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Abstract: Let G be a countable exact discrete group. We show that G has
the approximation property if and only if

C∗
u(G,S)G = C∗

λ(G)⊗ S

for any Hilbert space H and closed subspace S ⊆ H, we have where C∗
u(G) is

the uniform Roe algebra. This answers a question of J. Zacharias.
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1. Introduction

The purpose of this paper is to provide an illustration of an interesting and
nontrivial interaction between analytic and geometric properties of a group.
We provide approximation property of operator algebras associated with dis-
crete groups. There are various notions of finite dimensional approximation
properties for C∗− algebras and more generally operator algebras. Some of
these (approximation properties) notations will be defined in this paper, the
reader is referred to [2], [3] and [8] for these a beautiful concept: Haagerup
discovery that that the reduced C∗− algebra Fn has the metric approximation
property, Higson and Kasparov’s resolution of the Baum-connes conjecture for
the Haagerup groups. We studies analytic techniques from operator theory
that encapsulate geometric properties of a group. On approximation properties
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of group C∗− algebras is everywhere; it is powerful, important, backbone of
countless breakthroughs.

Roe considered the discrete group of the reduced group C∗− algebra of
C∗
r (G) is the fixed point algebra {Adρ(t) : t ∈ G} acting on the uniform Roe

algebra C∗
u(G) [8]. A discrete group G has natural coarse structure which allows

us to define the the uniform Roe algebra, C∗
u(G) [8]. We say that the uniform

Roe algebra, C∗
u(G), is the C∗− algebra completion of the algebra of bounded

operators on ℓ2(X) which have finite propagation. The reduced C∗− algebra
C∗
r (G) is naturally contained in C∗

u(G) [8]. According to [Roe] [8] G has the
invariant approximation property (IAP) if

C∗
λ(G) = C∗

u(G)G.

We give a general exposition of invariant approximation property(IAP), which
was initiated by Roe [8].

Theorem 1.1. For a discrete exact group G. G has the strong invariant
approximation property if for any closed subspace S ⊆ B(H) the equality

C∗
u(G,S)G = C∗

λ(G) ⊗ S holds.

Proposition 1.2. If G = SL2(Z). Then there exist any Hilbert space H

and closed subspace S ⊆ H such that property if and only if

C∗
u(G,S)G 6= C∗

λ(G) ⊗ S holds.

This is negative answers a question of J. Zacharias.

2. Preliminaries

In this section we shall establish the basic definitions and notations for the
category of coarse metric spaces. Coarse geometry is the study of the large
scale properties of spaces. The notion of large scale is quantified by means of a
coarse structure.

Example 2.1. [8] Let G be a finitely generated group. Then the bounded
coarse structure associated to any word metric on G is generated by the diag-
onals

∆g = {(h, hg) : h ∈ G}
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as g runs over G.

We next recall some basic fact about uniform Roe algebra and metric prop-
erty of a discrete group. Next we recall the following definitions; Let X be a
discrete metric space.

Definition 2.2. [8] We say that discrete metric space X has bounded

geometry if for all R there exists N in N such that for all x ∈ X , |BR(x)| < N ,
where B(x,R) = {x ∈ X : d(y, x) ≤ R}.

Definition 2.3. [8] A kernel φ : X ×X −→ C

• is bounded if there, existsM > 0 such that |φ(s, t)| < M for all s, t ∈ X

• has finite propagation if there exists R > 0 such that φ(s, t) = 0 if
d(s, t) > R.

Let B(X) be a set of bounded finite propagation kernels on X ×X. Each
such φ defines a bounded operator on ℓ2(X) via the usual formula for matrix
multiplication

φ ∗ ζ(s) =
∑

r∈G

φ(s, r)ζ(r) for ζ ∈ ℓ2(X).

Next, we show the operator associated with a bounded kernel is bounded.

Lemma 2.4. Let X be bounded geometry metric space. An operator
associated with a bounded finite propagation kernel is bounded.

Proof. Let φ and ζ ∈ ℓ2(X).
Consider

‖φ ∗ ζ‖22 =
∑

x∈X

|φ ∗ ζ(x)|2

=
∑

x∈X

∣

∣

∣

∣

∣

∣

∑

y∈X

φ(x, y)ζ(y)

∣

∣

∣

∣

∣

∣

2

Given x, φ(x, y) 6= 0 for y ∈ BR(x), where R is the propagation of φ. Consider
∣

∣

∣

∣

∣

∣

∑

y∈X

φ(x, y)ζ(y)

∣

∣

∣

∣

∣

∣

≤
∑

y∈X

|φ(x, y)| |ζ(y)|
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≤
∑

y∈X

M |ζ(y)|

≤ NRM |ζ(y)| ,

where, by bounded geometry NR is the upper bound on the number of elements
in a ball BR(x). This is independent of x ∈ X, so

‖φ ∗ ζ‖22 ≤
∑

x∈X

N2
RM

2 |ζ(x)|2 = N2
RM

2 ‖ζ‖22

Therefore an operator associated with a bounded kernel is bounded.

We shall denote the finite propagation kernels on X by A∞(X).

Definition 2.5. The uniform Roe algebra of a metric space X is the
closure of A∞(X) in the algebra B(ℓ2(X)) of bounded operators on X.

If a discrete group G is equipped with its bounded coarse structure intro-
duced in Example 2.1 then one can associated with it uniform Roe algebra
C∗
u(G) by repeating the above.

An important class of C∗− algebras arises in the study of groups. Let G

be a discrete group, then the characteristic function δg(s) of s ∈ G is defined
as follows [3]:

δg(s) =

{

1 if g = s,

0 if g 6= s.

If we assume that the G is a discrete group then the functions δg form a
basis for the Hilbert space ℓ2(G) of square summable functions on G.

We denote the group ring of G by C[G] with the multiplication and adjoint
defined by

(

∑

s∈G

ass

)(

∑

t∈G

att

)

=
∑

s,t∈G

asatst

(

∑

s∈G

ass

)∗

=
∑

s∈G

ass
−1
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The group ring C[G] consists of all finitely supported complex-valued func-

tions on G, that is of all finite combinations f =
∑

s∈G

ass with complex coef-

ficients. Denote B(ℓ2(G)) the C∗− algebra of all bounded linear operator on
Hilbert space ℓ2(G). We may distinguish between the left regular represen-
tation, which is induced by the left multiplication action, and the right regu-
lar representation, which is comes from the multiplication on the right. The
left regular representation can be extended to an injective ∗− homomorphism
C[G] −→ B(ℓ2(G)), which we also denote by λ.

Definition 2.6. [3] The left regular representation

λ : C[G] → B(ℓ2(G))

is defined by

λ(s)δt(r) = δt(s
−1r) = δst(r) for s, r ∈ G..

The right regular representation is given by

ρ(s)δt(r) = δt(rs) = δts−1(r) for s, r ∈ G.

The reduced C∗− algebra C∗
λ(G) of a group G (which we shall assume to be

discrete) arises from the study of the left regular representation λ of the group
ring C[G] on the Hilbert space of square-summable functions on the group.

Definition 2.7. [3] The reduced group C∗− algebra G, denoted by C∗
r (G)

is the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖λ = ‖λ(c)‖

Equivalently, it is the closure of C[G] is identified with its image under the
left regular representation. i.e.

C∗
λ(G) := λ(C[G])

The reduced C∗− algebra C∗
ρ(G) of a group G (which we shall assume to be

discrete) arises from the study of the right regular representation ρ of the group
ring C[G] on the Hilbert space of square-summable functions on the group.
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Definition 2.8. The reduced group C∗− algebra G, denoted by C∗
ρ(G) is

the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖ρ = ‖ρ(c)‖ .

Equivalently, it is the closure of C[G] is identified with its image under the
right regular representation.

C∗
ρ(G) := ρ(C[G])

A discrete group G has a natural coarse structure which allows us to define
the uniform Roe algebra C∗

u(G). A group G can be equipped with either the
left or right-invariant of the metric. A choice of one of the determines whether
C∗
λ(G) or C∗

ρ(G) is a sublagebra of the uniform Roe algebra C∗
u(G) of G

We now define the invariant approximation: property (IAP)

Definition 2.9. [8] We say that G has the invariant approximation prop-

erty(IAP) if

C∗
λ(G) = C∗

u(G)G

We begin with a some definition of Haagerup and Kraus [5].

Definition 2.10. [1] A C∗− algebra A is nuclear if and only if it has
the following completely positive approximation property (CPAP): The identity
map on A can be approximated in the point norm topology by finite rank
completely positive contractions. This means that there exist nets of operators
Tα : A −→ Mnα

(C) and Sα : Mnα
(C) −→ A such that for all a ∈ A

lim
α

‖SαTα(a)− a‖ = 0.

A C∗− algebra A has the metric approximation property (MAP) of Grothen-
dieck if and only if the identity map on A can be approximated in the point-norm
topology by a net of finite rank contractions.

Comparing the definitions we see that CPAP implies MAP (see for example
[1]). Lance [7] has shown that Γ is amenable if and only if its reduced C∗−
algebra A has the CPAP which is equivalent to C∗

r (Γ) being nuclear. Completely
positive maps are in particular completely bounded, which suggest the following
weakening of the CPAP.
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Definition 2.11. [1] A C∗−algebra A is said to have the completely

bounded approximation property (CBAP) if there is a positive number C such
that the identity map on A can be approximated in the point norm topology by
a net {φα} of finite rank completely bounded maps whose completely bounded
norms are bounded by C. This means that there exists a net of finite-rank maps
{φα} : A −→ A such that ‖φα‖cb ≤ C for some constant C and φα −→ idA in
the point-norm topology on A (i.e. ‖φα(x)− x‖ −→ 0 for all x ∈ A).

The infimum of all values of C for which such constants exist is denoted by
Λcb(A) and is called the Cowling - Haagerup constant. We set Λcb(Γ) = ∞ if
the locally compact group Γ does not have the CBAP. Obviously, a nuclear C∗−
algebra has the metric approximation property. On the other hand, Haagerup
[4] proved that the reduced C∗− algebra Fn has the metric approximation
property, a very remarkable result since C∗

r (Fn), n > 2, is not nuclear, Fn not
being amenable. We have the following definition of weak amenability.

Definition 2.12. [1] An approximate identity on G is a sequence (φn)
of finitely supported functions such that φn uniformly converge to constant
function 1. We say that discrete G is weakly amenable if there is an approximate
identity (φn) such that

C := sup ‖Mφn
‖
cb
< ∞.

We have the following important result by Haagerup [4].

Theorem 2.13. Let G be a discrete group. The following are equivalent:

1. G is weakly amenable,

2. C∗
r (G) has the CBAP.

Definition 2.14. [2] We say that discrete group G is amenable if and only
if there is an approximate identity consisting of positive definite functions.

Lemma 2.15. An amenable discrete group is weakly amenable.

Proof. We recall that G is an amenable discrete group if and only if there
is an approximate identity on G consisting of positive definite functions. A
sequence (φn) of finitely supported functions such that φn −→ 1. Then Mφn
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completely positive on C∗
λ(G) and also Mφn

completely bounded and

‖Mφn
‖
cb
= φ(1).

Thus Λcb(G) = 1. Therefore G has CBAP. By Theorem 2.13, G is weakly
amenable.

Haagerup and Kraus have provided in [5] a detailed characterisation of
AP.We say that the C∗− algebra A has the strong operator approximation

property (SOAP) if there is a net Tα in A(G) such that Tα −→ idA in the stable
point-norm topology.

If A is a C∗− algebra, and H is a separable infinite Hilbert space, a net Tα

in CB(A) is said to converge in the stable point-norm topology to T in CB(A)
if Tα ⊗ idK(H)(a) −→ T ⊗ idK(H) in norm for all a ∈ A ⊗ K(H). Here K(H)
denotes the ideal of compact operators on H.

We say that C∗− algebra, A has the operator approximation property (OAP)
if there exists a net of finite - rank maps Tα : A −→ A such that Tα −→ idA
in the stable point-norm topology. This means that there exists a net of finite
rank linear maps

Tα : A −→ A

such that for all x ∈ K(H) ⊗min A,

‖Id⊗ Tα(x)− x‖ −→ 0.

The Fourier algebra

A(G) := {f : f(t) = 〈λ(t)ξ | η〉 for some ξ, η ∈ ℓ2(G)}

is the space of all coefficient function of the left regular representation λ. Given
f ∈ A(G), its norm is given by

‖f‖ = inf {‖ξ‖ ‖η‖ : f(t) = 〈λ(t)ξ | η〉} .

With this norm, A(G) is a Banach algebra with the pointwise multiplication
[5].

A complex-valued function φ on G is a multiplier for A(G) if the linear map

Mφ(f) = φf

sends A(Γ) to A(Γ). If the map Mφ is completely bounded on A(G), we call
φ a completely bounded multiplier of A(G). The set of multipliers of A(G) is
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denoted by M0A(G). If φ ∈ A(G) then φ is a bounded continuous function and
Mφ is a bounded operator on the space A(G).

The discrete group G has the approximation property (AP) if there is a net
{φα} in A(G) such that Mφα

−→ idA(G) in the stable point-norm topology on
A(G).

We have the following important result from Haagerup and Kraus [5]:

Theorem 2.16. Let G be a discrete group. Then the following are equiv-
alent:

1. G has the AP,

2. C∗
r (G) has the operator approximation property (OAP),

3. C∗
r (G) has the strong operator approximation property (strong OAP).

Example 2.17. The following groups have AP [5]. This implies that these
groups have the OAP, and thus also SOAP:

• SL(2,Z)[5]

• Z
2
⋊ SL(2,Z) [5]

In this section we will give definition of the strong invariant approximation
property. Let S ⊆ B(H) be a closed subspace.

Next, we define the set of fixed points of C∗
u(G,S)G:

Definition 2.18. We define

C∗
u(G,S)G = {T ∈ C∗

u(G,S) ; Ad(ρt ⊗ id)T = T for all t ∈ G} .

We now define Joachim Zacharias’s IAP with coefficients (SIAP):

Definition 2.19. [9] We say that a discrete group G has the strong in-

variant translation approximation property (SIAP) if for any closed subspace S
of the compact operators K (on ℓ2(N)). We have an isomorphism

C∗
u(G,S)G = C∗

λ(G)⊗ S holds.
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3. Analytic Properties of Strong IAP

In this section, we show some of the analytic properties of the strong invariant
approximation property for discrete exact groups.

Theorem 3.1. [9]For a discrete exact groupG the following are equivalent.

1. G has the AP.

2. C∗
r (G) has the OAP.

3. G has SIAP (Zacharias’s IAP with coefficients)

The above Theorem means for a discrete exact group the following proper-
ties are actually equivalent:

AP ⇐⇒ OAP ⇐⇒ SIAP.

Theorem 3.2. For a discrete exact group G. G has the SIAP if for any
closed subspace S ⊆ B(H) the equality

C∗
u(G,S)G = C∗

λ(G) ⊗ S holds.

Proof. Since G has IAP, so

C∗
u(G)G = C∗

λ(G)

and therefore
C∗
u(G,S)G = C∗

u(G)G ⊗ S

for any closed subspace S ⊆ B(H).

First we recall the following definitions.

Definition 3.3. [2] We define

SL2(Z) =

{(

a b

c d

)

: a, b, c, d ∈ Z and ad− bc = 1

}

.

Remark 3.4. For discrete groups we have the following implications:

Amenability =⇒ weak amenability =⇒ AP =⇒ exactness.
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The first implication is explained in Lemma 2.15. The first implication is not
an equivalence: the non-abelian free groups are weakly amenable, but they
are not amenable. The second implication is proved by Haagerup and Kraus
showed in [5] and also this implication is not an equivalence: a counter-example
is given by Z

2
⋊ SL(2,Z); this group has the AP [5]. But it was proved in [5]

that it is not weakly amenable. The third implication is not an equivalence:
Haagerup and Kraus showed in [5] that SL2(Z) is an exact group without AP.

We show the following Proposition:

Proposition 3.5. If G = SL2(Z). Then there exist any Hilbert space
B(H) and closed subspace S ⊆ H such that property if and only if

C∗
u(G,S)G 6= C∗

λ(G) ⊗ S holds.

Proof. Since G has not AP [5]. But Zacharia’s show that G has AP if and
only if G has SIAP. Therefore G has not SIAP. This mean

C∗
u(G,S)G 6= C∗

λ(G) ⊗ S holds.
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