographic group and this group
need not be weak amenability.

Our main result in this direction is the following.

Theorem 1.1. The discrete Heisenberg Group need not be weak amenability.

2 preliminaries

If we assume that G is a discrete group then the function δg form a basis for
the Hilbert space `2(G) of square summable functions on G [6]. The group ring
C[G] consists of all finitely supported complex-valued functions on G, that is of

all finite combinations f =
∑
s∈G

ass with complex coefficients. Denote B(`2(G))

the C∗− algebra of all bounded linear operator on Hilbert space `2(G).

Definition 2.1. [6] The left regular representation

λ : C[G]→ B(`2(G))

is defined by

λ(s)δt(r) = δt(s
−1r) = δst(r) for s, r ∈ G.

The reduced C∗− algebra C∗λ(G) of a group G arises from the study of the
left regular representation λ of the group ring C[G] on the Hilbert space of
square-summable functions on the group.

Definition 2.2. [6] The reduced group C∗− algebra G, denoted by C∗r (G) is
the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖λ = ‖λ(c)‖
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We give a general exposition of approximation properties which were initi-
ated by Grothendieck [1]. His fundamental ideas have been applied to the study
of groups and these noncommutative approximation properties have played a
crucial role in the study of von Neumann algebras and C∗− algebra. Some
weaker conditions (i.e., weak amenability and the approximation property) for
locally compact groups have been studied by Haagerup and Kraus [8].

We begin with some definition of Haagerup and Kraus [8].

Definition 2.3. If A is a C∗− algebra, and H is a separable infinite Hilbert
space, a net Tα in CB(A) is said to converge in the stable point-norm topology
to T in CB(A) if Tα⊗ idK(H)(a) −→ T ⊗ idK(H) in norm for all a ∈ A⊗K(H).
Here K(H) denotes the ideal of compact operators on H.

We recall the Fourier algebra

A(G) := {f : f(t) = 〈λ(t)ξ , η〉 for some ξ, η ∈ L2(G)}

is the space of all coefficient function of the left regular representation λ. Given
f ∈ A(G), its norm is given by

‖f‖ = inf {‖ξ‖ ‖η‖ : f(t) = 〈λ(t)ξ , η〉} .

With this norm, A(G) is a Banach algebra with the point-wise multiplication
[10].

Definition 2.4. A complex-valued function φ on G is a multiplier for A(G) if
the linear map mφ(f) = φf sends A(G) to A(G).

A multiplier is a bounded and continuous function. Let MA(G) denote the
Banach space of multiplication of A(G) equipped with the norm given by

‖φ‖MA(G) = ‖mφ‖cb ,

where mφ : A(G) −→ A(G) denote the multiplier operator on A(G) associated
with φ.

Definition 2.5. A multiplier φ is called completely bounded if the operator
Mφ : L(G) −→ L(G) induced by Mφ is completely bounded.

If the map mφ is completely bounded on A(G), we call φ a completely
bounded multiplier of A(G). The set of multipliers of A(G) is denoted by
M0A(G). If φ ∈ A(G) then φ is a bounded continuous function and Mφ is a
bounded operator on the space A(G). For φ ∈ A(G), let the map mφ = m∗φ
mφ : A(G) −→ A(G) be defined by and mφ denote the restriction of mφ to
C∗r (G).
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Definition 2.6. [10],[1] For a function φ on G and C ≥ 0. We define the
multiplier

mφ : λ(f) −→ λ(φf)

is completely bounded on C∗λ(G) and ‖mφ‖cb ≤ C.

We let MoA(G) denote the space of all completely bounded multipliers of
A(G). Let A(G) ⊆ MoA(G), which is equipped with the cb-norm on A(Γ).
Therefore,

‖φ‖MoA(G) = ‖mφ‖cb .

If forms Banach space. It is known that

A(G) ⊆ MoA(G) ⊆ MA(G)

If φ ∈ A(Γ) ⊆MoA(Γ), then the multiplication map is completely bounded by

‖Mφ‖cb ≤ ‖φ‖ .

Definition 2.7. [10] Let φ ∈MoA(G) if and only if there exist a Hilbert space
H and bounded maps p, q : G −→ H such that

φ(st−1) = 〈p(s), q(s)〉 for all s, t ∈ G.

Here 〈, 〉 denote the inner product on H.

The completely bounded norm is given by

‖φ‖MoA(G) = inf {‖p‖∞ ‖q‖∞} .

Let Ac(G) denote the space [10] of all elements in A(G) with compact sup-
ports. We assume that φα ∈ Ac(G), which means the φα have finite support.

Completely bounded Fourier multipliers naturally give rise to the formula-
tion of a certain approximation property, namely weak amenability, which was
studied extensively for Lie groups in [2], [6] and [19].

Definition 2.8. [2] The discrete group G is amenable if and only if there is
a net (φα) in A(G) with sup ‖φα‖A(G) < 1, such that ψ ∈ A(G). We have
limα ‖φαψ − ψ‖A(G) = 0.

Definition 2.9. [1] An approximate identity on G is a sequence (φn) of finitely
supported functions such that φn uniformly converge to a constant function 1.
We say that discrete G is weakly amenable if there is an approximate identity
(φn) such that

C := sup ‖Mφn‖cb <∞.
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Definition 2.10. [8] The discrete group G has the approximation property
(AP) if there is a net {φα} in A(G) such that Mφα −→ idA(G) in the stable
point-norm topology on A(G).

Definition 2.11. [1] A C∗− algebra A is nuclear if and only if it has the
following completely positive approximation property (CPAP): The identity
map on A can be approximated in the point norm topology by finite rank
completely positive contractions.

Definition 2.12. [1] A C∗− algebra A has the metric approximation property
(MAP) of Grothendieck if and only if the identity map on A can be approxi-
mated in the point-norm topology by a net of finite rank contractions.

Comparing the definitions we see that CPAP implies MAP (see for example
[1]). Lance [17] has shown that G is amenable if and only if its reduced
C∗− algebra A has the CPAP which is equivalent to C∗r (G) being nuclear.
Completely positive maps are in particular completely bounded, which suggest
the following weakening of the CPAP.

Definition 2.13. [1] A C∗−algebra A is said to have the completely bounded
approximation property (CBAP) if there is a positive number C such that
the identity map on A can be approximated in the point norm topology by a
net {φα} of finite rank completely bounded maps whose completely bounded
norms are bounded by C.

The infimum of all values of C for which such constants exist is denoted by
Λcb(A) and is called the Cowling - Haagerup constant. We set Λcb(G) = ∞
if the locally compact group G does not have the CBAP. Obviously, a nu-
clear C∗− algebra has the metric approximation property. On the other hand,
Haagerup [8] proved that the reduced C∗− algebra Fn has the metric approxi-
mation property, a very remarkable result since C∗r (Fn), n > 2, is not nuclear,
Fn not being amenable.

We have the following important result by Haagerup [8].

Theorem 2.14. Let G be a discrete group. The following are equivalent:

1. G is weakly amenable,

2. C∗r (G) has the CBAP.

Lemma 2.15. An amenable discrete group is weakly amenable.

Amenability of a group G implies weak amenability with Λ(G) = 1. Weak
amenability was first studied in [8], in which de Canni‘ere and the Haagerup [5]
proved that the free group Fn on n generators with n ≥ 2 is weakly amenable
with Λ(Fn) = 1. This also implied that weak amenability is strictly weaker
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than amenability, since Fn is not amenable. The constant Λ(G) is known for
every connected simple Lie group G and depends on the real rank of G. First,
note that if G has real rank zero, then G is amenable. A connected simple Lie
group G with real rank one is locally isomorphic to one of the groups SO(n, 1),
SU(n, 1), Sp(n, 1), with n ≥ 2, or to F4(−20).

Haagerup proved that all connected simple Lie groups with finite center
and real rank greater than or equal to two are not weakly amenable [9]. Later,
Dorofaeff proved that this result also holds for such Lie groups with infinite
center [7].

A weaker approximation property defined in terms of completely bounded
Fourier multipliers was introduced by the Haagerup and Kraus [8]

A detailed characterisation of AP is provided in [8]. Roe [19] considered
the discrete group of the reduced group C∗− algebra of C∗r (G) is the fixed
point algebra {Adρ(t) : t ∈ G} acting on the uniform Roe algebra C∗u(G) [19].
A discrete group G has natural coarse structure which allows us to define
the uniform Roe algebra, C∗u(G) [19]. We say that the uniform Roe algebra,
C∗u(G), is the C∗− algebra completion of the algebra of bounded operators
on `2(X) which have finite propagation. The reduced C∗− algebra C∗r (G) is
naturally contained in C∗u(G) [19]. According to Roe [19] G has the invariant
approximation property (IAP) if

C∗λ(G) = C∗u(G)G.

Next, we define the set of fixed points of C∗u(G,S)G [15]:

Definition 2.16.

C∗u(G,S)G = {T ∈ C∗u(G,S) ; Ad(ρt ⊗ id)T = T for all t ∈ G} .

We define Joachim Zacharias’s IAP with coefficients (SIAP):

Definition 2.17. [20] We say that a discrete group G has the strong invariant
translation approximation property (SIAP) if for any closed subspace S of the
compact operators K (on `2(N)). We have an isomorphism

C∗u(G,S)G = C∗λ(G)⊗ S holds.

Author also prove that the stability properties of the strong invariant ap-
proximation property [13]and Strong invariant approximation property for dis-
crete groups [12].

Proposition 2.18. [8] The semi direct product of two discrete groups with the
AP has the AP.

Remark 2.19. For discrete groups we have the following implications:

Amenability =⇒ weak amenability =⇒ AP =⇒ exactness.



A discrete Heisenberg group which is not a weakly amenable 2061

3 Crystallographic Groups

The symmetry group of a tiling pattern of the plane is called a crystallographic
group. In two dimensions there are 17 such groups which are also called wallpa-
per groups or plane groups. In three dimensions there are 230 crystallographic
space group types [6]. The seventeen groups (wallpaper groups or plane groups)
[6] are all extensions of an abelian group of translations isomorphic to Z2 by a
finite group. A crystallographic group itself describes internal symmetries of
a crystal.

Definition 3.1. The affine isometrics of the Euclidean space Ed are functions
f : Ed −→ Ed, defined f(x) = Ax+ b, for any x ∈ Ed, where A ∈ O(d), and
b ∈ Ed.

Definition 3.2. A Crystallographic group is a discrete group of isometrics of
E3:

G = {f = [x −→ Ax+ b];A ∈ O(d) and b ∈ G} ,

where G ⊂ O(3) is a finite group and G contains an abelian free group gener-
ated by three linearly independent translations of E3.

There are exactly 32 types of finite subgroups G ⊂ O(3) corresponding to
all crystallographic groups [6].

Definition 3.3. A d−dimensional crystallographic group G is a discrete co-
compact group of isometrics of d−dimensional Euclidean space Ed.

Definition 3.4. Two Crystallographic groups G and G
′′

are said to be of the
same type if there exists T ∈ SO(3) such that G

′′
= TGT−1.

Let g be any element of G. Every isometry of Ed can be written as a pair
(M, v). Thus g = (M, v), where M is a d-dimensional orthogonal matrix and
v is a d-dimensional vector. The action of the pair (M, v) on Ed is defined by :

(M, v)w := Mv + w

(M, v).(N,w) := (MN,Mw + v).

An isometry (M, v) is a pure translation if M is the identity matrix. The set
of translations of a given isometry group G forms a normal subgroup T (G),
which is the kernel of the homomorphism [11]:

ρ : G −→ O(d) by (M, v) 7−→M.

In other words there is an exact sequence:

1 −→ T (G)
i−→ G

ρ−→ ρ(G) −→ 1,
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where D := T (G) is a finitely generated abelian group and ρ(G) is called the
point group of G. Let G be a discrete group with an abelian normal subgroup
A := ρ(G) such that D := T (G) = G/A is a finite group of order n.

Let the quotient map be denoted by π. Let a cross-section γ : T (G) −→ G.
Thus πγ = id and γ(eD) = e, where e is the identity element of G and eD is
the identity element of T (G).

Lemma 3.5. [14] Let φ : G −→ D×A, where D = G/A, be defined as follows:
φ(g) = (gA, ρ(g)). Then the map φ is an isomorphism.

Lemma 3.6. [14] Let the quotient group D act on A by conjugation. Take
θ : D −→ Aut(A) defined as follows:

θd(a) = γ(d)aγ(d)−1 for d ∈ D, a ∈ A.

Then θ is a homomorphism of D into Aut(A)

Theorem 3.7. The Crystallographic groups which is not weakly amenable.

Proof : If T (G) spans Rd, then T (G) is a maximal abelian subgroup of G.
Let a = (I, v) ∈ T (G) and b = (M,w) ∈ G. We assume that b commutes with
every element in T (G), we have

(I, v)(M,w) = (M,w)(I, v)

(IM, Iw + v) = (MI,Mv + w)

so, Mv = v. It follows that M ≡ I and b is a translation. The translation
subgroup of a crystallographic group is discrete and is isomorphic to Zm for
some m ≤ d. We have mentioned that H3 can be viewed as the semi direct
product of Z2 by Z. We have H3 = Z2oZ. And so there is an exact sequence:

1 −→ T (G)
i−→ G

ρ−→ Zm −→ 1,

Since T (G) and Zd are finitely generated and they have AP and also weakly
amenable. In this way, all crystallographic groups are extensions of abelian
groups of translations isomorphic to Zm by a finite group [11]. Since semi
direct product of weakly amenable group have not weakly amenable group.
Therefore crystallographic groups is not weakly amenable.
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