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The mixed Poisson regression models are commonly employed to analyze the overdispersed count data. However, multi-
collinearity is a common issue when estimating the regression coefficients by using the maximum likelihood estimator (MLE) in
such regression models. To deal with the multicollinearity, a Liu estimator was proposed by Liu (1993). The Poisson-Modification
of the Quasi Lindley (PMQL) regression model is a mixed Poisson regression model introduced recently. The primary interest of
this paper is to introduce the Liu estimator for the PMQL regression model to mitigate the multicollinearity issue. To estimate the
Liu parameter, some exiting methods are used, and the superiority conditions of the new estimator over the MLE and PMQL ridge
regression estimator are obtained based on the mean square error (MSE) criterion. A Monte Carlo simulation study and ap-
plications are used to assess the performance of the new estimator in the scalar mean square error (SMSE) sense. Based on the
simulation study and the results of the applications, it is shown that the PMQL Liu estimator performs better than the MLE and

some other existing biased estimators in the presence of multicollinearity.

1. Introduction

The Poisson regression model is a commonly used statistical
method for analyzing the count response variable [1]. One
disadvantage of this model is that it is an overdispersion
issue that is common in the real-world applications of ac-
tuarial, engineering, biomedical, and economic sciences. The
overdispersion occurs when the conditional variance of the
count response variable exceeds the conditional mean of the
count response variable. In this context, the index of dis-
persion (variance-to-mean ratio) is greater than one. To
tackle this issue in the Poisson regression model, researchers
have proposed several mixed Poisson regression models. The
standard mixed Poisson distribution is obviously the neg-
ative binomial (NB)/Poisson-gamma regression model in-
troduced by Greenwood and Yule [2]. However, the NB
distribution fails to fit well for a count data with a higher

value of the index of dispersion and long right-tail behavior.
Then, the regression model based on NB is not a good choice
for such a count response variable. As an alternative to the
NB regression model, several mixed Poisson regression
models are in the literature. However, most of the proba-
bility mass functions (pmfs) of these mixed Poisson dis-
tributions are not in an explicit form. Some notable
examples of such regression models are the Poisson-Inverse
Gaussian regression model [3] and the Poisson-Inverse
gamma regression model [4]. This algebraic intractability in
such distributions leads to computational complexity, and
their regression models are limited in practice.

In the last decade, several researchers have highlighted
mixed Poisson distributions obtained by mixing the Poisson
and Lindley family of distributions due to their explicit form
of the pmf and work efliciency. The Lindley family of dis-
tributions are two-component mixtures. Some notable such
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mixed Poisson distributions are Poisson-Lindley distribu-
tion, Generalized Poisson-Lindley distribution, Poisson-
generalized Lindley distribution, Poisson-Quasi Lindley
distribution, and Poisson-weighted Lindley distribution,
proposed by Sankaran [5], Mahmoudi and Zakerzadeh [6],
Wongrin and Bodhisuwan (7], Grine and Zeghdoudi [8],
and Atikankul et al. [9], respectively. They may have the
flexibility to capture various ranges of horizontal symme-
tries, right-tail behaviors, and variance-to-mean ratios based
on their mixing distributions [10-12]. However, the litera-
ture on their regression models is rather limited. Some of the
most relevant works cited are the Generalized Pois-
son-Lindley (GPL) regression model derived by Wongrin
and Bodhisuwan [13] and the Poisson-Quasi Lindley (PQL)
regression model obtained by Altun [14].

Tharshan and Wijekoon [15] obtained a new Lindley
family of distributions named the Modification of Quasi
Lindley (MQL) distribution. Its probability density function
(pdf) is given as

He_ey (r(é\)oﬁ‘l’ (9 )5*1),
(@ + 1)1 ) SO

y>0;0>0,a’> —1,8>0,

fyr(y;60,a,0) =

where « and § are shape parameters, 0 is a scale parameter,
and y is the respective random variable bounded to (0, 00).
Equation (1) presents the mixture of exponential (6) and
gamma (6,0) distributions with the mixing proportion,
p = (a’/a® +1). By mixing the Poisson and the MQL,
Tharshan and Wijekoon [16] derived the Poisson-Modifi-
cation of the Quasi Lindley (PMQL) distribution. Its explicit
form of the pmf, and some other important statistics are
given in Section 2. Authors have shown that the PMQL
distribution is an overdispersed distribution, and it has the
flexibility to capture the various ranges of horizontal sym-
metry, right-tail heaviness, and variance-to-mean ratio.
Then, by using a reparameterization technique, the same
authors [17] derived its regression model to predict the
overdispersed count responses with a set of linear inde-
pendent covariates based on the generalized linear model
(GLM) approach. Further, in their paper, it is shown that the
PMQL regression model performs better than the NB, GPL,
and PQL regression models. More details of this regression
model are given in Section 2.The traditional estimator to
estimate the unknown regression coefficients of the PMQL
regression model is the maximum likelihood estimator
(MLE (pp1qry)> where the solutions of the nonlinear equa-
tions with respect to the regression coefficients are found by
applying an iterative weighted least square (IWLS) algo-
rithm. However, the MLE p;qy) is unstable, and its variance
is inflated when the covariates are linearly correlated since it
is a GLM. It leads to difficulty in having a valid statistical
inference. This problem is commonly known as multi-
collinearity by Frisch [18]. To overcome the multicollinearity
problem in the PMQL regression model, Tharshan and
Wijekoon [19] adopted the ridge regression estimator in the
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PMQL regression model (REpyqr))- The authors have
shown that the REpyq) performs better than the
MLE (ppiqr) When multicollinearity exists. Further, they
recommended some ridge parameter estimation methods
for the RE pyjqp)- The ridge regression estimator was sug-
gested by Hoerl and Kennard [20] for the ordinary linear
regression model, and it was extended to GLM by Segerstedf
[21]. The ordinary linear regression model is defined as

y=XB+s (2)

where y is an nx 1 vector of observations on a response
variable Y, fisa (p + 1) x 1 vector of unknown regression
coeflicients, X is the known design matrix of order n x (p +
1) with p-dimensional covariates, and ¢ is an n x 1 vector of
errors with E(¢) =0 and Var(e) = 0°1,,. Further, its un-
known regression coefficients are estimated by the ordinary
least square estimator, which is defined as

Bovst = (X’X)JX’)L (3)

Even though the ridge estimator is an efficacious one, its
drawback is that it includes a complicated nonlinear
function of the ridge parameter k, which is bounded to
(0, 00). Therefore, Kejian [22] proposed a biased estimator
named the Liu estimator for the ordinary linear regression
model (LE o), which is a linear function of the Liu pa-
rameter d bounded to (0, 1) by modifying the ordinary least
square estimator (g ). The Liu estimator is defined in the
ordinary linear regression as

BLE(OR) = (X'X+ 1) (X' X +dD)Bose, (4)

where I is the identity matrix of order (p + 1) x (p + 1) and
d € (0,1) is the Liu parameter.

Due to the advantageous property of the Liu estimator
(linear function with respect to the d) over the ridge esti-
mator, the Liu estimator has been considered by several
researchers for different GLMs. Mansson et al. [23] dis-
cussed some improved Liu estimators for the Poisson re-
gression model; Mansson et al. [24] adopted the Liu
estimator in the logit regression model; Mansson [25] de-
veloped a Liu estimator for the negative binomial regression
model; Siray et al. [26] introduced a restricted Liu estimator
for the logistic regression model; Wu [27] derived a modified
restricted Liu estimator in logistic regression model; Kur-
toglu and Ozkale [28] proposed the Liu estimator for the
generalized linear regression models and discussed an ap-
plication on gamma distributed response variable; Tirkan
and Ozel [29] proposed the Jackknifed estimators for the
negative binomial regression model; Wu et al. [30] intro-
duced a restricted almost unbiased Liu estimator for the
logistic regression model; Varathan and Wijekoon [31]
obtained a logistic Liu estimator under stochastic linear
restrictions; Qasim et al. [32] proposed some new Liu pa-
rameter estimators for Poisson regression model; Li et al.
[33] obtained stochastic restricted Liu estimator in logistic
regression model; and Omer et al. [34] developed Liu



The Scientific World Journal

estimators for the zero-inflated Poisson regression model.
We may note that the Liu estimator for the regression model
of a mixed Poisson distribution is rather limited in the
literature.

This paper adopts the Liu estimator in the PMQL re-
gression model to combat the multicollinearity. Further, we
adhere to some possible estimation methods to estimate the
Liu parameter d for the PMQL Liu regression estimator
(LE (ppmqry) based on the works carried out by Hoerl and
Kennard [20], Kibria [35], and Khalaf and Shukur [36].
Then, the performance of the MLE py1qr)> RE (ppqr)> and
LE pprqry will be compared in terms of the scalar mean
square error (SMSE) criterion by using an extensive Monte
Carlo simulation study. Finally, a simulated data set and a
real-world example will be considered to illustrate the
benefits of the Liu estimator for the PMQL regression model
in handling the overdispersion and multicollinearity issues.

The rest of the paper is organized as follows: Section 2
discusses the PMQL regression model and its regression
coefficients estimator. We present the LEpyq), mean

0
P +1)(1+6)7°T(9)

fr(y) =

where y is the respective random variable and represents the
total counts of an experiment. Its mean and variance are
given

o+ 8

PO = e

=t (6)
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respectively. Equation (5) represents a two-component
mixture of geometric (6/1+6) and negative binomial
(6,1/1 + 0) with the mixing proportion, p = (a’/a’ + 1).
Further, it possesses to be unimodal and bimodal distri-
butions and overdispersed. The authors have shown that it
has the potentiality to accommodate various horizontal
symmetry, right-tail behaviors, and index of dispersion for
overdispersed count data.

Let y,, ¥5,..., ¥, be the random sample of n observa-
tions from the PMQL distribution. The link between

(T (y+ Do’ (1+6)°

—

(o +1)exp (x;-ﬁ))y"((f +8)(T ()T (y; + 1)a’ A% +(a’ + 8)571F(y1- + 6))

square error (MSE) properties of the LE pyqp), conditions
that the LE pyq) is superior to the MLE pyq) and the
RE pyqr)s and possible Liu parameter estimators for the
LE (pypqr) in Section 3. Section 4 designs a Monte Carlo
simulation study and discusses the results of the simulation
study. Section 5 gives a simulated data set and real data
applications in order to illustrate the applicability of the
PMQL Liu regression model. Finally, the conclusion of the
paper is given in Section 6.

2. PMQL Regression Model

In this section, we present the PMQL regression model and
its regression coefficients estimation.

The PMQL distribution [16] is a resultant distribution or
unconditional distribution by assuming that the Poisson
parameter follows the MQL distribution. The pdf of the
MQL distribution is given in equation (1). The probability
mass function of the PMQL distribution is given as

O 'T(y+0); y=0,1,2,...,0>0,8>0,a’> -1, (5)

p-dimensional covariates and the mean responses y was
taken as

p
n =g (u;) =log(y;) = Zﬁjxij = xi,
=0 (8)

i=1,2,...,n,

where x; = (1, x;, X5 - - -» x;,) is the vector of i'" row of the
known design matrix X supplemented with a 1 in front for
the intercept, B’ = (By, B> - - - »B,) is a vector of unknown
regression coeflicients of order (p+ 1) x 1 with intercept,
and « and § are overdispersion parameters. To approach the
GLM, the PMQL distribution was reparametrized based on
the relationship between y and 6 given in equation (6) for a
given set of & and § values and the link between y and
p-dimensional covariates given in equation (8).

That is, by substituting 6, = (a® + 8)/ (a® + 1)exp (x}f),
i=1,2,...,ninequation (5), the pmf of the y, for a given set
of covariates x; was obtained as

9)

f()’i|x;') =

where  A; = ((o® + Dexp (x}f) + (&> +9)),i=1,2,...,n.
The conditional mean and variance of the regression model
are given:

yil(a® +1) A7 (8)

>



E(Y;Ix}) = exp (xB),
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Var (Y,|x}) = exp (xif) +
(10)

(B, 0]y, x) = Zn:yilog((oc3 + 1)exp (xi[i)) +n log(oc3 + 8) - ilog(yi!) -

i=1
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respectively. Figure 1 depicts the surface plots of the variance
function of the PMQL regression model at y =2.5 for
different values of « and §. From Figure 1, it can be observed
that the variance as a function of « or ¢ is not a monotonic
function, and it is high for small values of « and d.

The estimation of the unknown regression coeflicients is
commonly estimated by maximizing the following log-
likelihood function of its pmf given in equation (9):

n log(oc3 + 1) —nlog(T(6))
\ (1
Z ;+ 0)log (A

i=1

The score function of the vector of regression coeflicients
B is given as

i (y;+90) (oc + l)exp(x,ﬁ)

i=1 1

(12)

2 DO (y;+ 1)’ (8- DA (o + 1)exp (xB)x;
+

i=1 T(OI(y; + 1)¢)c3'A?_1 +(oc3 + 8)5_11“

Since equation (12) is nonlinear in f3, one can use the
iteratively weighted least square (IWLS) algorithm (Fisher
scoring method) [16] to obtain the maximum likelihood
(ML) estimates. Let 8~ be the estimated value of f by the
ML method with (s — 1) iterations. Then, the Fisher scoring

(y; +9) '

where I(ﬁ(S D) is a (p+1)x (p+1) Fisher information
matrix and the S(B“" V) is the score function of the re-
gression coefficients calculated at BEY. In the final step of
the IWLS algorithm, /SMLE is obtained as

(PMQL)

method can be written as ﬁMLE(NQL) (X WX) X,W2> (14)
B =B+ (B )s(BY), (13)  where
1 ‘u(oc?: 8)2
W = dlag<#> = dlag 5 - — > (15)
g' (@) Var (@) (o +8)" +p(o’(@® +2+8(8-1)) +9)
z is a vector, and its " element is given as - s o1
GG+ (= )9 (4) = 1og(@) + (3, AV MSE(Bras ) = (X 9X) a7
The asymptotic covariance matrix of this estimator is
given as _ Py
. SMSE<ﬁMLE(PMQL)) = Z /T (18)

Cov(ﬁMLE(PMQL)> =(X'WXx) (16)

and the asymptotic MSE and SMSE of this estimator are
given as [16]

respectlvely, where A; is the j'
X'WX.

" eigenvalue of the matrix
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FiGure 1: The variance function of the PMQL regression model at
u = 2.50 for different values of aand é.

When the covariates are highly correlated, the weighted
matrix of cross-product X'WX is ill-conditioned, and this
matrix will have some smaller eigenvalues. We can observe
that the SMSE (ﬁMLE(PMQL) given in equation (18) can easily
be inflated for smaller elgenvalues In this situation, it is very

E (ﬁLE(pMQL)> = Ldﬁ,

COV([;LE (MaL) ) = LdCOV<ﬁMLE(pMQL)>Ld,

hard to have a valid inference of whether the estimated
regression coeflicients are significant or not.

3. The PMQL Liu Regression Estimator

Note that the PMQL regression model is a GLM. Then,
following the Liu estimator for the GLMs, which was pro-
posed by Kurtoglu and Ozkale [28] for the GLMs based on the
IWLS algorithm, we define the Liu estimator for the PMQL
regression model to mitigate the multicollinearity issue as

B = (OW () 1)

(XW(BS )X+ dD)Byn

where ﬁLE v 1S the estimated value of the 8 by the Liu
estimator with the s iterations, W BEY) is the weighted
matrix evaluated at B, and ﬁMLE is the estimated
value of the f§ by the maximum likelihood method with the s
iterations. In the final step of the TWLS algorithm, B,

(PMQL)
can be obtained as

(19)

—~ o~ -1 )~ —~
BLe ) = (X WX + 1) (X WX + dI)ﬁMLE(PMQL) o)

= LdﬁMLE(PMQL) >

where d (0 <d < 1) is the Liu parameter Iis a (p+ 1) x (p+
1) identity matrix, and L; = (x' WX + ) N (XWX +dI).
Note that, if d = 1, then Byyg = Big v’

Asymptotic properties of the i’MQL Liu regression es-
timator are as follows:

= (XWX +1) (XWX +dI)(X'WX) (XWX +dI) /(XWX +1) ' (21)

= (XWX +1) (X'WX + dI)(I + d(X’WX)'l)(X’WX +1)

- Ld<I + d(X’WX)")(X’WX +1)

and then the asymptotic bias and MSE are given as

Bias(BLE(PMQL)) E(ﬁLE(PMQL)>

= (La-
-
= (

(X' WX+1) B,

(x
d-
MSE(ELE(WQL)) ((/3LE(PMQL) )(BLE@MQL)—ﬁ))

WX +1) XWX+dI) )ﬁ

(22)

_ . > . 1B
= OV(ﬁLEwMQU) + Blas(ﬂLE(PMQL))Blas (ﬁLE(pMQL))

- Ld<I + d(x’Wx)’l)(X’WX +1) "+ (d- DA(XWX 1) (XWX +T)



respectively. Now, we derive the asymptotic SMSE of the
estimator as

Let us define an orthogonal matrix I' whose columns are
the normalized eigenvectors of the matrix X'WX, a vector

'Wx) lLéLd> +(d-1B (XWX +1) B

= trace<C0V</3LE(PMQL)>> + Bias’([;’LE(PMQL))Bias(ﬁLE(PMQL)>
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WX) (XWX +dl) (XWX +1) (XWX + dI)) +(d- 1) (XWX +1) B

o= F’Aﬂ, and a diagonal matrix A = diag(A;,4;,...,4,,1) =
['X'WXT. Then, the asymptotic SMSE can be written by
using the spectral decomposition as

SMSE(BLE(PMQL)> = trace<rr’(X’WX)’ 'TI'(X'WX +dI)'TT (X'WX + 1) TI'(X'WX + dI))

+(d- )BT (XWX +1) TI'B

= trace(A™ (A +dD)' (A+ D) *(A+dD)) + (d - 1)’BT(A+1)°T'B

p+l (/\] + d)2 2p+1
=Y S i d-1)
i-zl)‘j("j +1) ' le

=termI + termII, say,

respectively, where a; (j = 1,2,..., p + 1) is the j element
of I'B and term I and term II are the total variance of re-
gression coeflicient estimates and squared bias, respectively.

3.1. MSE Properties of the PMQL Liu Regression Estimator.
In this subsection, we discuss the MSE properties of the Liu
estimator for the PMQL regression model. Further, we make
a comparison of B, | with the existing estimators such as
ﬁMLE(PM D and ﬁRE(pMQ.L). to show the superiority of ﬁLE(
under different conditions in the MSE sense.

_ Let us define A which is the SMSE differences of
BMLE yyn) @09 PLE - BY Using equations (18) and (24), we
get

A= SMSE(BMLE(PMQL)> - SMSE(BLE(PMQL))

p+l p+l ) 2 p+l 2
= Z%_<ZM+(CI_1)ZZL2>'

=1\ )Lj()tj + 1) =1 ()Lj + 1)

PMQL)

(25)

It is clear that A =0 when d equals one, and then
SMSE (ﬁMLE<gMQL>) = SMSE (_[gLE(PMQL ). Fu1.rther, the estimath
ﬁLE(pMQL is said to be superior to the estimator Buis S
the form of the SMSE criterion if and only if A > 0. Then, if
we can find ad (0 <d < 1) such that A > 0, we can say that the

(24)
o
j
2
(A;+1)
estimator BLE( is superior to BMLE( in the PMQL

R PMQL)
regression model.

Kejian [22] showed that there exists a d (0 <d < 1) such
that the Liu regression estimator has a lower SMSE than the
ordinary least square estimator. Further, Kurtoglu and
Ozkale [28] have proven that this property holds for the
GLMs. The following two propositions show that this
property holds in the PMQL Liu regression model.

PMQL)

Proposition 1. The total variance of the regression coefficient
estimates of ﬁLE(PMQL) (term 1) and ‘square'zd bias. f BLE e
(term 1I) are continuous monotonically increasing and de-
creasing functions of d, respectively.

Proof. : The first derivative of term I in terms of d is

dtermI "4 (/\j +d)
=2y N1
od ;AJ(AJ +1) >
i OtermI 2P+1 1 )
d—or od (A + 1)2’
) otermI B Ak 1
O .
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Since A; >0 for all j, equation (26) is always positive for
all d(0<d <1). Further, the derivative of the term I in the
neighborhood of zero given in equation (27) and the de-
rivative of the term I in the neighborhood of one given in
equation (28) are positive.

The first derivative of term II in terms of d is

at 11 o
S —2d-1) Z S/ (29)
;+1)”
aterm II ol 2
Jim, Z( e (30
O term II
i od (3D

Since A; >0 and a2 >0 for all j, equation (29) is always
negative for all d(0<d <1). Further, the derivative of the
term II in the neighborhood of zero given in equation (30) is
negative, and the derivative of the term II in the neigh-
borhood of one given in equation (31) is zero.

Then, it is shown that term I and term II are continuous
monotonically increasing and decreasing functions of d,
respectively. O

Proposition 2. The SMSE (ﬁLE(WQ )) given in equation (24) is
a continuous monotonically increasing function of d when
(O = 1)/ (/A ) + (xmaxz <d<1, where «,,. is the
maximum element ofoc (j=12,.. Pt 1) and A, is the
maximum eigenvalue of the matrix X' WX.

Proof. The first derivative of equation (24) is
MSE( Byt gy ) ~ MSE(Bit 1
= (x'Wx)"

Now, we apply the spectral decomposition for the above
matrix. Then, the difference can be written as

7
aSMSE(BLE(PMQL,) ~ ptl (/1]- + d)
ad A0 o
p+l 06?
2d-1)y — 1
ALY

One can note that if the individual Liu parameter

d >(oc —1)/(1/)L)+oc, Vji=12,...,p+1, equation
(32) is posmve Then, it is clear that when
(a2, — 1)/ (1/A,) + a2 <d <1, equation (32) is always

posmve Then, it is shown that the SMSE (Buix onapy) 1S @
continuous monotomcally increasing function of d when
(o2 = D/ (/) + 02 <d < 1.

Now, we can conclude that there is a possibility of
finding a value d (0 <d < 1) based on the results of Propo-
sition 1. Further, the results of A = 0 given in equation (25)
at d equal one, and Proposition 2 reveals that the A > 0 when
(a2, — D/ (1/A,,) + a2 <d<]1.

Then, it is shown that there exists a d (0 < d < 1) such that
SMSE (ﬁLE(pMQL) < SMSE (Byug o))

The followmg theorem discusses the condition that the
LE is superior to the MLE in the PMQL regression
model. O

Theorem 1. Let /X ()t +1)% - (/\ +d)?>0, (j=1L2.
p+1) and bd—Bzas(ﬁLE(PM )) Then, MSE(/J’MLE(PMQL))
MSE(ﬁLE >0 117 bd(F(Al (A+ D) (A+dI)
AV A+dD A+ D) DY b, < 1

Proof. The difference between the MSE of the MLE and LE is
derived as

R ] _ ! I YA -1 !
MSE(ﬁMLE@MQL)) h MSE<ﬁLE(PMQL)> =IT (X WX) IT

(33)
(XWX 1) (XWX +dD)(XWX) (XWX +dI)(XWX +1) " ~byby,
~IT(X'WX +1) TI'(X'WX +dI)IT (X'WX) '
T (X'WX + d)IT (XWX +1) T~ byb,
(34)

=TA'T

~TA+D) Y (A+dDA”

YA+dD)(A+D)7'T —byb,

=T(A' = A+ DN (A+dDA (A +dD)(A+ D)7 = byby

= I'dia L re
e A4+ 1)

(/1 + d)2

> I' - b,b,.
woptl



The diagonal matrix A= (A+1)7! (A +dDA™Y (A +
dn(A+I1"' is  pd if A +1) - (4 +d)*>0,
(j=1,2,...,p+1). Then, by Lemma Al (Appendlx 1),
MSE (ﬁMLEWQU) MSE(ﬁLE(PMQL )>0 if
biy(CA™ = (A+I) " (A+dDA™
(A+dD)(A+1)"")I') ',y < 1. It completes the proof.

The following theorem discusses the condition that the
LE is superior to the RE in the PMQL regression model. [

MSE<BRE(PMQL)) MSE<ﬂLE (PMQL) )

=(X'WX +kI) (X'WX)(X'WX +kI) -
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Theoremz Let)tz(/\ +1)% - ()L +d)? (/\ +k)?>0, (j=
.o p+l) and b, = Bzas(ﬁRE(PMQ”) = k(XWX +
kI)‘l. Then, ~ MSE (ﬁRE(PMQL)) MSE (ﬁLE(PMQL)) >0 iff

by (I ((A+ kI "A(A+KI) "=
(A+D)" DI +bb)) b, <1.

(A+D Y (A+dDA T (A+dD)

Proof. : The difference between the MSE of the RE and LE is
derived as

(XWX +1) (XWX +dI)(X'WX) (XWX +dI) (XWX +1) " +bb - byb,

By applying the spectral decomposition for the above
matrix, the difference can be written as

MSE(ﬁRE(pMQU) - MSE(ﬁLE(PMQL)) =TT’

I'(X'WX +1) T’

=T(A+kD) 'AN+kD'T' =T(A+ D) " (A +dDA”

+bb —byby

(X'WX + k1) 'IT’

(35)
(X'WX)IT'(X'WX +kI) TI'-
(X'WX +dI)IT' (X'WX)
I (XWX +dI)IT (XWX +1) T +bbj - byb,
"A+dD(A+ DT
(36)

=T((A+kD) AN +ED ™ = (A+ D)7 (A +dDA (A +dD) (A+ D)7 )

+byb, - byby

(A +d)’

rdi A
= I'dia -
(k)

A +1) ),

-, +d)2()tj+k)

~optl

) 2
= Fdiag(lj (Aj i 1)

L+ k) (4 + 1)

It is clear that bib; is a pd matrix, and the diagonal
matrix (A +kI) " 'AA+ kD)™ = (A+ D)7 (A+dDAT (A +
dn(A+D)7" s pd if A (A +1)? = (A; +d)*(A; + k)’ >0,
(j=1,2,...,p+1).

Then, by Lemma Al (Append1x 1), MSE( /SRE
MSE(/SL )20 if by (T((A+kD) A (A+KI)
(A+D)7! (A+dI)A (A+dD) (A+I) D +bby) by <11t
completes the proof. O
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3.2. Estimation of the Liu Parameter d. Based on the MSE
properties of the PMQL Liu regression estimator discussed
in Section 3.1, it is clear that the performance of ﬂLE(PMQL

) I’ +b.b, — byb,.
p+1

depends on the optimum value of the Liu parameter d. The
optimal value of any individual Liu parameter d; can be
found by setting equation (32) to zero and solving for d;.

Then, it is obtained as

o -1

di=—1— j=12,... 37
Ty 7

,p+ L

From equation (37), we can note that the optimum value
is negative when a2<1 (j=1,2,...,p+1) and otherwise
positive. Since the value of the d is limited between 0 and 1,
we should use the “max” operator to ensure the estimated
value of the d is nonnegative.
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In this subsection, we adopt some notable existing Liu
parameter estimators in order to estimate the Liu parameter
in g - They are summarized in Table 1 (Appendix 2).
We define the Liu parameter estimators D;, D, — D, and
D, — D, for B ey, Dased on the theoretical works of Hoerl
and Kennard 20] “Kibria [35], and Khalaf and Shukur [36],
respectively.

To estimate the ridge parameter in the PMQL ridge
regression estimator, Tharshan and Wijekoon [19] discussed
12 various estimation methods. Among all, they recom-
mended three ridge parameter estimators, k,,k;, and k,,,
based on the works of Hoerl and Kennard [20], Nomura
[37], and Muniz and Kibria [38]. These ridge parameter
estimators are summarized in Table 1 (Appendix 2).
Therefore, k,,k;, and k,, will be utilized to estimate k in
ﬁRE(PMQL) in the simulation study.

4. The Monte Carlo Simulation Study

In this section, a simulation study is carried out to evaluate
the performance of the MLE (pyqr), PMQL ridge regression
estimators, PMQL Liu regression estimators based on the
various ridge, and Liu parameter estimators, respectively, as
discussed in Section 3.2. We compare the performance of
different estimators in the SMSE sense. A brief discussion
about the simulation study is given in the following.

4.1. The Design of the Simulation Study. Since the degrees of
the correlation (p) between the covariates greatly depends
on the performance of the various estimators, we generate
the covariates with several degrees of multicollinearity by
following the same formula as used by McDonald and
Galarneau [39]. The formula is given as follows:

Xij = (1 _Pz)mij TP pi1s

i=1,2,...

(38)
b n’ j = 1’ 2) AR p)
where m;;’s are independent standard normal pseudoran-

dom numbers. The response variable y of the PMQL re-
gression model is generated from the PMQL (y;, a, §) by

using the inverse transform  method,  where
;= exp (xiB), i = 1,2,...,n. The starting values of the slope
parameters are selected such that ?:1 ﬂz =1 and

Pi=B, =

Table 2 sumrflarlzes the factors and their levels that are
considered in this design. Since either higher increments or
decrements of variation of y may lead to a negative impact
on the performance of estimators [19, 24, 40, 41], we vary f3,,
a, and 6. When we decrease the value of ), the average
values of the y;(y;), i =1,2,...,n will decrease. This phe-
nomenon leads to having more zeros of y, which makes very
less variation in the sample. Further, from Figure 1, we can
observe that changing the value of the overdispersion pa-
rameters « or § affects the variation of y.

The simulation is repeated 1000 times. To judge the
performance of the different estimators, we obtain the SMSE
values of different estimators by using the following
equation:

SMSE (B) _ Zr:1 (ﬁr ;Oﬁ()) (ﬁr B /3), (39)

where B, is an estimator of f8 at the r™ replication.

4.2. Results and Discussion of the Simulation Study. The
estimated SMSE values of the Monte Carlo Simulations are
summarized in Tables 3-10 (Appendix 2) for the selected
situations shown in Table 2. The minimum SMSE in each
combination of different factor levels is presented in bold. In
general, we can note that the LE py;q) is more efficient than
the MLE ppjqr) and RE pyqr) in all cases reviewed in this
study. Further, the performances of all regression coefficient
estimators are affected by the factors of degrees of the
correlation among the covariates, the sample size, the value
of the intercept, the number of covariates, and the values of
the overdispersion parameters.

It can be noticed that as the degrees of correlation in-
crease, the estimated SMSE of the MLE (p\,q, increases, and
the PMQL Liu regression estimators having the estimated d
values D,,D,, D5, and D, are also affected negatively in
some cases. However, the PMQL Liu regression estimator
based on the D; estimator does not affect and yields con-
sistently a smaller SMSE in all cases. Further, its estimated
SMSE decreases with p.

When the sample size increases, SMSE of the MLE pyjqr)
and the PMQL ridge and Liu regression estimators decrease.
This phenomenon reveals that the asymptotic property holds
for all given estimators. Further, in a given sample size, the
PMQL Liu regression estimator based on the Dy estimator
performs better than the MLE py;q;) and PMQL ridge re-
gression estimators for all given situations.

Itis clearly observed that as the 3, decreases from 1 to
—1, the SMSE of the MLE p);qr) and PMQL Liu regression
estimators based on the D,,D;, and D, estimators are
increased with a higher amount and based on D, esti-
mator are also affected negatively for some cases.
However, this change does not affect the performance of
the PMQL Liu regression estimator based on the D;
estimator basically.

The increasing number of covariates affects the per-
formance of the MLE 5\, negatively in all given situations,
and the PMQL ridge regression estimators also affect neg-
atively in some given situations. However, the PMQL Liu
regression estimator based on Dy estimator does not affect
when increasing the number of covariates in all given sit-
uations. Further, when p increases for a given combination
of p,n, By, &, 8, the SMSEs produced by PMQL Liu regression
estimator based on Dj estimator decrease.

We can clearly note that the increment of either the
overdispersion parameter « (0.03 to 0.25) or § (0.02 to 0.04)
shows a positive impact on the performance of different
estimators. From Figure 1, we can note that, in both situ-
ations, the variance of y decreases. These results are in line
with the simulated results of [17, 41].

Then, based on the simulation study results, we may say
that the Liu parameter estimator Ds is the best option to
estimate the Liu parameter d in the /3LE .

v
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TaBLE 1: The Liu and ridge parameter estimators for the PMQL Liu and ridge regression models.
Author(s) Liu and ridge parameter estimators

Hoerl and Kennard [20]

Kibria [35]

Khalaf and Shukur [36]

Nomura [37]

Muniz and Kibria [38]

2 1A
D, = max (0, median (@ - 1/(1/1)) + &)
D, = max (0, Y71 (@ - 1/(1/4)) + &)/ (p + 1))
ﬁ4 = max (0, max(ﬁc? - 1/(1/1]») + 56?))

DS = max (0, min(&? - 1/(1/1]-) + &?))
ky = p+ USE @) (1+ (144;@)").
ky = max(1[1/&3), j=1,2,...,p+1,

EIZ = median(ﬂl/&? ), j=12,...p+1,

D, = max(0,a? max)+&fnax)

TaBLE 2: Factors and their levels that are considered in the design of the simulation study.

Factors Levels Purpose
Degrees of correlation (p) 099, 009999999’ and To examine the performance of different estimators when increasing p.

. 10, 20, 30, 40, and  To examine the asymptotic property and the performance of different estimators
Sample size (n) .

100 with n.
Number of covariates (p) 2 and 4 To examine the performance of the various estimators when increasing p.
To examine the performance of the various estimators when changing the variation
of y:

Intercept (f3,) -land1 (i) By changing f,.
(O;r)erdlspersmn parameter 1 0.03 and 0.25 (ii) By changing a.
Overdispersion parameter 2 0.02and 0.04 (i) By changing 6.

(%)

TaBLE 3: Estimated SMSE values for different n, p, k,d, and 3, when & = 0.02, « = 0.03, and p = 2.

p=0.99

Estimator Po=-1 0=1

n=10 n=20 n =30 n =40 n =100 n=10 n=20 n=30 n =40 n =100
MLE 452.489 174.282 108.926 78.421 29.614 414.628 159.988 99.952 71.908 27.170
RE (k,) 1.589 1.349 1.189 1.080 0.768 1.856 1.758 1.686 1.635 1.475
RE (k) 1.658 1.412 1.227 1.087 0.641 1.571 1.298 1.110 0.975 0.583
RE (ky,) 1.709 1.477 1.298 1.145 0.667 1.759 1.630 1.545 1.493 1.271
LE (D,) 86.420 53.340 41.202 33.485 16.218 1.567 1.295 1.108 0.974 0.582
LE (D,) 3.646 3.137 2.494 2.083 0.795 1.567 1.295 1.108 0.974 0.582
LE (D) 5.060 3.487 2.749 2.250 1.010 1.567 1.295 1.108 0.974 0.582
LE (D,) 49.373 37.725 31.882 27.274 14.777 1.567 1.295 1.108 0.974 0.582
LE (Dy) 1.564 1.297 1.116 0.986 0.605 1.567 1.295 1.108 0.974 0.582

p=0.999
MLE 4396.674 1692.037 1056.591 760.296 286.932 4029.486 1554.024 970.048 697.530 263.417
RE (k,) 1.586 1.344 1.184 1.074 0.763 1.855 1.757 1.686 1.634 1.475
RE (k) 1.656 1.408 1.222 1.082 0.632 1.565 1.288 1.097 0.959 0.548
RE (ky,) 1.711 1.474 1.291 1.132 0.646 1.760 1.631 1.548 1.497 1.277
LE (D) 823.212 507.768 384.280 314.227 151.077 1.561 1.286 1.095 0.958 0.548
LE (D,) 22.182 17.975 14.279 11.114 2.237 1.561 1.286 1.095 0.958 0.548
LE (D) 35.171 22.122 16.545 12.810 4.197 1.561 1.286 1.095 0.958 0.548
LE (D,) 463.151 353.349 297.506 254.383 136.779 1.561 1.286 1.095 0.958 0.548
LE (Ds) 1.559 1.289 1.104 0.972 0.574 1.561 1.286 1.095 0.958 0.548
p=0.9999

MLE 43836.060 16872.260 10534.020 7579.503  2860.172 40177.070  15496.860 9671.687 6954.122  2625.934
RE (k,) 1.585 1.344 1.183 1.074 0.762 1.855 1.757 1.686 1.634 1.475
RE (k;) 1.656 1.408 1.222 1.081 0.631 1.565 1.287 1.095 0.957 0.546
RE (ky,) 1.711 1.474 1.290 1.131 0.644 1.760 1.631 1.548 1.498 1.277
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TaBLE 3: Continued.

p=0.99
Esti Bo=-1 Bo=1
stimator
n=10 n=20 n=30 n =40 n =100 n=10 n=20 n =230 n =40 n =100
LE (D) 8201.712 4973.109 3898.417 3163.635 1503.131 1.561 1.285 1.094 0.956 0.545
LE (D,) 208.113 165.643 132.270 101.672 17.001 1.561 1.285 1.094 0.956 0.545
LE (D,) 336.983 208.402 154.438 118.589 36.359 1.561 1.285 1.094 0.956 0.545
LE (D,) 4596.616 3511.205 2954507 2525475 1356.645 1.561 1.285 1.094 0.956 0.545
LE (Ds) 1.559 1.288 1.103 0.970 0.571 1.561 1.285 1.094 0.956 0.545

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,
and bold values indicate the minimum SMSEs.

TaBLE 4: Estimated SMSE values for different #, p, k,d, and 3, when & = 0.04, « = 0.03, and p = 2.

p=0.99
Esti Bo=-1 Bo=1
stimator

n=10 n=20 n=30 n =40 n =100 n=10 n=20 n =30 n =40 n =100
MLE 245.039 93.937 58.668 42.234 15.927 210.562 81.256 50.776 36.539 13.806
RE (k,) 1.362 1.084 0.927 0.831 0.595 1.760 1.631 1.551 1.335 1.368
RE (k;) 1.433 1.109 0.902 0.763 0.450 1.321 0.992 0.802 0.680 0.393
RE (ky,) 1.529 1.254 1.074 0.944 0.529 1.577 1.380 1.267 1.199 0.928
LE (D,) 70.111 37.569 27.385 21.437 9.560 1.315 0.988 0.799 0.677 0.391
LE (D,) 3.014 1.915 1.413 1.064 0.455 1.315 0.988 0.799 0.677 0.391
LE (Ds) 3.980 2.187 1.530 1.155 0.480 1.315 0.988 0.799 0.677 0.391
LE (D,) 48.183 31.266 24.062 19.472 9.242 1.315 0.988 0.799 0.677 0.391
LE (Ds) 1.318 1.006 0.826 0.710 0.423 1.315 0.988 0.799 0.677 0.391

p =0.999
MLE 2380.463 911.567 568.777 409.234 154.218 2046.259 789.199 492.750 354.411 133.844
RE (k,) 1.357 1.078 0.921 0.825 0.591 1.759 1.630 1.550 1.500 1.369
RE (k) 1.430 1.104 0.895 0.755 0.387 1.311 0.975 0.779 0.651 0.333
RE (ky,) 1.537 1.255 1.072 0.936 0.516 1.577 1.382 1.270 1.205 0.933
LE (D) 668.982 360.132 260.603 202.710 88.570 1.306 0.972 0.777 0.650 0.332
LE (D,) 18.050 9.434 6.071 4.062 0.620 1.306 0.972 0.777 0.650 0.332
LE (D) 26.753 12.123 7.442 4.843 0.868 1.306 0.972 0.777 0.650 0.332
LE (D,) 454,645 293.149 224.734 181.166 84.798 1.306 0.972 0.777 0.650 0.332
LE (Ds) 1.310 0.992 0.807 0.686 0.371 1.306 0.972 0.777 0.650 0.332
p =0.9999

MLE 23733.270  9089.415 5670.356  4079.535  1537.169  20402.520  7869.867  4912.825  3533.315 1334.242
RE (k,) 1.357 1.077 0.921 0.825 0.591 1.759 1.630 1.550 1.500 1.369
RE (k) 1.430 1.103 0.895 0.754 0.386 1.310 0.973 0.777 0.648 0.326
RE (k;,) 1.538 1.256 1.073 0.935 0.514 1.577 1.383 1.270 1.206 0.935
LE (D,) 6686.193 3595.616  2566.089  2026.436 880.321 1.305 0.971 0.775 0.647 0.325
LE (D,) 169.962 83.376 52.921 35.078 2.784 1.305 0.971 0.775 0.647 0.325
LE (Ds) 254.364 111.777 66.952 42.161 5.245 1.305 0.971 0.775 0.647 0.325
LE (D,) 4518.941 2913.413  2231.176 1797.415 840.163 1.305 0.971 0.775 0.647 0.325
LE (Ds) 1.309 0.990 0.805 0.684 0.365 1.305 0.971 0.775 0.647 0.325

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,
and bold values indicate the minimum SMSEs.

5. Applications data, namely, NB Liu regression and Poisson Liu regression

models. Further, we illustrate the applicability of the PMQL
In this section, we use a simulated data set to show the  Liju regression estimator over the MLE (emqu) by using a real
applicability of the PMQL Liu regression model for the data set also. We have observed that the PMQL Liu re-
count data set with a higher index of dispersion and long  gression estimator based on D5 estimator performs well in
right tail over the existing Liu regression models for count  the simulation study. Further, the same Liu parameter
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TaBLE 5: Estimated SMSE values for different #, p, k,d, and f§, when & = 0.02, « = 0.25, and p = 2.

p=0.99
Esti Bo=-1 By=1
stimator

n=10 n=20 n =30 n =40 n =100 n=10 n=20 n =30 n =40 n =100
MLE 372.624 143.374 89.597 64.506 24.352 335.750 129.559 80.947 58.240 22.006
RE (k,) 1.524 1.268 1.106 0.999 0.709 1.830 1.721 1.646 1.593 1.440
RE (k) 1.596 1.323 1.127 0.984 0.556 1.500 1.205 1.012 0.879 0.513
RE (k) 1.657 1.408 1.225 1.071 0.611 1.712 1.562 1.468 1.410 1.171
LE (D,) 81.482 48.077 36.358 29.354 13.841 1.495 1.202 1.010 0.877 0.512
LE (D,) 3.476 2.801 2.138 1.738 0.655 1.495 1.202 1.010 0.877 0.512
LE (Ds) 4.793 3.092 2.332 1.860 0.783 1.495 1.202 1.010 0.877 0.512
LE (D,) 49919 36.118 29.627 24.850 12.838 1.495 1.202 1.010 0.877 0.512
LE (Ds) 1.494 1.207 1.023 0.895 0.539 1.495 1.202 1.010 0.877 0.512

p=0.999
MLE 3620.475 1391.796 1056.591 625.309 235911 3262.905 1258.426 785.586 564.931 213.346
RE (k,) 1.520 1.263 1.184 0.993 0.704 1.829 1.720 1.645 1.593 1.441
RE (k) 1.594 1.319 1.222 0.978 0.546 1.493 1.194 0.997 0.859 0.473
RE (ky,) 1.661 1.406 1.291 1.061 0.589 1.712 1.563 1.471 1.415 1.177
LE (D,) 787.324 458.141 384.280 276.544 128.660 1.489 1.191 0.995 0.858 0.472
LE (D,) 21.560 15.514 14.279 8.557 1.508 1.489 1.191 0.995 0.858 0.472
LE (D) 33.215 18.962 16.545 9.874 2.662 1.489 1.191 0.995 0.858 0.472
LE (D,) 468.722 339.052 297.506 231.827 118.588 1.489 1.191 0.995 0.858 0.472
LE (Ds) 1.488 1.197 1.104 0.878 0.502 1.489 1.191 0.995 0.858 0.472
p =0.9999

MLE 36096.870  13878.260 8663.555 6233.728 2351.556  32533.570  12549.090 7832.527 5632.137  2126.778
RE (k,) 1.520 1.262 1.100 0.993 0.704 1.829 1.720 1.645 1.593 1.441
RE (k) 1.594 1.319 1.121 0.978 0.545 1.493 1.192 0.995 0.857 0.469
RE (k) 1.662 1.405 1.218 1.060 0.586 1.712 1.564 1.471 1.416 1.177
LE (D) 7842.881 4570.904 3415.339  2780.195 1273.319 1.489 1.190 0.993 0.856 0.468
LE (D,) 200.651 143.093 106.295 77.311 10.414 1.489 1.190 0.993 0.856 0.468
LE (Ds) 317.588 177.880 124.068 90.144 21.795 1.489 1.190 0.993 0.856 0.468
LE (D,) 4658.671 3368.218 2747.316  2301.456  1175.937 1.489 1.190 0.993 0.856 0.468
LE (D;) 1.487 1.196 1.008 0.876 0.498 1.489 1.190 0.993 0.856 0.468

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,
and bold values indicate the minimum SMSEs.

TaBLE 6: Estimated SMSE values for different #, p, k,d, and §, when & = 0.04, @ = 0.25, and p = 2.

p=0.99
Esti Bo=-1 Bo=1
stimator

n=10 n=20 n =230 n =40 n =100 n=10 n=20 n=30 n =40 n =100
MLE 227.529 87.144 54.416 39.171 14.768 193.512 74.676 46.666 33.583 12.689
RE (k,) 1.330 1.050 0.896 0.802 0.577 1.746 1.613 1.533 1.483 1.355
RE (k) 1.400 1.068 0.862 0.725 0.416 1.285 0.954 0.766 0.648 0.376
RE (k) 1.503 1.228 1.052 0.924 0.521 1.548 1.343 1.226 1.157 0.882
LE (D,) 67.852 36.245 25.990 20.327 8.977 1.279 0.949 0.763 0.645 0.374
LE (D,) 2.899 1.772 1.305 0.976 0.430 1.279 0.949 0.763 0.645 0.374
LE (D) 3.811 2.033 1.413 1.052 0.448 1.279 0.949 0.763 0.645 0.374
LE (D,) 47.518 30.250 23.033 18.542 8.692 1.279 0.949 0.763 0.645 0.374
LE (Ds) 1.284 0.970 0.793 0.680 0.407 1.279 0.949 0.763 0.645 0.374

p =0.999

MLE 2210.274 845.575 527.502 379.519 142.979 1880.557 725.279 452.854 325.727 123.011
RE (k,) 1.326 1.044 0.890 0.797 0.573 1.745 1.612 1.533 1.483 1.356
RE (k) 1.397 1.063 0.855 0.717 0.363 1.275 0.935 0.742 0.617 0.312
RE (ky,) 1.512 1.228 1.052 0.916 0.505 1.548 1.345 1.230 1.164 0.887
LE (D,) 648.258 337.046 243.617 191.393 83.591 1.270 0.933 0.740 0.616 0.311
LE (D,) 17.334 8.451 5.202 3.470 0.535 1.270 0.933 0.740 0.616 0.311
LE (D) 25.449 11.022 6.590 4.168 0.712 1.270 0.933 0.740 0.616 0.311
LE (D,) 448.155 283.402 215.143 172.414 79.621 1.270 0.933 0.740 0.616 0.311

LE (Dy) 1.276 0.955 0.773 0.655 0.351 1.270 0.933 0.740 0.616 0.311
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TaBLE 6: Continued.
p=0.99
Esti Bo=-1 Bo=1
stimator
n=10 n=20 n =30 n =40 n =100 n=10 n=20 n =30 n =40 n =100
p = 0.9999

MLE 22036.400 8431.337 5258.827  3783.276 1425.136 18750.330  7232.441 4515.045  3247.348 1226.248
RE (k,) 1.325 1.044 0.890 0.796 0.573 1.745 1.612 1.533 1.483 1.356
RE (k) 1.396 1.062 0.854 0.716 0.361 1.274 0.934 0.739 0.613 0.305
RE (ky,) 1.514 1.230 1.052 0.915 0.503 1.548 1.346 1.230 1.165 0.889
LE (D)) 6435.778 3365.452  2444.748 1882.106 822.170 1.269 0.931 0.737 0.612 0.304
LE (D,) 161.526 74.435 44.844 29.430 2.132 1.269 0.931 0.737 0.612 0.304
LE (Ds) 241.493 101.296 58.745 35.786 3.880 1.269 0.931 0.737 0.612 0.304
LE (D,) 4456.390 2815.842 2135.848 1710.447 788.719 1.269 0.931 0.737 0.612 0.304
LE (Ds) 1.275 0.954 0.771 0.652 0.344 1.269 0.931 0.737 0.612 0.304

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,
and bold values indicate the minimum SMSEs.

TaBLE 7: Estimated SMSE values for different #, p, k,d, and 3, when & = 0.02, « = 0.03, and p = 4.

p=0.99
Esti Bo=-1 Bo=1
stimator

n=10 n=20 n =30 n =40 n =100 n=10 n=20 n =30 n =40 n =100
MLE 2300.301 639.879 369.034 259.458 93.662 1987.509 563.548 326.892 230.407 83.557
RE (k,) 1.512 1.257 1.100 0.994 0.720 1.850 1.766 1.713 1.677 1.584
RE (k) 1.537 1.252 1.060 0.925 0.589 1.441 1.153 0.977 0.860 0.566
RE (ky,) 1.809 1.736 1.687 1.645 1.484 1.944 1.924 1.908 1.895 1.838
LE (D,) 640.236 259.627 172.729 130.386 53.893 1.439 1.152 0.977 0.859 0.565
LE (D,) 1.437 1.155 0.984 0.874 0.587 1.439 1.152 0.977 0.859 0.565
LE (D) 6.649 3.124 2.185 1.653 0.733 1.439 1.152 0.977 0.859 0.565
LE (D,) 220.533 129.204 102.887 87.006 45.331 1.439 1.152 0.977 0.859 0.565
LE (Dy) 1.437 1.155 0.984 0.872 0.587 1.439 1.152 0.977 0.859 0.565

p =0.999
MLE 22798.240 6332.474 3651.496 2566.870 926.151 196357.100  5573.940 3233.031 2278.584  826.081
RE (k,) 1.506 1.250 1.092 0.986 0.713 1.849 1.765 1.712 1.676 1.584
RE (k) 1.532 1.244 1.050 0.913 0.527 1.425 1.130 0.945 0.819 0.471
RE (ky,) 1.928 1.902 1.884 1.867 1.796 1.993 1.974 1.968 1.964 1.944
LE (D) 6415.618 2567.391 1699.215 1278.986 521.731 1.425 1.130 0.945 0.818 0.470
LE (D,) 1.425 1.134 0.955 0.834 0.501 1.425 1.130 0.945 0.818 0.470
LE (D) 53.531 20.366 12.527 8.245 1.884 1.425 1.130 0.945 0.818 0.470
LE (D,) 2158.873 1257.337 998.371 842.321 434.501 1.425 1.130 0.945 0.818 0.470
LE (Ds) 1.425 1.134 0.955 0.834 0.501 1.425 1.130 0.945 0.818 0.470
p =0.9999

MLE 227775.300 63256.020 36477.080 25641.810  9251.13  196357.100 55676.490 32295.150 22760.94 8251.422
RE (k,) 1.505 1.249 1.091 0.985 0.712 1.849 1.765 1.712 1.676 1.584
RE (k;) 1.532 1.244 1.049 0.912 0.525 1.425 1.128 0.942 0.814 0.461
RE (k;,) 1.976 1.967 1.961 1.955 1.930 1.993 1.991 1.989 1.988 1.981
LE (D) 63840.260  25673.520 16963.610 12777.610 5199.849 1.425 1.127 0.941 0.813 0.460
LE (D,) 1.424 1.132 0.952 0.830 0.492 1.425 1.127 0.941 0.813 0.460
LE (Ds) 522.672 192.977 116.222 74.421 14.028 1.425 1.127 0.941 0.813 0.460
LE (D,) 21531.760  12537.490  9952.961 8395.063  4325.936 1.425 1.127 0.941 0.813 0.460
LE (D;) 1.424 1.132 0.952 0.830 0.492 1.425 1.127 0.941 0.813 0.460

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,

and bold values indicate the minimum SMSEs.

estimator was recommended by Ménsson [25] for the NB
Liu regression model and by Ménsson [23] for the Poisson
Liu regression model. Then, we will use the D; estimator to
estimate the Liu parameter in all considered different Liu
regression estimators.

5.1. Simulated Data Application. A data set with
p =4, p=0.9999, and n = 400 was simulated by using the
method discussed in Section 4.1 in order to show the ap-
plicability of the proposed Liu regression model over the NB
Liu and Poisson Liu regression models. The skewness, excess
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TaBLE 8: Estimated SMSE values for different n, p, k,d, and 3, when & = 0.04, a« = 0.03, and p = 4.
p =099
Esti Bo=-1 Bo=1
stimator

n=10 n=20 n =30 n =40 n =100 n=10 n=20 n =30 n =40 n =100
MLE 1290.178 351.061 201.273 141.149 50.739 1023.268 289.402 167.742 118.19 42.831
RE (k,) 1.278 1.001 0.854 0.764 0.559 1.770 1.675 1.623 1.592 1.520
RE (k7) 1.286 0.952 0.762 0.694 0.517 1.185 0.881 0.725 0.634 0.470
RE (k) 1.667 1.544 1.468 1.405 1.184 1.893 1.854 1.827 1.802 1.706
LE (D,) 482.181 172.171 108.377 79.652 31.243 1.183 0.879 0.723 0.632 0.469
LE (Dz) 1.185 0.895 0.747 0.660 0.488 1.183 0.879 0.723 0.632 0.469
LE (Ds) 4.905 1.815 1.145 0.843 0.492 1.183 0.879 0.723 0.632 0.469
LE (D,) 227.801 109.915 78.862 62.425 28.354 1.183 0.879 0.723 0.632 0.469
LE (DS) 1.185 0.895 0.747 0.660 0.488 1.183 0.879 0.723 0.632 0.469

p =0.999
MLE 12799.990 3474.189 1991.504 1396.258 501.591 10126.990 2863.031 1659.309 1169.029 423.504
RE (kz) 1.270 0.993 0.845 0.756 0.553 1.769 1.674 1.623 1.592 1.520
RE (k) 1.279 0.941 0.749 0.628 0.352 1.162 0.841 0.667 0.558 0.300
RE (klz) 1.865 1.816 1.783 1.753 1.633 1.963 1.949 1.939 1.930 1.893
LE (D,) 4820.481 1696.644 1062.522 776.154 299.176 1.161 0.840 0.666 0.557 0.299
LE (D,) 1.166 0.861 0.698 0.596 0.340 1.161 0.840 0.666 0.557 0.299
LE (D3) 38.622 9.836 4.545 2.340 0.401 1.161 0.840 0.666 0.557 0.299
LE (D,) 2240.761 1069.345 763.603 602.223 268.874 1.161 0.840 0.666 0.557 0.299
LE (Ds) 1.166 0.861 0.698 0.596 0.340 1.161 0.840 0.666 0.557 0.299
p = 0.9999

MLE 127910.100 34703.920 19894.650 13947.930 5010.152 101151.800 28598.560 16575.340 11677.740 4230.281
RE (kz) 1.270 0.992 0.844 0.755 0.552 1.769 1.674 1.623 1.592 1.520
RE (k7) 1.278 0.940 0.748 0.626 0.328 1.160 0.837 0.661 0.550 0.280
RE (k) 1.953 1.936 1.924 1.913 1.865 1.988 1.983 1.980 1.977 1.964
LE (Dl) 47952.080 16942.960 10592.630 7738.159 2977.766 1.159 0.836 0.660 0.549 0.279
LE (D,) 1.164 0.857 0.693 0.589 0.323 1.159 0.836 0.660 0.549 0.279
LE (Ds) 375.952 90.268 39.045 17.907 0.908 1.159 0.836 0.660 0.549 0.279
LE (D,) 22376.190 10662.120 7610.758 5999.888 2673.596 1.159 0.836 0.660 0.549 0.279
LE (D;) 1.164 0.857 0.693 0.589 0.323 1.159 0.836 0.660 0.549 0.279

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,
and bold values indicate the minimum SMSEs.

TaBLE 9: Estimated SMSE values for different n, p, k,d, and 3, when & = 0.02, a = 0.25, and p = 4.

p=0.99
Esti /30 =-1 /30 =1
stimator

n=10 n=20 n =30 n =40 n =100 n=10 n=20 n=30 n =40 n =100
MLE 1913.478 529.367 304.832 214.179 77.231 1615.252 457.738 265.474 187.103 67.842
RE (k,) 1.443 1.178 1.021 0.919 0.666 1.827 1.739 1.685 1.650 1.564
RE (k) 1.465 1.160 0.964 0.832 0.583 1.365 1.067 0.894 0.782 0.524
RE (ky,) 1.772 1.685 1.628 1.580 1.399 1.931 1.907 1.888 1.872 1.804
LE (D,) 590.911 229.175 150.091 112.173 45.497 1.363 1.066 0.893 0.781 0.523
LE (D,) 1.362 1.071 0.904 0.798 0.545 1.363 1.066 0.893 0.781 0.523
LE (D) 6.187 2.681 1.803 1.335 0.613 1.363 1.066 0.893 0.781 0.523
LE (D,) 226.352 124.980 96.153 79.475 39.380 1.363 1.066 0.893 0.781 0.523
LE (Dy) 1.362 1.071 0.904 0.798 0.545 1.363 1.066 0.893 0.781 0.523

p =0.999

MLE 18970.200  5238.906  3016.275  2118.897 763.641 15980.020  4527.688  2625.743 1850.438 670.750
RE (k,) 1.437 1.170 1.013 0.910 0.659 1.826 1.738 1.685 1.650 1.564
RE (k) 1.460 1.152 0.954 0.819 0.458 1.349 1.040 0.855 0.732 0.410
RE (ky,) 1.912 1.881 1.859 1.838 1.754 1.976 1.968 1.961 1.955 1.931
LE (D) 5905.543 2269.317 1474.808 1099.555  439.065 1.348 1.039 0.855 0.731 0.409
LE (D,) 1.348 1.047 0.870 0.754 0.444 1.348 1.039 0.855 0.731 0.409
LE (Ds) 49.717 16.741 9.524 5.832 1.099 1.348 1.039 0.855 0.731 0.409
LE (D,) 2218.397 1216.301 932.605 768.820 376.437 1.348 1.039 0.855 0.731 0.409
LE (Ds) 1.348 1.047 0.870 0.754 0.444 1.348 1.039 0.855 0.731 0.409
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TaBLE 9: Continued.
p=0.99
Esti Bo=-1 Bo=1
stimator
n=10 n=20 n =30 n =40 n =100 n=10 n=20 n =30 n =40 n =100
p =0.9999

MLE 189540.800 52332.180 30131.600 21166.800 7627.807 159604.500 45226.060 26229.020 18484.280 6699.903
RE (k,) 1.436 1.169 1.012 0.910 0.658 1.826 1.738 1.684 1.650 1.564
RE (k) 1.459 1.151 0.953 0.818 0.455 1.347 1.037 0.852 0.727 0.397
RE (ky,) 1.970 1.960 1.952 1.945 1.914 1.992 1.989 1.987 1.985 1.977
LE (D)) 59285.760  22644.310 14721.380 10972.310 4374.427 1.346 1.036 0.851 0.726 0.396
LE (D,) 1.346 1.044 0.867 0.749 0.432 1.346 1.036 0.851 0.726 0.396
LE (Ds) 485.473 157.635 87.075 51.146 6.811 1.346 1.036 0.851 0.726 0.396
LE (D,) 22132.520 12130.250 9296.824 7661.909  3746.686 1.346 1.036 0.851 0.726 0.396
LE (Ds) 1.346 1.044 0.867 0.749 0.432 1.346 1.036 0.851 0.726 0.396

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,

and bold values indicate the minimum SMSEs.

TaBLE 10: Estimated SMSE values for different n, p, k,d,and 3, when § = 0.04, « = 0.25, and p = 4.

p=0.99
Esti /30 =-1 ﬁO =1
stimator

n=10 n=20 n=30 n =40 n =100 n=10 n=20 n =230 n =40 n =100
MLE 1203.887 326.347 186.925 131.032 47.070 942.456 266.410 154.391 108.775 39.413
RE (k,) 1.247 0.970 0.825 0.738 0.541 1.759 1.663 1.612 1.582 1.512
RE (k) 1.251 0.915 0.728 0.644 0.490 1.152 0.849 0.698 0.611 0.467
RE (k) 1.645 1.514 1.434 1.369 1.142 1.884 1.842 1.813 1.786 1.684
LE (D) 465.044 162.790 102.135 74.654 29.225 1.149 0.847 0.696 0.609 0.465
LE (D,) 1.153 0.865 0.722 0.640 0.482 1.149 0.847 0.696 0.609 0.465
LE (D) 4.658 1.685 1.056 0.783 0.484 1.149 0.847 0.696 0.609 0.465
LE (D,) 226.525 106.636 75.619 59.457 26.668 1.149 0.847 0.696 0.609 0.465
LE (Ds) 1.153 0.865 0.722 0.640 0.482 1.149 0.847 0.696 0.609 0.465

p=10.999
MLE 11945.500 3229.547 1849.498 1296.132 465.298 9327.907  2635.654 1527.277 1075.930 389.720
RE (k,) 1.239 0.961 0.816 0.729 0.535 1.758 1.663 1.612 1.582 1.512
RE (k;) 1.244 0.904 0.714 0.596 0.333 1.127 0.806 0.635 0.529 0.284
RE (k;,) 1.854 1.801 1.766 1.734 1.606 1.960 1.944 1.934 1.923 1.883
LE (D,) 4607.413 1604.938 999.657 728.579 279.071 1.126 0.805 0.635 0.529 0.283
LE (D,) 1.132 0.829 0.670 0.571 0.325 1.126 0.805 0.635 0.529 0.283
LE (D) 36.507 8.798 3.902 1.946 0.357 1.126 0.805 0.635 0.529 0.283
LE (D,) 2227.965 1037.162 731.880 573.204 252.443 1.126 0.805 0.635 0.529 0.283
LE (Ds) 1.132 0.829 0.670 0.571 0.325 1.126 0.805 0.635 0.529 0.283
p =0.9999

MLE 119374.600 32260.090 18476.060 12947.690 4647.611 93171.490 26327.380 15256.460 10747.770 3892.826
RE (k,) 1.238 0.961 0.816 0.729 0.535 1.757 1.663 1.612 1.582 1.512
RE (k) 1.243 0.903 0.713 0.594 0.309 1.124 0.802 0.629 0.521 0.262
RE (ky,) 1.949 1.930 1.918 1.905 1.854 1.987 1.981 1.978 1.974 1.961
LE (D,) 46079.010  16015.790  9967.305 7252.673  2774.694 1.123 0.801 0.628 0.520 0.261
LE (D,) 1.130 0.825 0.665 0.564 0.307 1.123 0.801 0.628 0.520 0.261
LE (D) 354.078 80.259 32.898 14.224 0.620 1.123 0.801 0.628 0.520 0.261
LE (D,) 22260.380  10340.780  7294.258 5710.370  2509.670 1.123 0.801 0.628 0.520 0.261
LE (Dy) 1.130 0.825 0.665 0.564 0.307 1.123 0.801 0.628 0.520 0.261

Note. RE (a) indicates the ridge estimator based on the ridge parameter estimator a, LE (b) indicates the Liu estimator based on the Liu parameter estimator b,

and bold values indicate the minimum SMSEs.

kurtosis, and index of dispersion of the response variable y
are 4.628, 20.113, and 35.217, respectively. Then, the dis-
tribution of y has higher positive skewness, a long right tail,
and higher overdispersion (index of dispersion >1). Fig-
ure 2 also illustrates the distribution of the response variable

y. Table 11 displays the estimated regression coefficients,
their standard errors (SEs) (in parentheses), SMSE values,
and Akaike information criterion (AIC) values for the given
regression models. We can clearly observe that the PMQL
Liu regression model produces smaller SEs for the
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F1GURE 2: The distribution of the response variable y.

TaBLE 11: The estimated regression coefficients, standard errors (in
parentheses), SMSE values, and AIC values of different Liu re-
gression models for the simulated data set.

Parameter  LE ppqr) (SE) LE yp) (SE) LE (pyisson) (SE)
By 0.058 (0.123)  0.072 (0.037)  0.185 (0.028)
B, 0517 (0.101)  0.453 (0.377)  0.291 (0.427)
B, 0519 (0.101)  0.652 (0.382)  1.148 (0.426)
B, 0.518 (0.107)  0.550 (0.391)  0.075 (0.428)
B4 0.518 (0.108) 0.432 (0.395) 0.483 (0.425)
SMSE 0.056 0.600 0.729
AIC 1168.221 1292.462 6101.385

Note. Bold values indicate the minimum SMSE and AIC.

coefficients of covariates, SMSE value, and AIC value than
the other regression models. Then, we may say that the
PMQL Liu regression model gives a better performance than
the other regression models based on the Liu estimator.

5.2. Real Data Application. The applicability of the PMQL
Liu estimator over the MLE is illustrated by using the
Swedish football data set, which consists of the Swedish
football teams’ performance in the top Swedish league
(Allsvenskan) for the year 2012. Qasim et al. [32] used a
similar data set during the year 2018 to fit a Poisson

B 2 -13
MSE(ﬁMLEWQU) - MSE([)’LE (pMQL))equals 7.134¢” 7 >0
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TaBLE 12: The estimated regression coefficients, standard errors (in
parentheses), SMSE values of MLE, and Liu estimator in PMQL
regression model for the real data set.

Parameter MLE (ppqr) (SE) LE (pypqry (SE)
By ~1.046 (0.180) ~1.010 (0.165)
B 0.408 (0.235) 0.396 (0.216)
B, 0.408 (0.076) 0.410 (0.075)
Bs 0.407 (0.351) 0.441 (0.285)
B, 0.408 (0.090) 0.414 (0.088)
Bs 0.408 (0.368) 0.375 (0.302)
Be 0.407 (0.101) 0.394 (0.099)
SMSE 0.371 0.271

Note. Bold value indicates the minimum SMSE.

regression model. It contains 242 observations and repre-
sents the number of full-time home team goals (y), the
pinnacle home win odds (x;,), the pinnacle away win odds
(x,), the maximum odds portal home win (x;), the max-
imum odds portal away win (x,), the average odds portal
home win (x;), and the average odds portal away win (x;).

The conditional number, which is the ratio of the
maximum to minimum eigenvalues, is 33460.350, which is
clearly much larger than 1000. The index of dispersion of y is
1.201, which is greater than one. These results indicate that
there exists severe multicollinearity among the covariates,
and y is overdispersed. Further, to examine whether the
PMQL distribution is suitable for y, the Chi-square (x?)
goodness of fit test is employed. y* value is computed as
3.159 with a p-value equal to 0.531. Then, this test confirms
that the PMQL distribution fits well for this response var-
iable y.

Table 12 lists the estimated regression coeflicients, their
standard errors (SEs) (in parentheses), and SMSE values for
the MLE pyqr) and PMQL Liu estimator. It can be clearly
noted that the PMQL Liu estimator produces smaller SEs
and SMSE than the MLE pyjq). Then, we can conclude that
the PMQL Liu estimator performs better than MLE pyq,
for this real data set that has severe multicollinearity issues.

Now, we justify Theorem 1 by using the real-world
application. The necessary conditions Hl Theorem 1 are
holding asmin (; (A; + 1)° = (A, + d)*)7" | = 89.004 >0, the
minimum eigenvalue of the difference matrix

(40)

bi(T(A™' = A+ DN (A+dDA (A +dD)(A+D)7))') b, =0.501<1,

and hence Theorem 1 is justified.

6. Conclusion

This paper introduced the Liu estimator for the Poisson-
Modification of Quasi Lindley (PMQL) regression model

instead of the maximum likelihood estimator (MLE) in
order to mitigate the multicollinearity and overdispersion
issues. A comprehensive Monte Carlo simulation study was
conducted to compare the performance of the MLE, the
PMQL Liu regression estimator, and the existing biased
estimator, namely, the PMQL ridge regression estimator.
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The scalar mean square error (SMSE) was considered as the
evaluation criterion. The simulation study results revealed
that the performance of the different estimators is affected by
the different levels of factors such as correlations between the
covariates, sample size, number of covariates, intercept, and
the overdispersion parameters of the PMQL regression
model. Further, the PMQL Liu regression estimator based
on the Liu parameter estimator D; shows a better perfor-
mance than the other estimators in all situations reviewed in
the simulation study. The results of a simulated data set show
that the PMQL Liu regression model performs better than
the existing count Liu regression models, namely, the
negative binomial Liu regression and the Poisson Liu re-
gression models, by mitigating higher overdispersion and
multicollinearity. Further, a real-world application also
shows that the PMQL Liu regression estimator based on the
Liu parameter estimator D has a better performance than
the MLE. Therefore, based on the simulation study and
applications, the PMQL Liu regression estimator based on
the Liu parameter estimator Dy is recommended for ana-
lyzing the overdispersed count responses with intercorre-
lated covariates.

Appendix

A. Lemma

Lemma A.1. Let M be a positive definite (pd) matrix and c be
a vector of nonzero constants. Then, M —cc' >0 iff
M le<1 [42].
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