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ABSTRACT

The generalized linear model approach of the mixed Poisson regression
models (MPRM) is suitable for over-dispersed count data. The maximum
likelihood estimator (MLE) is adopted to estimate their regression coeffi-
cients. However, the variance of the MLE becomes high when the covari-
ates are collinear. The Poisson-Modification of Quasi Lindley (PMQL)
regression model is a recently introduced model as an alternative MPRM.
The variance of the proposed MLE for the PMQL regression model is high
in the presence of multicollinearity. This paper adopts the ridge regression
method for the PMQL regression model to combat such an issue, and we
use several notable methods to estimate its ridge parameter. A Monte
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Carlo simulation study was designed to evaluate the performance of the
MLE and the different PMQL ridge regression estimators by using their sca-
lar mean square (SMSE) values. Further, we analyzed a simulated data and
a real-life applications to show the consistency of the simulation results.
The simulation and applications results indicate that the PMQL ridge
regression estimators dominate the MLE when multicollinearity exists.

1. Introduction

The Poisson regression model assists in modeling count responses with appropriate covariates.
However, it is not a choice when the conditional variance of the count responses exceeds the con-
ditional mean. This phenomenon is explained as over-dispersion or inflation of variation (see
Greenwood and Yule 1920; Cameron and Trivedi 2013). When over-dispersion occurs, the gener-
alized linear model (GLM) approach of mixed Poisson regression models are a well-known solu-
tion to explain the extra-variation of the count responses. To introduce these mixed Poisson
regression models, the researchers have used different types of lifetime distributions for the
Poisson conditional mean. For example, the Poisson-gamma/Negative binomial (NB) regression
model; the Poisson-Inverse Gaussian regression model; the Poisson-Weighted exponential regres-
sion model; the Poisson-Generalized Lindley regression model, and the Poisson-Quasi Lindley
regression model introduced by Greenwood and Yule (1920), Shoukri et al. (2021), Zamani et al.
(2014), Wongrin and Bodhisuwan (2017), and Altun (2019), respectively.

Tharshan and Wijekoon (2021) also introduced a new continuous distribution named the
Modification of the Quasi Lindley (MQL) distribution bounded to (0, c0). Its density function is given as

Oe=%
fr(;0,0,0) =

mﬂ“@)f +(0y)°"); y>0,0>0,0°>—1,6 >0, (1)
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where o and ¢ are shape parameters, 0 is a scale parameter, and y is the respective random variable.
Equation (1) presents the mixture of two non-identical distributions, exponential (0), and gamma
(9, 0) with the mixing proportion, p = 13‘—; Since it has various flexible structural properties to model
the Poisson conditional mean, ie., its density function can be left-skewed, symmetrical, and right-
skewed shapes with various rages of right-tail weights and dispersions, by amalgamating the Poisson
distribution with the MQL distribution, Tharshan and Wijekoon (2022a) obtained an univariate mixed
Poisson distribution named the Poisson-Modification of the Quasi Lindley (PMQL) distribution for the
over-dispersed count data. Its probability mass function (pmf) is an explicit form and computationally
flexible. Then, by using a re-parametrization technique, Tharshan and Wijekoon (2022b) derived its
regression model to predict the over-dispersed count responses with a set of linear independent covari-
ates based on the GLM approach. Authors have shown that the PMQL regression model provides better
performance than some of the existing competent mixed Poisson regression models.

The main goal of these types of regression models is to estimate the regression coefficients so
that the predicted value of the response counts close to the observed values. Since such mixed
Poisson regression models’ score functions with respect to the regression coefficients are nonlin-
ear in the regression coefficients, the common estimator to estimate the unknown regression coef-
ficients is the maximum likelihood estimator (MLE) which can be obtained by applying the
iterative weighted least square (IWLS) algorithm. However, the MLE is not a good choice to esti-
mate the unknown regression coefficients when there are high linear dependencies among the
covariates. Such a problem is commonly known as the multicollinearity problem. As a conse-
quence of the multicollinearity among covariates, a low statistical significance may occur for indi-
vidual regressors. To combat this problem, some classical biased estimators are used in the
literature to estimate the regression coefficients in the ordinary linear regression (OR) models
(e.g., Hoerl and Kennard 1970a, 1970b; Liu 1993, 2003). The ridge regression method is one such
classical method which has been highlighted consistently to be an alternative to the maximum
likelihood (ML) estimation method in the presence of multicollinearity (see Farebrother 1976;
Schaefer, Roi, and Wolfe 1984; Nomura 1988; Kibria 2003; Khalaf and Shukur 2005; Muniz and
Kibria 2009; Mansson and Shukur 2011; Mansson 2012; Kibria and Lukman 2020). The ridge
regression estimator (RE) provides a smaller mean square error (MSE) than the MLE when multi-
collinearity exists. In the OR model, ridge regression estimator is defined as

BRE(OR) = (XX +kI)'Xy, 2)

where X is the data matrix of order n x (p+ 1) with p covariates, y is a n x 1 vector of the
response variable, BRE<OR) is the estimated vector of regression coefficients of order (p+1) x 1
with intercept, I is the identity matrix of order (p+ 1) X (p+ 1), and k > 0 is the ridge param-

eter. The scalar mean square error (SMSE) of the ridge estimator figgog) is given as follows

p % Sj pZH ujz
SMSE(Brgior)) = 0~ + K2 , (3)
(OR) S(s+h? T S sk

n

2
where 2 =) (Z’:P@l ,si( j=1,2,..,p+1) is the jth eigenvalue of the matrix X'X, u;(j =
i

i=
1,2,...,p+ 1) is the jth element of U'f, and U is the orthogonal matrix whose columns are the
normalized eigenvectors of the matrix X'X. To estimate the ridge parameter, k, several estimation
methods have been proposed. Some notable research works are: Hoerl and Kennard (1970a,
1970b), Nomura (1988), Kibria (2003), Khalaf and Shukur (2005), and Muniz and Kibria (2009).
Further, the ridge regression method was extended to GLM by Segerstedt (1992).

When we focus on the ridge regression estimators for the count regression, there are very few
works that have been done in the literature. The ridge regression method has been adopted in
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Poisson regression, and negative binomial regression models by Mansson and Shukur (2011), and
Mansson (2012), respectively. In their respective papers, the authors have adhered to some differ-
ent ridge parameter estimators for the Poisson ridge regression (PRR) and the NB ridge regres-
sion (NBRR) estimators. They showed that regardless of which ridge parameter estimator is used
for PRR and NBRR estimators, PRR and NBRR estimators give a lower scalar mean square error
(SMSE) than the MLE in the presence of multicollinearity.

This paper aims to adopt the ridge regression method in the PMQL regression model to solve the
multicollinearity problem. Further, we adhere to some notable ridge parameter estimators that are
applicable for the PMQL ridge regression estimator (RE(pyqr)). Then, the performance of MLE and
RE pyqr) based on different ridge parameter estimators will be compared in terms of the SMSE criter-
ion by using an extensive Monte Carlo simulation study. In this simulation study, factors such as the
degrees of correlation among the covariates (p), the sample size (n), the intercept (f), the number of
covariates (p), and the over-dispersion parameters of the PMQL regression model (2, d) are varied.

This paper is structured as follows: We present the PMQL distribution and its regression
model in Sec. 2. RE(ppqr), MSE properties of RE(pyqr), and the ridge parameter estimators for
RE(ppqry are discussed in Sec. 3. Section 4 designs the Monte Carlo simulation study and dis-
cusses the results. A simulated data and a real-world applications are presented in Sec. 5. Finally,
Sec. 6 presents the conclusion of the paper.

2. The PMQL distribution and its regression model

In this section, we present the PMQL distribution and its regression model.

2.1. The PMQL distribution

The PMQL distribution (Tharshan and Wijekoon 2022a) was obtained by letting the Poisson par-
ameter follows the MQL distribution defined in Eq. (1). The probability mass function of the
PMQL distribution is given as

_ 0 3 o1 o—1 .
friy) = NEERE 0))’“51"(6) TOTy+1)e(14+0) +0° T(y+9)); @

y=0,1,2,..,0>0,6> 0,0 > —1.

where y is the respective random variable and represents the total counts of an experiment. Its
mean and variance are given,

>d+ 6
and
3P +24+6(6— 0
Var(Y) ,u+,u2<a Gy ((:3_+(5)2 D)+ >, (6)

respectively. Equation (4) represents a two-component mixture of geometric (%) and negative

binomial (5, ?19) with the mixing proportion p = o&U_L Further, it possesses to be unimodal and
bimodal, and over-dispersed. The authors have shown that the PMQL distribution has various
flexible structural properties for an over-dispersed count data, i.e., it has the potential to accom-
modate various horizontal symmetry, right-tail behaviors, and index of dispersion (see Tharshan

and Wijekoon 2022a).
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Figure 1. The variance function of PMQL regression model at ;« = 1.50 for different values of o, .

2.2, The PMQL regression model

The PMQL regression model (Tharshan and Wijekoon 2022b) is more useful than the Poisson
and NB regression models since it is a flexible model to cover the various ranges of horizontal
symmetry, right-tail heaviness, and index of dispersion of the response variable, y with covariates
X. Let 1,92, ..., yn be the random sample of n observations from the PMQL distribution. The link
between p-dimensional covariates and the mean responses, y was taken as

P
n=g(w) = log (1) =Y _ By =xiBi=12..m, 7)
=0

where x] = (1, i1, X2, .., X;p) is the vector of covariates, and f' = (B, B, ..., B,) is a vector of
unknown regression coefficients of order (p+ 1) x 1, and o and 0 are over-dispersion parame-
ters. To approach the GLM, the PMQL distribution was re-parametrized based on the relation-
ship between p and 0 given in Eq. (5) for a given set of o and J values and the link between u

and p-dimensional covariates given in Eq. (7), i.e., by substituting 0; = Wl‘ﬁ%,i =1,2,..,n

in Eq. (4), the pmf of the y; for a given set of covariates x; was obtained as
(& + 1) exp (xi))" (o2 + 8)(D(OT (s + DA + (o2 + 6)" ' T (3 + 9))

i) = ) ’ ’
f i) (o8 + 1)AT () (8)

where A; = ((o2 + 1) exp (xf) + (2> + 9)), i = 1,2,...,n. The conditional mean and variance of
the regression model are given,

E(Yilx) = exp (x;f), ©)

and

(10)

Var(Yi|x}) = exp (x}) + (exp (x;ﬁ))z (cx (P +246(0-1))+ 5)’

(3 +0)°

respectively. Figure 1 depicts the surface plots of the variance function for the PMQL regression
model at different values of y,a,d. According to this figure, for a given value of p, the variance
as a function of o or ¢ is not a monotonic function (there are several ups and downs) and it is
high for small values of o, and o. Further, for a given values of o and J, the variance is increasing
with .

The estimation of the unknown regression coefficients is commonly estimated by maximizing
the following log-likelihood function of its pmf given in Eq. (8)
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(B0l ) = 3 ilog (2 + 1) exp (4f) + nlog (& + )

i=1

- Zn:log (yi!) — nlog (X + 1) — nlog (T'(5)) (11)

+ Z NT(y; + )P A% + (o + 5)‘5’11"0/,- +9)) — Zn:(y, + 0)log (A)).

The score function of the vector of regression coefficients, f§ is given as

(B, Oy, x) & "~ (yi + 0) (o + 1) exp (X/f)x;
s(p) = XL 5y 3 ,
b i=1 i=1 A
N z”: (&)L (y; + 1) (5 — 1)AY2(e? + 1) exp ()i .
= T(HT(yi+ 1)BPA + (2 +6)° ' T (i + 6)
Since Eq. (12) is non-linear in f5, one can use the iteratively weighted least square (IWLS) algo-
rithm (Fisher scoring method) (Dutang 2017) to obtain the maximum likelihood (ML) estimates.

Let SV is the estimated value of § by the ML method with (s — 1) iterations. Then, the Fisher
scoring method can be written as

ﬁ(s) _ ﬂ(sfl) +I—1(ﬁ(sf1))s(ﬁ(sfl>), (13)

where I(f*V) be a (p+ 1) x (p+ 1) Fisher information matrix and the S(f“~V) be the score
function of the regression coefficients calculated at =Y. In the final step of the IWLS algorithm,

(12)

the 8 MLE oy, 18 ODtained as
; ' —ly Thrs
BMiEpq, = (X WX) X Wz, (14)

VAT 1 i (22 +0)° 5 :
where W = dzag((g/@i))zvarm)) dzag( PN N TP YR 1>)+5)), and z be a vector and its

ith element is given as g(s;) + (v — A)g' () = log (f;) + V=1,
The asymptotic covariance matrix of this estimator is given as

COV(ﬁMLE(PMQL)) = (X'Wx)™, (15)
and the asymptotic MSE and SMSE of this estimator are given as,
MSE(ﬁMLE (pMaL) ) = E((ﬁMLE(pMQL) - ﬁ)(ﬁMLE(pMQL) - ﬁ)/)

= COV(BMLE(FMQL)) + (E(BMLE(pMQL)) -p) (E(.EMLE(PMQL)) - B (16)
= X'Wwx)™!

and

SMSE([}MLE(PMQL) ) = trace (MSE([?MLE i) ))

pt (17)
= trace((X WX)~ Z

respectively, where /; is the jth eigenvalue of the matrix X’ WX. When higher degrees of linear depend-
ency among the covariates exist, the matrix X’ W X is ill-conditioned and this matrix will have some small
eigenvalues. Then, the SMSE( B MLE(pMQL)) given in Eq. (17) will be inflated, and then, we will have an erro-

neous interpretation of the relationship between the response and the covariates.
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3. The PMQL ridge regression estimator

Now, we define a ridge regression estimator in the PMQL regression model to combat the multi-
collinearity problem as

ﬁRE(PMQL) = (X,WX + kl)il(XlWX)ﬁMLE(PMQL) = VkﬁMLE(PMQL)’ (18)

where k > 0 is the ridge parameter, Vy = (XWX + kI)"'(XWX), and I is the (p +1) x (p+1)
identity matrix.
Asymptotic properties of PMQL ridge regression estimator

E(ﬁRE(PMQL)) = Vip, (19)
Cov(Bre ) = VeCOV(Brit pon) Vi = V(X' WX + k)™, (20)

and then the asymptotic bias, MSE, are given as,
Bias(BRE(PMQL)) = E(BRE(pMQL)) — B = (Vi =) = —k(X'WX +kI)"', (21)

and

MSE(BRE (PMQL) ) = ((BRE(PMQL) - ﬁ)(BRE(FMQLJ - ﬁ)/)

= Cov(Breyyq,) + Bias(ﬁRE(PMQL))Bias’(ﬁRE(PMQL)) (22)
= Vi(XWX+kI) '+ RR(X'WX + kI) ' (XWX + kI) ™
respectively. Now, let us define an orthogonal matrix I" whose columns are the normalized eigen-

vectors of the matrix X’ WX, a vector o = I''f, and a diagonal matrix A = diag(ly, /2, ..., Aps1) =
["X'WXT. Then the asymptotic SMSE is derived by using the spectral decomposition as

SMSE(Brgpr,) = trace(MSE(Brg )
= trace(Cov(B ey )) T Bias’ (Bre o)) B ias (B g o))
V(XWX +kI)™") + KB (X WX 4+ kI)*p
(X'WX +kI) 2 (X'WX)) + K2f (XWX +kI) B
(T'X'WXT + kI) *T'X'WXT) + K T(U'X WXT + kI) °T'f  (23)
(A+KD)7°A) + KBT(A + kI)*Zr/ﬁ
= trace((A + kI) °A) + Ko ’(A + kD)2
p+1 1 p+1

:Z(z + k) ZZ A]-l-k

where oj( j=1,2,..,p+1) is the jth element of I''f. Note that the first sum of Eq. (23),

= trace
= trace

= trace

(
(
(
(
(
(

1
Zf +1 ;+k2 is the total variance of regression coefficient estimates, and the second sum of Eq.

2
(23), K? ZPH }“ > is the square bias of the estimator. Now, let us define them as:
(+

2
) oc

p+1 5 p+1 j
T, = - ————, and T, =k L —
=2 (% + k) 2=k (2 + k)
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3.1. MSE properties of the PMQL ridge regression estimator

It is clear that the 7, is not inflated since the denominator is modified with 4; + k instead of /;. At
P+l
k=0, the value of the 7, is Z:l +and 1, is zero. Then, at k=0, the ﬂRE( ooy €quals the Bk D)
=
Note that, by using (17) and (23) we get

N P+ 1 p+1 i] 5 p+1 0(12
A = SMSE(p SMSE(f — ——+ kY —— |, (24
( MLE (pyqr) ) RE( PMQL 2) ]:Zl (l] + k)Z ]:Zl ()q + k)z

and the estimator [3 REmicn) is said to be superior to B MLE pcn) under the SMSE criterion iff A > 0.
Therefore, finding a suitable k > 0 such that A > 0 is an important concept here.

For the ordinary linear regression model, Hoerl and Kennard (1970a, 1970b) have shown that
there exists a k>0 such that ridge regression estimator has a lower SMSE than the ordinary least
square estimator (OLSE). In the count regression, Mansson and Shukur (2011) have shown that
there exists a k>0 such that SMSE of the PRR estimator is lower than the SMSE of MLE, and
this property for the NBRR model is also shown by Mansson (2012). Similarly, we show that this
property holds for the PMQL ridge regression model.

Proposmon 1. The total variance of the regression coefficient estimates of B RE(pquy (T1) and squared
bias of Py oy (T2) are continuous monotonically decreasing and increasing functions of k, respectively.

Proof. The first derivative of the 7, is

on _ _, %L and (25)
ok = (+ k)
5‘61 VAR 1
lim — = -2 —. 2
bt Ok ;&f (26)

Since 4; > 0 for all j, Eq. (25) is always negative for all k>0 and the derivative of the 7, in
the neighborhood of the zero given in Eq. (26) is also negative.
The first derivative of 1, is

812 VAR O‘jz

— =2k ———— and 27

o =Ry @
lim % —0. (28)

Since 4; > 0 and ocf > 0 for all j, Eq. (27) is always positive for all k>0 and the derivative of
the 7, in the neighborhood of the zero given in Eq. (28) is zero.

Then, it is shown that 7, and 1, are continuous monotonically decreasing and increasing func-
tions of k, respectively.

Proposmon 2. The SMSE(ﬁRE PMQL) is a continuous monotonically decreasing function of k when
0 < k < -, where o2, is the maximum element ofoc J=12,.,p+ 1L

ma
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Proof. The first derivative of Eq. (23) is

& SMSE(} ol AR
(ﬁRE(PMQL)) - Z% + zkzﬁij:)’, and (29)
Ok = (ij + k) =1 (/Lj + k)
O SMSE(Brg i
iy )81

We can note that if the individual ridge parameter k; < 55, Vj =1,2,...,p + 1, Eq. (29) is nega-
J
tive. Further, the derivative of the SMSE(f8 RE(PMQL)) in the neighborhood of the zero given in Eq. (30)

is also negative. Then, it is clear that when 0 < k < “%, Eq. (29) is always negative. So, it is shown

that the SMSE(ﬁ RE(FMQL>) is a continuous monotonically decreasing function of k when 0 < k < “21 .

max

Now, from proposition 1, we can conclude that there is a possibility to find a value k> 0.
Further, the results of A=0 at k=0 and proposition 2 indicate that the A >0 when 0 < k <

—L_ Then, it is shown that there exists a k> 0 such that A > 0.

Further, the optimal value of the k can be obtained by setting Eq. (29) to zero and solving for
k. It is obtained as

1
ki=—j=12..p+1 (31)
J

Lemma 1. Let M be a positive definite (pd) matrix and c be a vector of nonzero constants. Then
M —cd > 0iff {M~'c < 1 (Farebrother 1976).

The following proposition discusses the condition that RE is superior to the MLE in PMQL
regression model.

Proposition 3. Let by = Bias(Brg,,,, ) = —k(X'WX +kI) ‘B Then MSE(Brig,yq) —
MSE(Bre ) > 0 i be(A™ = (A+kI) T A(A +KI) 'bi < 1.

Proof. The difference between MSE of MLE and RE is derived by using the spectral decomposition as

MSE(BMLE(})MQL)) - MSE(IZ}RE(;:MQL))
= (XWX)' — (XWX +KI) " (XWX) (XWX +kI) ™" — byb,
=TT(X'WX)"'TT = TT(X'WX + k) 'TT' (X WX)TT' (X WX + kI) 'TT’ — bybj,
=TA'T = T(A+ k) 'AA +KI)7'T — byby,
=T(A™" — (A+ k) 'AA+KI) O — byby,

1 4
= I'diag( ———1— [ = b
(ij (’“J' + k>2>j—1,2,.“,p+1

. k(2/1 + k) / /
= I'diag <]2> I = bibi
}“j(}d + k) j=1,2,., p+1

Since k(2; + k) > 0( j = 1,2,..,p + 1), the diagonal matrix A~' — (A + kKI) 'A(A+kI) Visa pd
matrix, and by is a vector of nonzero constants. Then, by Lemma 1, if b{,(A™" — (A +kI) T A(A +
kI))'bi < 1. It completes the proof.
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3.2. Estimation of the parameter k

The methods used by Hoerl and Kennard (1970a, 1970b), Nomura (1988), Kibria (2003), Khalaf
and Shukur (2005), and Muniz and Kibria (2009) are adopted to estimate the rldge parameter k;

given in Eq. (31) with a single value k. We define kl, kz, k3 k4, k5 and k6 klz estimators
based on the works of Hoerl and Kennard (1970a, 1970b), Nomura (1988), Kibria (2003), Khalaf
and Shukur (2005), and Muniz and Kibria (2009), respectively.

- 1 - p+1 - 1
k1: 5 k2: n 5 k3zw,

o . +1 A2
max p+1 j P
S (e

U (1 4(3))

1 p+1 2 5 1/(p+1
ky = median| — , ks = max ——> ke= Hfil 7 — ,
j (1’1 —p- 1) + )”mﬂxamux (I’l —p- 1) + /1]*0(]-

pi1 1/(p+1)

k7 = max — , kg = max = ,
0(2 a] &2
j =1 j=1 J

/(p+1) p+1 ptl
- e [ . _ 1 - . 1
kio = Hj:1 — , ki1 = median , ki = median —

4. The Monte Carlo simulation study

In this section, we do a simulation study to compare the performance of the MLE and the PMQL
ridge regression estimators based on twelve different ridge parameter estimation methods that are
given in Subsec. 3.2. We use the SMSE criteria to compare the performance of estimators. We
have followed the formula proposed by McDonald and Galarneau (1975) to generate the covari-
ates with several degrees of multicollinearity. The formula is given as follows

1/2

xij = (1= p*) Pmyj+ pmipyr,i=1,2..,m,j = 1,2,..,p, (32)

where m,;’s are independent standard normal pseudo-random numbers and p* represents the cor-
relation between the covariates.

The response variable, y of the PMQL regression model is generated from the PMQL (;, o, J)
by using the inverse transform method, where p; = exp (x/f8), i = 1,2, ..., n. The starting values of
the slope parameters are selected such that Zﬁ;l ﬁ]Z =land f,=6,=..= ﬁp based on the

work of Newhouse and Oman (1971).
The simulation study was designed based on the following factors.

(i) Three different values of p corresponding to 0.90, 0.95, and 0.99 are considered to examine
the performance of the different estimators when increasing the degrees of correlation.
(i) The asymptotic properties and the performance of the different estimators are examined
by using four different sample sizes 10, 20, 30, and 40.
(iii)  Following Mansson and Shukur (2011), we vary the value of the intercept ;. When we
decrease the value of the f, the average values of the y;(y;), i =1,2,...,n will decrease.
This phenomenon leads to have more zeros of y which makes less variation in the sample
and converging issue on the IWLS algorithm. Then, we choose two different values of the
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intercept, f, corresponding to —1 and 1 to compare the performance of the differ-
ent estimators.

(iv) p is taken to be 2 and 4 to examine the performance of the various estimators with the
number of covariates.

(v) From Figure 1, we can observe that either changing the value of the over-dispersion par-
ameter o or O affects the variation of y. If there is an increment of variation y, it leads to
have a negative impact on the performance of estimators (see Kibria 2003; Mansson 2012).
Then, the values of o are taken to be 0.1 and 0.6, and the values of ¢ are taken to be 0.5
and 1.5 in order to compare the performance of different estimators.

The simulation is repeated 1000 times. To judge the performance of the different estimators,
we obtain the SMSE values of different estimators by using the following equation:

1000 L

SMSE(B) = = 1000 :

where 8 . is an estimator of f§ at the rth replication.
The results of Monte Carlo simulation study are summarized in Tables A1-A6 (Appendix).
The minimum SMSE in each case is shown in bold. In general, it can be observed that:

(i) the PMQL ridge regression estimator performs better than MLE in the presence of
multicollinearity.

(ii)  the performances of MLE and PMQL ridge regression estimators based on different ridge
parameter estimators are affected by the degrees of the correlation among the covariates,
the sample size, the value of the intercept, the number of covariates, and the values of the
over-dispersion parameters.

From the Tables A1-A6, when the degrees of the correlation increases we can note that:

(i) the SMSE of the MLE and the PMQL ridge regression estimator based on ks estima-
tor increase.

(ii)  in general, the SMSE of the PMQL ridge regression estimators based on kj, k7, ki, estima-
tors decrease.

Further, the PMQL ridge regression estimators based on kj, k;, and ki, estimators produce a
smaller SMSE than those of other estimators reviewed in this study, and their SMSE are very
close given a p value for all cases in general.

The asymptotic property holds for the MLE and most PMQL ridge regression estimators since
the SMSE decreases or remains almost the same with the sample size. Further, in a given sample
size, the PMQL ridge regression estimators based on kj, k7, and k;, perform better than the MLE
and other PMQL ridge regression estimators for all cases.

We can note that the decreasing value of the ff, (1 to —1) leads to make an increment in the
SMSE of the MLE, and the PMQL ridge regression estimators based on ki, ks, and ke estimators.
However, this change does not affect the SMSE of the rest of the estimators basically.

The increment of the number of covariates shows a negative impact on all given estimators in gen-
eral and the proportion of times the MLE performs better than the PMQL ridge regression estimators
decreases. Then, the benefit of the PMQL ridge regression is high when we have a higher number of
covariates. In this situation also, the performance of the PMQL ridge regression estimators based on
ka, k7, and kq, estimators are better than the rest of the estimators reviewed in this study.
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Figure 2. The distribution of the simulated response variable.

In general, as the value of o increases from 0.1 to 0.6, the SMSEs of the MLE and the PMQL
ridge regression estimators become deflated, and as the value of ¢ increases from 0.5 to 1.5, the
SMSE:s also become deflated. From Figure 1, we can note that in both situations, the variance of
y decreases. It leads to make a positive impact on the performance of estimators.

Hence, among the reviewed ridge parameter estimators in this study, none of the estimated
value of k always shows a better performance than other estimated k values for all cases in gen-
eral. However, in general, we may conclude that the ridge parameter estimators, k, k7, and ki,
are the best options to estimate the ridge parameter, k of RE(pyqr) for all cases.

5. Applications

In this section, we provide a simulated data and a real-world applications in order to show the
performance of the PMQL ridge regression estimator over the MLEpyqr)-

5.1. Simulated data application

Adatasetwithp =0.9999, p=4, n=2500, f,=1, a=0.60, andd = 0.25issimulated by using
the method discussed in Sec. 4. The skewness, excess kurtosis, and index of dispersion of the simulated
response variable y are 3.572, 9.759, and 35.381, respectively. Then it is clear that the y has higher positive
skewness, a long-right tail, and higher over-dispersion. The distribution of y is illustrated in Figure 2.

Table 1 shows the estimated regression coefficients, their standard errors (SEs) (in parenthe-
ses), and SMSE values of the different PMQL ridge estimators and the MLE pyq). From Table 1
results, it is clear that the PMQL ridge regression estimators perform better than the MLEpyqr)
providing smaller SEs and SMSE values compared with MLEpyqr). Further, among the PMQL
ridge regression estimators, the PMQL ridge regression estimator based on the ridge parameter
estimator k;, shows a better performance than others.
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Table 1. The estimated regression coefficients, standard errors (in parentheses) and SMSEs of the MLE and the PMQL ridge
regression estimators for the simulated data.

RE(pmar) (SE)

Parameter MLE prrqr) (SE)
k, ks ki,
/30 0.151 (0.121) 0.137 (0.187) 0.150 ( 0.119) 0.147 (0.111)
B 0.261 (7.429) 0.489 (0.298) 0.538 (0.097) 0.530 (0.036)
B 0.917 (7.417) 0.489 (0.298) 0.544 (0.097) 0.531 (0.036)
B3 0.687 (6.941) 0.489 (0.298) 0.542 (0.102) 0.530 (0.037)
Pa 0.307 (7.029) 0.490 (0.299) 0.538 (0.101) 0.530 (0.037)
SMSE 207.837 0.080 0.054 0.023
o
]
o _|
©
[2]
<
g 2
o |
N
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HG
Figure 3. The distribution of the response variable HG.
Table 2. Bivariate correlations among the covariates.
Covariates X X2 X3 X4 Xs X6
e 1.000 —0.688 0.996 —0.687 0.995 —0.721
X2 1.000 —0.669 0.994 —0.679 0.990
X3 1.000 —0.670 0.998 —0.703
X4 1.000 —0.681 0.994
Xs 1.000 —0.714
X 1.000

5.2. Real-world application

In this section, we illustrate the applicability of the PMQL ridge estimator by using the Swedish
football data set which includes the Swedish football teams’ performance in the top Swedish
league (Allsvenskan) during the year 2012. The data set is publicly available at http://www.foot-
ball-data.co.uk/sweden.php. Here, we try to explain the number of full-time home team goals
(HG) with six covariates by fitting the PMQL regression model. This data set contains 242 obser-
vations. The covariates are the pinnacle home win odds (x;), pinnacle away win odds (x,), max-
imum odds portal home win (x3), maximum odds portal away win (x,), average odds portal
home win (xs), and average odds portal away win (xs). Qasim et al. (2019) used a similar data set
to fit a Poisson regression model in which the response variable HG is not over-dispersed.


http://www.football-data.co.uk/sweden.php
http://www.football-data.co.uk/sweden.php
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Table 3. The estimated regression coefficients, standard errors (in parentheses) and SMSEs of the MLE and the PMQL ridge
regression estimators.

Parameter MLE pprqr) (SE) RE(puiqu OB)
kZ k7 k12

[5:0 —1.046 (0.180) —0.307 (0.044) —1.013( 0.166) —0.939 (0.144)
B 0.408 (0.236) 0.328 (0.026) 0.397 (0.218) 0.377 (0.181)
B 0.408 (0.076) 0.438 (0.040) 0.410 (0.075) 0.413 (0.072)
B3 0.407 (0.351) 0.437 (0.021) 0.438 (0.289) 0.482 (0.198)
54 0.409 (0.090) 0.492 (0.038) 0.414 (0.088) 0.427 (0.084)
Bs 0.408 (0.368) 0.297 (0.021) 0.377 (0.306) 0.335 (0.212)
P 0.406 (0.101) 0.194 (0.040) 0.395 (0.099) 0.367 (0.093)
SMSE 0.371 0.026 0.276 0.160

However, the variable HG is over-dispersed (variance to mean ratio equals 1.201 > 1) in the data
set that we use here. Figure 3 illustrates the distribution of the variable HG.

Table 2 displays the bivariate correlations among the covariates. It is clear that the bivariate
correlations between x; and xs, x; and xs, x, and x4, X, and x, x3 and xs, x4 and x4 are very high
and they are greater than 0.99. Further, the conditional number (ratio of the maximum to min-
imum eigenvalues) is 33,460.35 which is much larger than 1000. These results indicate that there
is severe multicollinearity among the covariates in this data set (see Tiirkan and Ozel 2016). To
examine whether the PMQL regression model is suitable for the response variable HG, the Chi-
square (y?) goodness of fit test is used. The x> value is computed as 3.159 with p-value equals
0.531. Then, this test confirms that the PMQL regression model fits well for this data set.

The estimated regression coefficients, their standard errors (SEs) (in parentheses), and SMSE
values for the MLE and PMQL ridge estimators are listed in Table 3. We noted that the PMQL
ridge regression estimators having the estimated k values; k;,k;, and k;, performed well in the
simulation study. Therefore, the same ridge parameter estimators are also used in this application
to estimate the k in the PMQL ridge regression estimator. From Table 3, we can observe that the
PMQL ridge estimators perform better than the MLE in the SMSE sense. Further, the PMQL
ridge regression estimator based on k, estimator has the minimum SMSE.

6. Conclusion

This paper adopts the ridge regression estimator as an alternative method to the maximum likeli-
hood estimator (MLE) to combat the multicollinearity problem to estimate the coefficients of a
newly introduced mixed Poisson regression model namely, the PMQL regression model. The sca-
lar mean square error (SMSE) properties of the PMQL ridge regression estimator are discussed
and the possible estimators of its ridge parameter are obtained. A Monte Carlo simulation study
is conducted to evaluate the performance of MLE and the PMQL ridge regression estimators
based on the different shrinkage parameter estimation methods of its ridge parameter in the
SMSE sense. The simulation study results show that the PMQL ridge regression estimators per-
form better than the traditional MLE in the presence of multicollinearity among the covariates.
The performances of the different estimators of the regression coefficients are affected by the fac-
tors such as the degrees of correlation among the covariates (p), the sample size (n), the intercept
(o), the number of covariates (p), and the over-dispersion parameters of the PMQL regression
model (e, d). Further, it is observed that the PMQL ridge estimators based on the ridge parameter
estimators, kj,k;, and kj, produce smaller SMSE basically in all different situations. The results
of the simulated and real-world applications are also consistent with the results of the simulation
study. Therefore, by considering the results of this study, the PMQL ridge regression estimator
based on the ridge parameter estimators, k;, k7, and k;, can be recommended to analyze the
over-dispersed count responses when multicollinearity exists among the covariates.
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Appendix: Results of the simulation study

Table A1. Estimated SMSE values for different p,n,p, k when ff; = —1,6 = 0.5, = 0.1.

p=0.90 p=0.95 p=0.99
Estimator n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40
p=2
MLE 5777 2.107 1.304 0.935 9.937 3.572 2.198 1.573 43417 15358  9.389 6.699
k4 1.752 1.229 0.921 0.741 1.771 1.462 1.206 1.020 1.331 1.359 1413 1.438
k> 0.601 0376  0.288  0.241 0.557 0347 0.267 0.224 0.511 0.310 0.238 0.201
ks 0.983 0.857 0.798 0.792 1.060 0.988 0.939 0.959 1.093 0.946 0.869 0.885
k4 0.911 0.745 0.683 0.647 0.947 0.843 0.817 0.799 0.859 0.751 0.727 0.731
ks 2.244 1433 1.022 0.785 2.335 1.781 1.393 1.126 1.735 1.845 1.889 1.856
kg 4425 1.909 1.227 0.895 6.790 3.082 2.005 1.472 19.490 10.864  7.522 5.702
k5 0.581 0.383 0316 0.279 0.546 0.348 0.287 0.256 0.509 0.301 0.232  0.197
kg 0.930 0.725 0.615 0.558 0.991 0.801 0.667 0.638 1.070 0.795 0.636 0.592
ko 1.463 1.155 0.912 0.738 1.693 1.550 1.292 1.104 1.603 1.721 1.767 1.896
k 10 0.695 0.470 0.378 0.318 0.680 0.472 0.372 0.332 0.672 0.434 0.333 0.293
k14 1.251 1.050 0.862 0.711 1.396 1.347 1.200 1.038 1.135 1.319 1.427 1.580
ki 0.681 0.450 0.356 0.291 0.639 0.431 0.342 0.285 0.583 0.380 0.289 0.244
p=4
MLE 28.927  6.560 3.590 2469 55700 12.254  6.666 4567  270.623 57.845 31313 21377
ky 3.183 2913 2.296 1.828 3.388 3.620 3.160 2.689 2.321 3.181 3.650 3.828
ky 0.616 0.424 0346 0.306 0.561 0.389 0323  0.289 0.499 0.337 0.282 0.256
k3 0.960 0.782 0.694 0.664 1.070 0.967 0.903 0.863 0.932 0.812 0.750 0.697
Ky 0.851 0.657 0.557 0.516 0.935 0.796 0.722 0.701 0.826 0.649 0.583 0.549
ks 3.839 3.287 2.469 1.921 4.063 4.164 3.487 2.896 2.794 3.929 4414 4.539
ke 12309 5343 3.229 2299 20.882 9.572 5.860 4.186 75119 40246 25768 18716
ky 0.636 0.528 0.499 0.482 0.546 0.433 0.416 0.416 0.461 0.310  0.265 0.248
kg 1.008 0.771 0.656 0.612 1.054 0.868 0.769 0.693 0.990 0.783 0.673 0.592
ko 2.888 2.785 2.255 1.829 3.505 4.027 3.585 3.028 2.236 3.526 4394 4.663
k1o 0.673 0.481 0.393 0.352 0.644 0.439 0.352 0.303 0.585 0.375 0.290 0.239
ki1 2.346 2.441 2.061 1.710 2.758 3.406 3.175 2.797 1.873 2.602 3.302 3.769
k12 0.679 0.493 0.412 0.371 0.611 0.419 0.342 0.299 0.564 0.346 0.269 0.236
Table A2. Estimated SMSE values for different p,n,p,k when f, = 1,6 = 0.5, = 0.1.

p =0.90 p =095 p=0.99
Estimator n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40
p=2
MLE 2.782 1.075 0.674 0.487 4.848 1.859 1.163 0.838 21.460 8.168 5.094 3.665
k4 1.216 1.263 1.301 1.350 1.216 1319 1.390 1.433 1.117 1.121 1.162 1.221
k, 0.900 0.785 0.744 0.726 0.891 0.790 0.755 0.739 0.817 0.732 0.700 0.693
k3 1.327 1.220 1.165 1.129 1.338 1.279 1.229 1.204 1.172 1.083 1.025 1.023
k4 0.917 0.751 0.671 0.624 0.918 0.786 0.718 0.669 0.790 0.681 0.613 0.605
ks 0.773 0.551 0.424 0.345 0.725 0.583 0.490 0.425 0.516 0.443 0.420 0.420
kg 2.012 0.949 0.624 0.460 3.056 1.545 1.035 0.771 8.247 5.343 3.874 3.000
k 0.571 0.412 0.333 0.281 0.516 0.394 0.344 0.309 0.411 0.278 0.245 0.235
kg 0.977 0.776 0.674 0.600 0.979 0.801 0.695 0.629 0.860 0.655 0.552 0.515
ko 1.486 0.867 0.599 0.451 1.800 1.274 0.934 0.727 1.726 1.980 1.926 1.836
k10 0.706 0.481 0.379 0313 0.697 0.485 0.381 0.327 0.607 0.401 0314 0.278
k 11 1.137 0.748 0.541 0.419 1.260 1.007 0.793 0.642 0.986 1.220 1.289 1.323
ki 0.569 0369 0.282 0.235 0.543 0354 0.277 0.232 0.470 0.292 0219  0.190
p=4
MLE 12599 3415 1.954 1370 24123 6463 3.688 2582 116.568 30.875 17.584 12.295
kq 1.204 1.808 1.304 1.322 1.125 1.186 1.207 1.228 0.906 0.809 0.790 0.823
ky 1.170 1.160 1.160 1.161 1.083 1.093 1.101 1.103 0.761 0.762 0.758 0.753
k3 1.577 1.601 1.608 1.620 1.506 1.537 1.559 1.552 1.124 1.132 1.138 1.158
ky 1319 1.360 1.358 1.373 1.236 1.276 1.280 1.283 0.817 0.811 0.795 0.790
ks 0.826 0.771 0.700 0.630 0.710 0.701 0.694 0.677 0.565 0.446 0.449 0.484
ke 5.716 2.787 1.754 1.273 9.807 5.069 3.237 2.362 35.823  21.644 14454 10.740
ky 0.847 0.792 0.716 0.638 0.707 0.730 0.736 0.716 0.537 0.405 0.441 0.484
kg 1.253 1.079 0.988 0.950 1.209 1.043 0.978 0.886 1.059 0.867 0.765 0.737
ko 4.872 2.803 1.799 1.307 5.716 4.426 3.117 2.331 3.547 6.061 6.620 6.392
kio 0.773 0.587 0.495 0.441 0.710 0.541 0.459 0.396 0.529 0.366 0.294 0.258
ki1 3.887 2.605 1.737 1.279 4.276 3.882 2.898 2.231 2.102 4.086 4.836 4.895
ki 0.658 0480 0389 0338 0.602 0434 0.355 0.305 0.451 0.301 0.235 0.202
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Table A3. Estimated SMSE values for different p,n,p,k when ff; = —1,6 = 1.5, = 0.1.
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p=0.90 p=0.95 p=0.99
Estimator n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40
p=2
MLE 3.909 1.348 0.819 0.582 6.648 2.246 1354 0.958 28.724 9.475 5.655 3.986
k1 1.477 0.919 0.660 0.505 1.628 1.193 0.919 0.738 1.356 1.452 1.463 1.406
k> 0.464 0.273 0.204 0.167 0.423 0.248 0.187 0.156 0.383 0.215 0.161 0.134
ks 0.726 0.564 0.520 0.478 0.749 0.638 0.587 0.559 0.694 0.499 0.458 0.426
k4 0.674 0.485 0.420 0.378 0.661 0.519 0.479 0.440 0.565 0.400 0.357 0.334
ks 1.699 0.986 0.682 0514 1.899 1.297 0.966 0.757 1.587 1.677 1.629 1.539
ke 2.868 1.199 0.762 0.552 4.301 1.891 1.216 0.887 11.722 6.355 4369 3.300
ky 0.439 0.303 0.257 0.227 0.401 0.274 0.238 0.218 0.357 0.220 0.180 0.160
kg 0.676 0.474 0.397 0.338 0.699 0.503 0.407 0.360 0.704 0.424 0.345 0.291
ko 1.156 0.831 0.622 0.488 1.331 1.117 0.885 0.725 1.084 1.130 1.231 1.229
kio 0.528 0.341 0.266 0.221 0.489 0.309 0.246 0.205 0.435 0.254 0.203 0.172
ki 0.991 0.778 0.600 0.478 1.114 1.016 0.848 0.703 0.831 0.937 1.049 1.112
ki 0.571 0.616 0.433 0.335 0.958 0.573 0.422 0.339 0.802 0.524 0.398 0.329
p=4
MLE 20.509  4.002 2.096 1410 39475 7369 3.821 2555 191.737 34362 17.656 11.739
ky 2.765 2137 1.537 1.149 3.142 2.963 2.331 1.829 2.688 3.553 3.734 3.643
ky 0489 0330 0.268 0.235 0438 0.295 0.247 0.222 0.404 0.246  0.205 0.187
k3 0.698 0.487 0.395 0.345 0.689 0.534 0.440 0.416 0.556 0.397 0.345 0.324
ka 0.655 0.452 0.364 0318 0.618 0.442 0.375 0.337 0.523 0.335 0.271 0.256
ks 3.054 2.261 1.579 1.172 3.444 3.136 2411 1.873 2937 3.872 4.001 3.861
ke 7.877 3.187 1.866 1305 13.173  5.605 3.320 2.326 46.368 23.029 14286 10.175
ky 0.567 0.515 0.483 0.449 0.467 0.424 0.425 0.424 0.350 0.268 0.255 0.259
kg 0.745 0.520 0.426 0.366 0.716 0.553 0.437 0411 0.636 0.447 0.377 0.350
ko 2.368 1.873 1.401 1.081 2.576 2.695 2.202 1.807 1.527 2.365 2.907 3.143
kio 0.576 0.457 0.402 0.363 0.496 0.356 0.308 0.274 0.416 0.277 0.226 0.203
ki 1.911 1.661 1.301 1.032 2.092 2.283 1.991 1.661 1.238 1.815 2.229 2.511
ki 0.613 0.507 0.449 0.402 0.510 0.389 0.347 0.319 0.429 0.289 0.248 0.229
Table A4. Estimated SMSE values for different p,n,p,k when fj; = 1,6 = 1.5, = 0.1.

p =0.90 p =095 p=0.99
Estimator n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40
p=2
MLE 1.273 0.481 0.300 0.216 2.208 0.825 0.513 0.368 9.722 3.591 2223 1.595
k1 0.983 0.934 0.937 0.983 1.020 1.007 1.002 1.050 0.809 0.833 0.832 0.857
k> 0.653 0.599 0.584 0.584 0.635 0.594 0.583 0.586 0.520 0.478 0.461 0.465
ks 0.954 0.839 0.750 0.726 0.940 0.862 0.817 0.800 0.750 0.677 0.620 0.619
k4 0.645 0.508 0.436 0.407 0.620 0.534 0.460 0.450 0.477 0.387 0.341 0.324
ks 0.420 0.253 0.190 0.152 0.406 0.276 0.222 0.186 0.334 0.255 0.220 0.201
ke 0.919 0.424 0.277 0.204 1.389 0.685 0.456 0.339 3.718 2.345 1.688 1.303
k 0.390 0.262 0.199 0.159 0.366 0.286 0.239 0.204 0.265 0.219 0.216 0.218
kg 0.614 0.425 0.329 0.285 0.587 0.425 0.360 0.312 0.504 0.352 0.275 0.248
ko 0.872 0.431 0.283 0.208 1.167 0.673 0.459 0.344 1.464 1.446 1.244 1.086
k 10 0.397 0.234 0.171 0.139 0.367 0.233 0.177 0.150 0.304 0.182 0.134 0.114
k1 0.756 0.406 0.273 0.204 0.928 0.607 0.430 0.330 0914 1.036 0.981 0.901
ki 0.347 0.202 0.148 0.119 0.316 0.199 0.146 0.126 0.259 0.156 0.119  0.099
p=4
MLE 6.094 1.529 0.858 0597 11719 2881 1.610 1.117  56.853 13.700  7.635 5.285
ky 0.801 0.676 0.641 0.584 0.792 0.612 0.527 0.484 0.954 0.558 0.413 0.357
k, 0.760 0.780 0.792 0.806 0.650 0.647 0.653 0.662 0.413 0.341 0.305 0.304
ks 1.007 0.978 0.975 0.952 0.899 0.841 0.817 0.781 0.566 0.504 0.440 0.408
ka 0.754 0.697 0.696 0.660 0.669 0.595 0.573 0.538 0.439 0.364 0.300 0.274
ks 0.542 0.391 0314 0.275 0.518 0.373 0.333 0.312 0.798 0.431 0.369 0.325
ke 2.685 1.244 0.733 0.554 4.591 2.252 1413 1.022 16.682  9.558 6.272 4.617
ky 0.706 0.598 0.770 0.394 0.631 0.652 0.599 0.534 0.344 0.437 0518 0.570
kg 0.771 0.593 0.482 0.465 0.709 0.530 0.448 0.381 0.573 0.398 0.305 0.259
ko 2.811 1.332 0514 0.578 3.380 2.151 1.417 1.034 2.697 3.697 3.475 3.084
kio 0413 0.269 0.813 0.178 0.364 0.240 0.192 0.170 0.274 0.281 0.244 0.174
ki 2.384 1.273 0.213 0.570 2.696 1.971 1.355 1.006 1.734 2.763 2.836 2.662
ki 0.397 0.255 0.196 0.169  0.358 0.237  0.191 0.164 0.262 0.214 0.176  0.156
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Table A5. Estimated SMSE values for different p,n,p,k when iy = —1,6 = 0.5, = 0.6.

p=0.90 p=0.95 p=0.99
Estimator n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40
p=2
MLE 5.518 2.003 1.238 0.887 9.481 3.390 2.083 1.489 41383 14552  8.880 6.330
k1 1.733 1.179 0.894 0.703 1.753 1.435 1.186 0.987 1.339 1.379 1.431 1.431
k> 1.583 0363 0.277  0.231 0.540 0.333 0.256 0.215 0.495 0.297 0.227 0.191
ks 0.950 0.828 0.773 0.750 1.021 0.945 0.904 0.909 1.005 0.868 0.801 0.815
k4 0.879 0.723 0.659 0.618 0.900 0.811 0.783 0.764 0.801 0.691 0.676 0.678
ks 2.186 1.364 0.979 0.749 2.281 1.721 1.342 1.078 1.726 1.827 1.870 1.798
ke 4.208 1.811 1.163 0.849 6.442 2918 1.897 1.392 18.388 10.236  7.087 5373
k 0.561 0.371 0.308 0.273 0.526 0.337 0.279 0.250 0.489 0.289 0.224 0.192
kg 0.899 0.700 0.588 0.522 0.961 0.758 0.645 0.591 0.996 0.736 0.587 0.538
ko 1.439 1.121 0.876 0.706 1.674 1.496 1.240 1.052 1.405 1.597 1.660 1.790
k10 0.674 0.455 0.364 0.298 0.657 0.449 0.358 0.308 0.627 0.407 0.307 0.273
k1 1.219 1.025 0.832 0.683 1.350 1.322 1.160 1.000 1.042 1.224 1.381 1.531
ki 0.658 0.439 0.340 0.276 0.614 0.418 0.323 0.272 0.557 0.357 0.271 0.232
p=4
MLE 27.764  6.213 3.388 2326 53464 11591  6.282 4296  259.773 54.662 29.469 20.078
ky 3.152 2.846 2.213 1.744 3.363 3.567 3.072 2.595 2.336 3.212 3.665 3.827
ky 0.600 0.411 0.335 0.296 0.543 0.375 0.312 0.280 0.480 0.321 0.270 0.245
k3 0.933 0.733 0.648 0.604 1.013 0.890 0.821 0.807 0.853 0.727 0.658 0.629
Ky 0.828 0.621 0.527 0.476 0.872 0.730 0.667 0.637 0.742 0.572 0.504 0.483
ks 3.748 3.175 2.361 1.824 3.983 4.055 3.356 2.769 2.772 3.898 4.359 4.464
ke 11.697  5.049 3.044 2165 19.817  9.031 5515 3.935 71158 37.895 24208 17.56
ky 0.625 0.525 0.497 0480 0.534 0.430 0.416 0.417 0.445 0.303 0.262 0.248
kg 0.984 0.739 0.627 0.567 1.011 0.810 0.701 0.673 0.933 0.720 0.620 0.556
ko 2.885 2.658 2.150 1.727 3.321 3.796 3.358 2.869 2.032 3.233 3.958 4416
kio 0.662 0.468 0.389 0.347 0.616 0.418 0.337 0.297 0.544 0.349 0.269 0.229
ki 2.296 2.337 1.965 1.618 2.595 3.212 3.011 2.635 1.656 2.349 2.971 3.511
ki 0.670 0.488 0.415 0.372 0.589 0.407 0.335 0.297 0.526 0.328 0.256  0.224
Table A6. Estimated SMSE values for different p,n,p,k when f, = 1,0 = 0.5,a = 0.6.

p =0.90 p=0.95 p=0.99
Estimator n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40 n=10 n=20 n=30 n=40
p=2
MLE 2.566 0.990 0.621 0.448 4471 1.712 1.070 0.771 19.784 7.516 4.685 3.371
k1 1.191 1.228 1.276 1.328 1.230 1.288 1.327 1.380 1.036 1.067 1.085 1.135
k> 0.870 0.765 0.730 0.714 0.861 0.769 0.737 0.724 0.771 0.696 0.667 0.657
ks 1.285 1.186 1.142 1.097 1.304 1.244 1.187 1.173 1.097 1.024 0.974 0.949
k4 0.903 0.758 0.678 0.633 0.904 0.787 0.730 0.682 0.736 0.653 0.599 0.583
ks 0.730 0.512 0.391 0.316 0.679 0.543 0.454 0.391 0.496 0.416 0.395 0.383
ke 1.854 0.874 0.575 0.424 2.815 1.422 0.953 0.709 7.588 4909 3.559 2.756
k; 0.546 0.392 0316 0.265 0.495 0.379 0.330 0.297 0.390 0.267 0.238 0.230
kg 0.928 0.723 0.633 0.553 0.935 0.760 0.644 0.594 0.799 0.597 0.507 0.455
ko 1.396 0.811 0.557 0.417 1.726 1.199 0.874 0.676 1.620 1.898 1.841 1.720
k 10 0.662 0.449 0.354 0.292 0.654 0.457 0.360 0.305 0.552 0.362 0.286 0.249
k1 1.101 0.714 0.511 0.393 1.235 0.979 0.761 0.609 0.936 1.211 1.292 1.294
ki 0.541 0.352 0.266  0.221 0.515 0.335 0.264 0.218 0.433 0.270 0.207 0.175
p=4
MLE 11.680 3.149 1.799 1261 22374 5959 3.396 2376 108.162 28462 16.185 11.309
kq 1.183 1.188 1.194 1.202 1.062 1.096 1.081 1.092 0.872 0.709 0.690 0.734
k, 1.121 1.116 1.121 1.123 1.018 1.039 1.045 1.051 0.700 0.683 0.665 0.670
ks 1.518 1.530 1.554 1.565 1423 1.444 1.472 1.480 1.030 1.033 1.020 1.031
ka 1.257 1.277 1.297 1.293 1.132 1.185 1.193 1.188 0.755 0.714 0.683 0.706
ks 0.781 0.718 0.652 0.579 0.685 0.661 0.643 0.629 0.586 0.448 0.437 0.456
ke 5.288 2.569 1.615 1.172 9.073 4.672 2.980 2.120 33134 19.941 13301 9.877
ky 0.828 0.771 0.691 0.611 0.693 0.722 0.723 0.699 0.422 0.403 0.444 0.490
kg 1.196 1.005 0.924 0.888 1.147 0.961 0.895 0.831 0.979 0.789 0.705 0.645
ko 4.560 2.587 1.659 1.204 5.247 4.054 2.864 2.147 3.285 5.627 6.003 5.767
kio 0.720 0.524 0.444 0.392 0.649 0.482 0.405 0.351 0.482 0.327 0.255 0.218
ki1 3.689 2413 1.606 1.180 3911 3.595 2.673 2.056 2.050 3.738 4372 4.530
ki 0.620 0434 0354 0304 0553 0393 0318 0.270 0.425 0.276  0.221 0.183
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