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In this note first we study the Weyl operators and Weyl S-spectrum of a bounded right
quaternionic linear operator, in the setting of the so-called S-spectrum, in a right quater-
nionic Hilbert space. In particular, we give a characterization for the S-spectrum in terms of
the Weyl operators. In the same space we also study the Browder operators and introduce
the Browder S-spectrum.
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1. Introduction

In the complex theory the concept of Weyl spectrum and Browder spectrum are subjects of the theory of perturbation of
the spectrum, however it has found applications in operator theory and related areas [13,9,14]. In the complex case, theWeyl
spectrumof a bounded linear operator is the largest part of the spectrum that is invariant under compact perturbations [14,9].
We shall show that the same is true in the quaternionic Weyl S-spectrum. However, in the complex case, the Browder
spectrum is not invariant under compact perturbations [14].

In the complex setting, in a Hilbert space H, for a bounded linear operator, A, the point spectrum or the eigenvalues of
A contain isolated eigenvalues of finite algebraic and geometric multiplicities. Also these sets are important in the study of
Weyl and Browder spectra [14]. In the quaternionic setting, let V R

H be a separable right Hilbert space, A be a bounded right
linear operator, and Rq(A) = A2

− 2Re(q)A + |q|2IVR
H
, with q ∈ H, the set of all quaternions and IVR

H
be the identity operator

on V R
H, be the pseudo-resolvent operator, the set of right eigenvalues of Rq(A) coincides with the point S-spectrum (see

proposition 4.5 in [11]). In this regard, it will be appropriate to define and study the quaternionic isolated S-point spectrum
as the quaternions which are eigenvalues of Rq(A).

Due to the non-commutativity, in the quaternionic case there are three types of Hilbert spaces: left, right, and two-sided,
depending on how vectors aremultiplied by scalars. This fact can entail several problems. For example, when a Hilbert space
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H is one-sided (either left or right) the set of linear operators acting on it does not have a linear structure. Moreover, in a
one sided quaternionic Hilbert space, given a linear operator A and a quaternion q ∈ H, in general we have that (qA)† ̸= qA†

(see [16] for details). These restrictions can severely prevent the generalization to the quaternionic case of results valid in the
complex setting. Even thoughmost of the linear spaces are one-sided, it is possible to introduce a notion of multiplication on
both sides by fixing an arbitrary Hilbert basis of H. This fact allows to have a linear structure on the set of linear operators,
which is a minimal requirement to develop a full theory. Thus, the framework of this paper, is in part, is a right quaternionic
Hilbert space equipped with a left multiplication, introduced by fixing a Hilbert basis.

In the study of Weyl and Browder S-spectra, the essential S-spectra gets involved. In defining the essential S-spectrum
the structure of the so-called quaternionic Calkin algebra is used, in which the set of all bounded quaternionic right linear
operators, B(V R

H), should form a quaternionic two-sided Banach C∗-algebra with unity. This can only happen if we consider
V R
H with a leftmultiplication defined on it, which is a basis dependentmultiplication [11]. However, regardless of which basis

we choose the set B(V R
H) will become a quaternionic two-sided Banach C∗-algebra with unity. Thus, the invariance under a

basis change naturally exists.
As far as we know, Weyl and Browder operators and the Weyl and Browder S-spectra have not been studied in the

quaternionic setting yet. In this regard, in this notewe investigate the quaternionicWeyl operators andWeyl S-spectrumand
provide a characterization to the S-spectrum in terms of the Weyl operators (see Theorem 6.6). We also study the Browder
operators to certain extent and introduce the Browder spectrum. However, in the complex case, the Browder spectrum and
its characterizations depend on the so-called Riesz idempotent which is defined in terms of the Cauchy integral formula
for operators [14]. In the quaternionic setting, the Cauchy integral formula, and thereby the S-functional calculus, is known
only for the slice regular functions and it is defined on an axially symmetric domain in quaternion slices. A quaternion slice
is a complex plane contained in the set of all quaternions [12,4,5]. In this regard, this fact severely affected our ability in
studying the Browder S-spectrum in broad on the whole set of quaternions. However, one may be able to study it in an
axially symmetric domain. Also in the study of quaternionic Weyl and Browder operators and S-spectra results regarding
quaternionic Fredholm operators and quaternionic essential S-spectrum are involved. Materials regarding these two topics
are heavily borrowed from the recent paper [15] as needed here.

The article is organized as follows. In Section 2 we introduce the set of quaternions and quaternionic Hilbert spaces
and their bases, as needed for the development of this article, which may not be familiar to a broad range of audience. In
Section 3 we define and investigate, as needed, right linear operators and their properties. In Section 3.1 we define a basis
dependent left multiplication on a right quaternionic Hilbert space. In Section 3.2 we deal with the right S-spectrum, left
S-spectrum, S-spectrumand itsmajor partitions. In Section 4we recall some facts about the Fredholmoperators and its index
for a bounded quaternionic right linear operator from [15]. In Section 5, from [15] we recall results about the essential S-
spectrum as needed.We also prove certain results which are omitted from [15]. In Section 6we introduce quaternionicWeyl
operators and Weyl S-spectrum. In particular we provide a characterization to the S-spectrum in terms of the quaternionic
Weyl operators. In Section 7 we define and study the quaternionic Browder operators and Browder S-spectrum in a limited
sense, which is due to the unavailability of a Cauchy integral formula on the whole set of quaternions. Section 8 ends the
manuscript with a brief conclusion.

2. Mathematical preliminaries

In order to make the paper self-contained, we recall some facts about quaternions which may not be well-known. For
details we refer the reader to [1,11,18].

2.1. Quaternions

LetHdenote the field of all quaternions andH∗ the group (under quaternionicmultiplication) of all invertible quaternions.
A general quaternion can be written as

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R,

where i, j, k are the three quaternionic imaginary units, satisfying i2 = j2 = k2
= −1 and ij = k = −ji, jk = i =

−kj, ki = j = −ik. The quaternionic conjugate of q is

q = q0 − iq1 − jq2 − kq3,

while |q| = (qq)1/2 denotes the usual norm of the quaternion q. If q is non-zero element, it has inverse q−1
=

q

|q|2
. Finally,

the set

S = {I = x1i + x2j + x3k | x1, x2, x3 ∈ R, x21 + x22 + x23 = 1},

contains all the elements whose square is −1. It is a 2-dimensional sphere in H identified with R4.

2.2. Quaternionic Hilbert spaces

In this subsection we discuss right quaternionic Hilbert spaces. For more details we refer the reader to [1,11,18].
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2.2.1. Right quaternionic Hilbert Space
Let V R

H be a vector space under right multiplication by quaternions. For φ,ψ,ω ∈ V R
H and q ∈ H, the inner product

⟨· | ·⟩ : V R
H × V R

H −→ H

satisfies the following properties

(i) ⟨φ | ψ⟩ = ⟨ψ | φ⟩

(ii) ∥φ∥
2

= ⟨φ | φ⟩ > 0 unless φ = 0, a real norm
(iii) ⟨φ | ψ + ω⟩ = ⟨φ | ψ⟩ + ⟨φ | ω⟩

(iv) ⟨φ | ψq⟩ = ⟨φ | ψ⟩q

(v) ⟨φq | ψ⟩ = q⟨φ | ψ⟩

where q stands for the quaternionic conjugate. It is always assumed that the space V R
H is complete under the norm given

above and separable. Then, together with ⟨· | ·⟩ this defines a right quaternionic Hilbert space. Quaternionic Hilbert spaces
share many of the standard properties of complex Hilbert spaces.

The next two propositions can be established following the proof of their complex counterparts, see e.g. [11,18].

Proposition 2.1. Let O = {ϕk | k ∈ N} be an orthonormal subset of V R
H, where N is a countable index set. Then following

conditions are pairwise equivalent:

(a) The closure of the linear combinations of elements in O with coefficients on the right is V R
H.

(b) For every φ,ψ ∈ V R
H, the series

∑
k∈N⟨φ | ϕk⟩⟨ϕk | ψ⟩ converges absolutely and it holds:

⟨φ | ψ⟩ =

∑
k∈N

⟨φ | ϕk⟩⟨ϕk | ψ⟩.

(c) For every φ ∈ V R
H, it holds:

∥φ∥
2

=

∑
k∈N

| ⟨ϕk | φ⟩ |
2 .

(d) O⊥
= {0}.

Definition 2.2. The set O as in Proposition 2.1 is called a Hilbert basis of V R
H.

Proposition 2.3. Every quaternionic separable Hilbert space V R
H has a Hilbert basis. All the Hilbert bases of V R

H have the same
cardinality.

Furthermore, if O is a Hilbert basis of V R
H, then every φ ∈ V R

H can be uniquely decomposed as follows:

φ =

∑
k∈N

ϕk⟨ϕk | φ⟩,

where the series
∑

k∈N ϕk⟨ϕk | φ⟩ converges absolutely in V R
H.

It should be noted that once a Hilbert basis is fixed, every left (resp. right) quaternionic Hilbert space also becomes a right
(resp. left) quaternionic Hilbert space [11,18]. See Section 3.2 for more details.

The field of quaternions H itself can be turned into a left quaternionic Hilbert space by defining the inner product
⟨q | q′

⟩ = qq′ or into a right quaternionic Hilbert space with ⟨q | q′
⟩ = qq′.

3. Right quaternionic linear operators and some basic properties

In this sectionwe shall define rightH-linear operators and recall somebasic properties.Most of themare verywell known.
In this manuscript, we follow the notations of [2,11].

Definition 3.1. A mapping A : D(A) ⊆ V R
H −→ V R

H, where D(A) stands for the domain of A, is said to be right H-linear
operator or, for simplicity, right linear operator, if

A(φa + ψb) = (Aφ)a + (Aψ)b, if φ, ψ ∈ D(A) and a, b ∈ H.

The set of all right linear operators will be denoted by L(V R
H) and the identity linear operator on V R

H will be denoted by
IVR

H
. For a given A ∈ L(V R

H), the range and the kernel will be

ran(A) = {ψ ∈ V R
H | Aφ = ψ for φ ∈ D(A)}

ker(A) = {φ ∈ D(A) | Aφ = 0}.
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We call an operator A ∈ L(V R
H) bounded if

∥A∥ = sup
∥φ∥=1

∥Aφ∥ < ∞, (3.1)

or equivalently, there exists K ≥ 0 such that ∥Aφ∥ ≤ K∥φ∥ for all φ ∈ D(A). The set of all bounded right linear operators
will be denoted by B(V R

H). Set of all invertible bounded right linear operators will be denoted by G(V R
H). We also denote for a

set∆ ⊆ H,∆∗
= {q | q ∈ ∆}.

Assume that V R
H is a right quaternionic Hilbert space, A is a right linear operator acting on it. Then, there exists a unique

linear operator A† such that

⟨ψ | Aφ⟩ = ⟨A†ψ | φ⟩; for all φ ∈ D(A), ψ ∈ D(A†), (3.2)

where the domain D(A†) of A† is defined by

D(A†) = {ψ ∈ V R
H | ∃ϕ such that ⟨ψ | Aφ⟩ = ⟨ϕ | φ⟩}.

Proposition 3.2 ([11]). If A ∈ B(V R
H) is normal then ker(A) = ker(A†).

Proposition 3.3 ([15,17]). Let A ∈ B(V R
H,U

R
H) then

(a) ran(A)⊥ = ker(A†). (b) ker(A) = ran(A†)⊥.

Definition 3.4. Let V R
H and UR

H be right quaternionic Hilbert spaces. A bounded operator K : V R
H −→ UR

H is compact if K
maps bounded sets into precompact sets. That is, K (U) is compact in UR

H, where U = {φ ∈ V R
H | ∥φ∥ < 1}. Equivalently, for

all bounded sequences {φn}
∞

n=1 in V R
H the sequence {Kφn}

∞

n=0 has a convergence subsequence in UR
H.

We denote the set of all compact operators from V R
H to UR

H by B0(V R
H,U

R
H) and the compact operators from V R

H from V R
H will

be denoted by B0(V R
H).

Definition 3.5. An operator K : V R
H −→ UR

H is said to be of finite rank if ran(K ) ⊆ UR
H is finite dimensional.

Proposition 3.6 ([15]). If A ∈ B(V R
H,U

R
H) is of finite rank, then A is compact.

Proposition 3.7 ([15]). Let A ∈ B(V R
H,U

R
H) be a finite rank operator, then A†

∈ B(UR
H, V

R
H) is a finite rank operator and

dim(ran(A)) = dim(ran(A†)).

Definition 3.8. LetM ⊂ V R
H be a closed subspace, then codim(M) = dim(V R

H/M).

Definition 3.9. Let A : V R
H −→ UR

H be a bounded operator, then coker(A) := UR
H/ran(A) and dim(coker(A)) = dim(UR

H) −

dim(ran(A)).

Proposition 3.10 ([15]). A bounded operator K : V R
H −→ UR

H is compact if and only if there exist finite rank operators
Kn : V R

H −→ UR
H such that ∥K − Kn∥ −→ 0 as n −→ 0.

Corollary 3.11 ([15]). A bounded operator K : V R
H −→ UR

H is compact then so is K †.

Proposition 3.12 ([15]). Let A ∈ B(V R
H) and K be a compact operator on V R

H, then AK and KA are compact operators.

Definition 3.13. Let A ∈ B(V R
H). A closed subspace M ⊆ V R

H is said to be invariant under A if A(M) ⊆ M , where
A(M) = {Aφ | φ ∈ M}.

3.1. Left scalar multiplications on V R
H

We shall extract the definition and some properties of left scalar multiples of vectors on V R
H from [11] as needed for the

development of the manuscript. The left scalar multiple of vectors on a right quaternionic Hilbert space is an extremely
non-canonical operation associated with a choice of preferred Hilbert basis. From Proposition 2.3, V R

H has a Hilbert basis

O = {ϕk | k ∈ N}, (3.3)

whereN is a countable index set. The left scalarmultiplication on V R
H induced byO is defined as themapH×V R

H ∋ (q, φ) ↦−→

qφ ∈ V R
H given by

qφ :=

∑
k∈N

ϕkq⟨ϕk | φ⟩, (3.4)

for all (q, φ) ∈ H × V R
H.
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Proposition 3.14 ([11]). The left product defined in Eq. (3.4) satisfies the following properties. For every φ,ψ ∈ V R
H and p, q ∈ H,

(a) q(φ + ψ) = qφ + qψ and q(φp) = (qφ)p.
(b) ∥qφ∥ = |q|∥φ∥.
(c) q(pφ) = (qp)φ.
(d) ⟨qφ | ψ⟩ = ⟨φ | qψ⟩.
(e) rφ = φr, for all r ∈ R.
(f) qϕk = ϕkq, for all k ∈ N.

Furthermore, the quaternionic left scalar multiplication of linear operators is also defined in [7,11]. For any fixed q ∈ H
and a given right linear operator A : D(A) −→ V R

H, the left scalar multiplication of A is defined as a map qA : D(A) −→ V R
H

by the setting

(qA)φ := q(Aφ) =

∑
k∈N

ϕkq⟨ϕk | Aφ⟩, (3.5)

for all φ ∈ D(A). It is straightforward that qA is a right linear operator. If qφ ∈ D(A), for all φ ∈ D(A), one can define right
scalar multiplication of the right linear operator A : D(A) −→ V R

H as a map Aq : D(A) −→ V R
H by the setting

(Aq)φ := A(qφ), (3.6)

for all φ ∈ D(A). It is also a right linear operator. One can easily obtain that, if qφ ∈ D(A), for all φ ∈ D(A) and D(A) is dense
in V R

H, then

(qA)† = A†q and (Aq)† = qA†. (3.7)

3.2. S-spectrum

For a given right linear operator A : D(A) ⊆ V R
H −→ V R

H and q ∈ H, we define the operator Rq(A) : D(A2) −→ H by

Rq(A) = A2
− 2Re(q)A + |q|

2IVR
H
,

where q = q0 + iq1 + jq2 + kq3 is a quaternion, Re(q) = q0 and |q|
2

= q20 + q21 + q22 + q23.
In the literature, the operator is called pseudo-resolvent since it is not the resolvent operator of A but it is the one related

to the notion of spectrum aswe shall see in the next definition. Formore information, on the notion of S-spectrum the reader
may consult e.g. [6–8,11].

Definition 3.15. Let A : D(A) ⊆ V R
H −→ V R

H be a right linear operator. The S-resolvent set (also called spherical resolvent set)
of A is the set ρS(A) (⊂ H) such that the three following conditions hold true:

(a) ker(Rq(A)) = {0}.
(b) ran(Rq(A)) is dense in V R

H.
(c) Rq(A)−1

: ran(Rq(A)) −→ D(A2) is bounded.

The S-spectrum (also called spherical spectrum) σS(A) of A is defined by setting σS(A) := H ∖ ρS(A). For a bounded linear
operator A we can write the resolvent set as

ρS(A) = {q ∈ H | Rq(A) ∈ G(V R
H)}

= {q ∈ H | Rq(A) has an inverse in B(V R
H)}

= {q ∈ H | ker(Rq(A)) = {0} and ran(Rq(A)) = V R
H}

and the spectrum can be written as

σS(A) = H \ ρS(A)
= {q ∈ H | Rq(A) has no inverse in B(V R

H)}
= {q ∈ H | ker(Rq(A)) ̸= {0} or ran(Rq(A)) ̸= V R

H}

The right S-spectrum σ S
r (A) and the left S-spectrum σ S

l (A) are defined respectively as

σ S
r (A) = {q ∈ H | Rq(A) in not right invertible in B(V R

H) }

σ S
l (A) = {q ∈ H | Rq(A) in not left invertible in B(V R

H) }.

The spectrum σS(A) decomposes into three disjoint subsets as follows:

(i) the spherical point spectrum of A:

σpS(A) := {q ∈ H | ker(Rq(A)) ̸= {0}}.
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(ii) the spherical residual spectrum of A:

σrS(A) := {q ∈ H | ker(Rq(A)) = {0}, ran(Rq(A)) ̸= V R
H }.

(iii) the spherical continuous spectrum of A:

σcS(A) := {q ∈ H | ker(Rq(A)) = {0}, ran(Rq(A)) = V R
H, Rq(A)−1 /∈ B(V R

H) }.

If Aφ = φq for some q ∈ H and φ ∈ V R
H ∖ {0}, then φ is called an eigenvector of A with right eigenvalue q. The set of right

eigenvalues coincides with the point S-spectrum, see [11], Proposition 4.5.

Proposition 3.16 ([5,11]). For A ∈ B(V R
H), the resolvent set ρS(A) is a non-empty open set and the spectrum σS(A) is a non-empty

compact set.

Proposition 3.17 ([5]). Let A ∈ B(V R
H) and let p = p0 + p1I ∈ p0 + p1S ⊆ H \ R be an S−eigenvalue of A. Then all the elements

of the sphere [p] = p0 + p1S are eigenvalues of A.

Proposition 3.18 ([15]). Let A ∈ B(V R
H).

σ S
l (A) = {q ∈ H | ran(Rq(A)) is closed or ker(Rq(A)) ̸= {0}}. (3.8)

σ S
r (A) = {q ∈ H | ran(Rq(A)) is closed or ker(Rq(A†)) ̸= {0}}. (3.9)

4. Fredholm operators in the quaternionic setting

In order to study the Weyl and Browder operators and Weyl and Browder S-spectra we need some results regarding the
Fredholm operators. We borrow the materials of this section from [15] as needed for the development of the manuscript.
For an enhanced explanation we refer the reader to [15]. In this regard let V R

H and UR
H be two separable right quaternionic

Hilbert spaces.

Definition 4.1. A Fredholm operator is an operator A ∈ B(V R
H,U

R
H) such that ker(A) and coker(A) = UR

H/ran(A) are finite
dimensional. The dimension of the cokernel is called the codimension, and it is denoted by codim(A).

Proposition 4.2 ([15]). If A ∈ B(V R
H,U

R
H) is a Fredholm operator, then ran(A) is closed.

Definition 4.3. Let A ∈ B(V R
H,U

R
H) be a Fredholm operator. Then the index of A is the integer, ind(A) = dim(ker(A)) −

dim(coker(A)).

Remark 4.4. Since ran(A) is closed, we have UR
H = ran(A)⊕ ran(A)⊥ = ran(A)⊕ker(A†). Therefore, coker(A) = UR

H/ran(A) ∼=

ker(A†). Thus,

ind(A) = dim(ker(A)) − dim(ker(A†)).

Theorem 4.5 ([15]). Let A ∈ B(V R
H,U

R
H) be bijective, and let K ∈ B0(V R

H,U
R
H) be compact. Then A + K is a Fredholm operator.

Proposition 4.6 ([15]). If A ∈ B(V R
H,U

R
H) is Fredholm then A†

∈ B(UR
H, V

R
H) is Fredholm.

Theorem 4.7 ([15]). A ∈ B(V R
H,U

R
H) is Fredholm if and only if there exist S1, S2 ∈ B(UR

H, V
R
H) and compact operators K1 and K2, on

V R
H and UR

H respectively, such that

S1A = IVR
H

+ K1 and AS2 = IUR
H

+ K2.

Remark 4.8 ([15]). Let A ∈ B(V R
H,U

R
H), then

(a) A is said to be left semi-Fredholm if there exist B ∈ B(UR
H, V

R
H) and a compact operator K1 on V R

H such that BA = IVR
H
+K1.

The set of all left semi-Fredholm operators is denoted by Fl(V R
H,U

R
H) [9].

(b) A is said to be right semi-Fredholm if there exist B ∈ B(UR
H, V

R
H) and a compact operator K2 on UR

H such that
AB = IUR

H
+ K2. The set of all right semi-Fredholm operators is denoted by Fr (V R

H,U
R
H) [9].

(c) By Theorem 4.7, the set of all Fredholm operators, F(V R
H,U

R
H) = Fl(V R

H,U
R
H) ∩ Fr (V R

H,U
R
H).

(d) From Theorem 4.7 it is also clear that every invertible right linear operator is Fredholm.
(e) Let SF(V R

H) = Fl(V R
H) ∪ Fr (V R

H). From Theorem 4.7 and Corollary 3.11, we have

A ∈ Fl(V R
H) ⇔ A†

∈ Fr (V R
H)

A ∈ SF(V R
H) ⇔ A†

∈ SF(V R
H)

A ∈ F(V R
H) ⇔ A†

∈ F(V R
H).
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Theorem 4.9 ([15]). Let V R
H,U

R
H and W R

H be right quaternionic Hilbert spaces. If A1 ∈ B(V R
H,U

R
H) and A2 ∈ B(UR

H,W
R
H) are two

Fredholm operators, then A2A1 ∈ B(V R
H,W

R
H) is also a Fredholm operator, and it satisfies ind(A2A1) = ind(A1) + ind(A2).

Lemma 4.10 ([15]). Let F ∈ B(V R
H) be a finite rank operator, then ind(IVR

H
+ F ) = 0.

Theorem 4.11 ([15]). Let A ∈ B(V R
H,U

R
H) be a Fredholm operator, then for any compact operator K ∈ B(V R

H,U
R
H), A + K is a

Fredholm operator and ind(A + K ) = ind(A).

Corollary 4.12 ([15]). Every invertible operator A ∈ B(V R
H) is Fredholm and ind(A) = 0.

Corollary 4.13 ([15]). Let n be a non-negative integer. If A ∈ F(V R
H) then An

∈ F(V R
H) and ind(An) = n ind(A).

Theorem 4.14 ([15]). An operator A ∈ B(V R
H) is left semi-Fredholm if and only if ran(A) is closed and ker(A) is finite dimensional.

Hence

Fl(V R
H) = {A ∈ B(V R

H) | ran(A) is closed and dim(ker(A)) < ∞} (4.1)

Fr (V R
H) = {A ∈ B(V R

H) | ran(A) is closed and dim(ker(A†)) < ∞} (4.2)

Remark 4.15 ([15]). Let A ∈ B(V R
H).

(a) The so-called Weyl operators are Fredholm operators on V R
H with null index. That is, the set of all Weyl operators,

W(V R
H) = {A ∈ F(V R

H) | ind(A) = 0}.

(b) Since, by Remark 4.8(e), A ∈ F(V R
H) ⇔ A†

∈ F(V R
H) and ind(A) = −ind(A†), A ∈ W(V R

H) ⇔ A†
∈ W(V R

H).
(c) By Theorem 4.5 and Lemma 4.10, if F is a finite rank operator, then IVR

H
+ F ∈ W(V R

H).
(d) By Theorem 4.9, A, B ∈ W(V R

H) ⇒ AB ∈ W(V R
H).

(e) By Theorem 4.11, A ∈ W(V R
H), K ∈ B0(V R

H) ⇒ A + K ∈ W(V R
H).

(f) By Corollary 4.12, A ∈ B(V R
H) is invertible, then A ∈ W(V R

H)
(g) Suppose dim(V R

H) < ∞, then ind(A) = 0 for any A ∈ B(V R
H). Therefore, every operator in B(V R

H) is a Fredholm operator
with index zero. In this case, W(V R

H) = B(V R
H).

5. Essential S-spectrum

Most part of this section is borrowed from [15] as needed here. For details we refer the reader to [15]. We also give proofs
to some new results which are omitted in [15].

Theorem 5.1 ([11]). Let V R
H be a right quaternionic Hilbert space equipped with a left scalar multiplication. Then the set B(V R

H)
equippedwith the point-wise sum,with the left and right scalarmultiplications defined in Eqs. (3.5) and (3.6), with the composition
as product, with the adjunction A −→ A†, as in Eq. (3.2), as ∗

− involution and with the norm defined in Eq. (3.1), is a quaternionic
two-sided Banach C∗-algebra with unity IVR

H
.

Remark 5.2. In the above theorem, if the left scalar multiplication is left out on V R
H, then B(V R

H) becomes a real Banach
C∗-algebra with unity IVR

H
.

Theorem 5.3 ([10]). The set of all compact operators, B0(V R
H) is a closed biideal of B(V R

H) and is closed under adjunction.

On the quotient space B(V R
H)/B0(V R

H) the coset of A ∈ B(V R
H) is

[A] = {S ∈ B(V R
H) | S = A + K for some K ∈ B0(V R

H)} = A + B0(V R
H).

On the quotient space define the product

[A][B] = [AB].

Since B0(V R
H) is a closed subspace of B(V R

H), with the above product, B(V R
H)/B0(V R

H) is a unital Banach algebra with unit [IVR
H
].

We call this algebra the quaternionic Calkin algebra. Define the natural quotient map

π : B(V R
H) −→ B(V R

H)/B0(V R
H) by π (A) = [A] = A + B0(V R

H).

Note that [0] = B0(V R
H) and hence

ker(π ) = {A ∈ B(V R
H) | π (A) = [0]} = B0(V R

H).
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Since B0(V R
H) is an ideal of B(V R

H), for A, B ∈ B(V R
H), we have

(a) π (A + B) = (A + B) + B0(V R
H) = (A + B0(V R

H)) + (B + B0(V R
H)) = π (A) + π (B).

(b) π (AB) = AB + B0(V R
H) = (A + B0(V R

H))(B + B0(V R
H)) = π (A)π (B).

(c) π (IVR
H
) = [IVR

H
].

Hence π is a unital homomorphism. The norm on B(V R
H)/B0(V R

H) is given by

∥[A]∥ = inf
K∈B0(VR

H)
∥A + K∥ ≤ ∥A∥.

Therefore π is a contraction.

Definition 5.4. The essential S-spectrum (or the Calkin S-spectrum) σ S
e (A) of A ∈ B(V R

H) is the S-spectrum of π (A) in the
unital Banach algebra B(V R

H)/B0(V R
H). That is,

σ S
e (A) = σS(π (A)).

Similarly, the left essential S-spectrum σ S
el(A) and the right essential S-spectrum σ S

er (A) are the left and right S-spectrum of
π (A) respectively. That is,

σ S
el(A) = σ S

l (π (A)) and σ S
er (A) = σ S

r (π (A))

in B(V R
H)/B0(V R

H).
Clearly, by definition, σ S

e (A) = σ S
el(A) ∪ σ S

er (A) and σ
S
e (A) is a compact subset of H.

Proposition 5.5 ([15]). Let A ∈ B(V R
H), then

σ S
el(A) = {q ∈ H | Rq(A) ∈ B(V R

H) \ Fl(V R
H)} (5.1)

σ S
er (A) = {q ∈ H | Rq(A) ∈ B(V R

H) \ Fr (V R
H)} (5.2)

Corollary 5.6 ([15] (Atkinson Theorem)). Let A ∈ B(V R
H), then

σ S
e (A) = {q ∈ H | Rq(A) ∈ B(V R

H) \ F(V R
H)}. (5.3)

Proposition 5.7. For A ∈ B(V R
H), σ

S
e (A) ̸= ∅ if and only if dim(V R

H) = ∞.

Proposition 5.8 ([15]). For every A ∈ B(V R
H) and K ∈ B0(V R

H), we have σ S
e (A+ K ) = σ S

e (A). In the same way, σ S
el(A+ K ) = σ S

el(A)
and σ S

er (A + K ) = σ S
er (A).

Definition 5.9. Let A ∈ B(V R
H) and k ∈ Z \ {0}. Define,

σ S
k (A) = {q ∈ H | Rq(A) ∈ F(V R

H) and ind(Rq(A)) = k}.

Also

σ S
0 = {q ∈ σS(A) | Rq(A) ∈ W(V R

H)}.

Proposition 5.10 ([15]). Let A ∈ B(V R
H), then σS(A) = σ S

e (A) ∪
⋃

k∈Z σ
S
k (A).

Definition 5.11. For A ∈ B(V R
H), we define

σ S
+∞

(A) = {q ∈ H | Rq(A) ∈ SF(V R
H) and ind(Rq(A)) = +∞},

σ S
−∞

(A) = {q ∈ H | Rq(A) ∈ SF(V R
H) and ind(Rq(A)) = −∞}.

Proposition 5.12. For A ∈ B(V R
H) we have

σ S
+∞

(A) ∪ σ S
−∞

(A) = {q ∈ σS(A) | Rq(A) ∈ SF(V R
H) \ F(V R

H)}.

Proof. We have

σ S
+∞

(A) = {q ∈ H | Rq(A) ∈ SF(V R
H) and ind(Rq(A)) = +∞}

= {q ∈ H | Rq(A) ∈ SF(V R
H) and dim(ker(Rq(A))) = +∞}

= {q ∈ H | Rq(A) ∈ Fr (V R
H) \ Fl(V R

H)} by Theorem 4.14
= σ S

el(A) \ σ S
er (A) ⊆ σ S

e (A) ⊆ σS(A).
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Similarly

σ S
−∞

(A) = {q ∈ H | Rq(A) ∈ SF(V R
H) and ind(Rq(A)) = −∞}

= {q ∈ H | Rq(A) ∈ SF(V R
H) and dim(ker(Rq(A†))) = +∞}

= {q ∈ H | Rq(A) ∈ Fl(V R
H) \ Fr (V R

H)} by Theorem 4.14
= σ S

er (A) \ σ S
el(A) ⊆ σ S

e (A) ⊆ σS(A).

Therefore we get

σ S
+∞

(A) ∪ σ S
−∞

(A) = {q ∈ σS(A) | Rq(A) ∈ SF(V R
H) \ F(V R

H)}. □

Proposition 5.13. Let A ∈ B(V R
H), then we have

σ S
e (A) =

(
σ S
el(A) ∩ σ S

er (A)
)
∪ σ S

+∞
(A) ∪ σ S

−∞
(A)

with
(
σ S
el(A) ∩ σ S

er (A)
)
∩

(
σ S

+∞
(A) ∪ σ S

−∞
(A)

)
= ∅.

Proof. Since σ S
e (A) = σ S

el(A) ∪ σ S
er (A) ⊆ σS(A), we get by Proposition 5.5,

σ S
el(A) ∩ σ S

er (A) = {q ∈ H | Rq(A) ̸∈ SF(V R
H)} ⊆ σ S

e (A),

and by Proposition 5.12 we get

σ S
+∞

(A) ∪ σ S
−∞

(A) = {q ∈ σS(A) | Rq(A) ∈ SF(V R
H) \ F(V R

H)}.

Therefore

σ S
e (A) =

(
σ S
el(A) ∩ σ S

er (A)
)
∪ σ S

+∞
(A) ∪ σ S

−∞
(A),

and
(
σ S
el(A) ∩ σ S

er (A)
)
∩

(
σ S

+∞
(A) ∪ σ S

−∞
(A)

)
= ∅. □

Proposition 5.14. Let Z = Z ∪ {+∞,−∞}. For A ∈ B(V R
H), K ∈ B0(V R

H), and k ∈ Z \ {0} we have σ S
k (A + K ) = σ S

k (A).

Proof. Let A ∈ B(V R
H), K ∈ B0(V R

H), then Rq(A + K ) = Rq(A) + K1, where K1 = AK + KA − 2Re(q)K and, by Proposition 3.12,
K1 ∈ B0(V R

H). Therefore, for k ∈ Z \ {0}, by Theorem 4.11, Rq(A) ∈ F(V R
H) implies Rq(A + K ) ∈ F(V R

H) and ind(Rq(A + K )) =

ind(Rq(A)). Thus, for k ∈ Z \ {0},

σ S
k (A + K ) = σ S

k (A).

Now by Propositions 5.8 and 5.12, we have

σ S
+∞

(A + K ) = σ S
+∞

(A) and σ S
−∞

(A + K ) = σ S
−∞

(A). □

Remark 5.15. Let A ∈ B(V R
H). The results of Proposition 5.14 not true for σ S

0 (A). Since σ
S
0 (A) = {q ∈ σS(A) | Rq(A) ∈ W(V R

H)}
and, according to Theorem 4.14,

F(V R
H) = Fl(V R

H) ∩ Fr (V R
H)

= {A ∈ B(V R
H) | ran(Rq(A)) closed, dim(ker(Rq(A))) < ∞ and dim(ker(Rq(A†))) < ∞}

we can write

σ S
0 (A) = {q ∈ σS(A) | ran(Rq(A)) closed, dim(ker(Rq(A))) = dim(ker(Rq(A†))) < ∞}.

Since σpS(A) = {q ∈ H | ker(Rq(A)) ̸= {0}}, we have

σ S
0 (A) = {q ∈ σS(A) | ran(Rq(A)) = ran(Rq(A)) ̸= V R

H, dim(ker(Rq(A))) = dim(ker(Rq(A†))) < ∞}.

Therefore, if dim(V R
H) < ∞, we have

σ S
0 (A) = σpS(A) = σS(A).

Suppose that dim(V R
H) < ∞, then B(V R

H) = B0(V R
H). Since

IVR
H

2
− 2Re(q)IVR

H
+ |q|2IVR

H
= (1 − 2Re(q) + |q|2)IVR

H
= (1 − q)(1 − q)IVR

H
,

Rq(IVR
H
) is invertible if and only if q ̸= 1 and q ̸= 1. That is, Rq(IVR

H
) is invertible if and only if q ̸= 1. Thus σ S

0 (IVR
H
) = σS(IVR

H
) =

{1}. Also Rq(IVR
H

− IVR
H
) = Rq(0) = |q|2IVR

H
is invertible if and only if q ̸= 0, thus σ S

0 (0) = σS(0) = {0}. That is,

σ S
0 (IVR

H
+ K ) ̸= σ S

0 (IVR
H
)

with K = −IVR
H
, a compact operator on V R

H.
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6. The Weyl S-spectrum on V R
H

In this section we define the S-Weyl spectrum on V R
H and give a characterization to the S-spectrum in terms of the Weyl

spectrum.

Definition 6.1. The S-Weyl spectrum of an operator A ∈ B(V R
H) is the set

σ S
w(A) =

⋂
K∈B0(VR

H)

σS(A + K ).

Hence, by the definition, σ S
w(A) is the largest part of σS(A) such that σ S

w(A + K ) = σ S
w(A) for every K ∈ B0(V R

H). Since the
S-Weyl spectrum is the intersection of compact sets in H, σ S

w(A) is a compact subset of H.

Definition 6.2. Let σ S
iso(A) denote the set of all isolated points of the S-spectrum σS(A), that is

σ S
iso(A) = {q ∈ σS(A) | q is an isolated point of σS(A)}.

Its compliment in σS(A), σ S
acc(A) = σS(A)\σ S

iso(A), is the set of all accumulation points. Alsowe denoteπ0(A) = σ S
iso(A)∩σ

S
0 (A).

Remark 6.3. By Proposition 3.17, the isolated eigenvalues are in fact isolated spheres in H. However we denote the sphere
[q] by q.

Lemma 6.4. Let A ∈ B(V R
H). If A ∈ SF(V R

H) with ind(A) ≤ 0 then there is a compact (in fact a finite rank) operator K ∈ B0(V R
H)

such that ker(A + K ) = {0}.

Proof. Let A ∈ SF(V R
H). If ind(A) ≤ 0, then dim(ker(A)) ≤ dim(ker(A†)), and by Theorem 4.14, dim(ker(A)) < ∞. Let {φi}

n
i=1

be an orthonormal basis for ker(A) and let B be an orthonormal basis for ker(A†) = ran(A)⊥, where the cardinality of B,
|B| ≥ n. Let {ψk}

n
k=1 ⊆ B be an orthonormal set. Define the map K : V R

H −→ V R
H by

Kφ =

n∑
j=1

ψj⟨φj|φ⟩ for each φ ∈ V R
H,

which is clearly right linear. Since

ran(K ) ⊆ right − H − span{ψj}
n
j=1 ⊆ right − H − span B = ker(A†) = ran(A)⊥,

K is bounded and finite rank, hence compact. Let ψ ∈ ker(A), then by Proposition 2.1,

∥ψ∥
2

=

n∑
i=1

|⟨φi|ψ⟩|
2

= ∥Kψ∥
2.

Now, if ψ ∈ ker(A + K ), then Aψ = −Kψ , and therefore,

Aψ ∈ ran(A) ∩ ran(K ) ⊆ ran(A) ∩ ran(A)⊥ = {0}.

Thus Aψ = 0 and ∥ψ∥ = ∥Kψ∥ = ∥Aψ∥ = 0, which implies ψ = 0. Hence ker(A + K ) = {0}. □

Proposition 6.5. Let A ∈ SF(V R
H), then ind(A) = 0 if and only if there exists a compact operator (in fact, finite rank) operator

K ∈ B0(V R
H) such that A + K is invertible.

Proof. If A ∈ SF(V R
H) with ind(A) = 0, then A ∈ F(V R

H) and , by Lemma 6.4, there exist a compact (in fact, finite rank)
operator K ∈ B0(V R

H) such that ker(A + K ) = {0}. Now, by Theorem 4.11, A + K ∈ F(V R
H) and ind(A + K ) = ind(A) = 0. Thus

ker((A + K )†) = {0} as ker(A + K ) = {0}. Therefore, ker((A + K )†) = ran(A + K )⊥ = {0}, which means ran(A + K ) = V R
H.

Therefore A + K is invertible.
Conversely, if there exists K ∈ B0(V R

H) such that A + K is invertible, then by Remark 4.15(f), A + K is Weyl. Since
A = (A + K ) − K , by Theorem 4.11, A ∈ F(V R

H) and ind(A) = 0. □

The following theoremcharacterizes the S-spectrum in termsof theWeyl operators, seeDefinition 5.9 andProposition 6.8.

Theorem 6.6 (Schechter Theorem). If A ∈ B(V R
H), then

σ S
w(A) = σ S

e (A) ∪

⋃
k∈Z\{0}

σ S
k (A) = σS(A) \ σ S

0 (A).
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Proof. Let A ∈ B(V R
H).

Claim: If q ∈ σ S
0 (A), then there is a K ∈ B0(V R

H) such that q ̸∈ σS(A + K ).
For, if q ∈ σ S

0 (A), then Rq(A) ∈ SF(V R
H) with ind(Rq(A)) = 0. Since, for K ∈ B0(V R

H), Rq(A + K ) = Rq(A) + K1 with, by
Proposition 3.12, K1 = AK + KA − 2Re(q)K ∈ B0(V R

H), by Proposition 6.5, Rq(A + K ) is invertible. Therefore, q ∈ ρS(A + K ) or
q ̸∈ σS(A + K ) as claimed.

Now by Proposition 5.10,

σS(A) = σ S
e (A) ∪

⋃
k∈Z

σ S
k (A),

where all the above sets are pairwise disjoint, therefore,

σ S
0 (A) = σS(A) \

⎛⎝σ S
e (A) ∪

⋃
k∈Z\{0}

σ S
k (A)

⎞⎠ .

Let q ∈ σS(A), if q ∈ σ S
e (A) ∪

⋃
k∈Z\{0} σ

S
k (A), then by Propositions 5.8 and 5.14, for every K ∈ B0(V R

H), q ∈ σ S
e (A + K ) ∪⋃

k∈Z\{0} σ
S
k (A + K ). On the other hand, if q ∈ σ S

0 (A), then by the above claim q ̸∈ σS(A + K ). Therefore, since the S-Weyl
spectrum σ S

w(A) is the largest part of the S-spectrum σS(A) that remains invariant under compact perturbations, we have

σ S
w(A) = σ S

e (A) ∪

⋃
k∈Z\{0}

σ S
k (A) = σS(A) \ σ S

0 (A). □

Remark 6.7. LetA ∈ B(V R
H). From the above theorem, Theorem6.6,we canmake the following straightforward observations:

(a) σ S
e (A) ⊆ σ S

w(A) ⊆ σS(A).
(b) σ S

e (A) = σ S
w(A) ⇐⇒

⋃
k∈Z\{0} σ

S
k (A) = ∅.

(c) σS(A) = σ S
w(A) ∪ σ S

0 (A) and σ
S
w(A) ∩ σ S

0 (A) = ∅.
(d) σ S

w(A) = σS(A) ⇐⇒ σ S
0 (A) = ∅.

(e) σ S
e (A) = σ S

w(A) = σS(A) ⇐⇒
⋃

k∈Z σ
S
k (A) = ∅.

Proposition 6.8. For every A ∈ B(V R
H), σ

S
w(A) = {q ∈ H | Rq(A) ∈ B(V R

H) \ W(V R
H)}.

Proof. If q ∈ ρS(A), then Rq(A) is invertible. Since, by Remark 4.15(f), invertible operators are Weyl, Rq(A) ∈ W(V R
H).

Therefore, if Rq(A) ̸∈ W(V R
H), then q ∈ σS(A). Also by Definition 5.9 and Theorem 6.6 we have σ S

w(A) = σS(A) \ σ S
0 (A) and

σ S
0 (A) = {q ∈ σS(A) | Rq(A) ∈ W(V R

H)}. Therefore, σ
S
w(A) = {q ∈ H | Rq(A) ∈ B(V R

H) \ W(V R
H)}. □

Remark 6.9. By Remark 4.15(b), A ∈ W(V R
H) if and only if A†

∈ W(V R
H). Also by Proposition 6.8, q ∈ σ S

w(A) if and only if
q ∈ σ S

w(A
†). Therefore. σ S

w(A) = σ S
w(A

†)∗.

Proposition 6.10.

W(V R
H) = {A ∈ B(V R

H) | 0 ∈ ρS(A) ∪ σ S
0 (A)} = {A ∈ F(V R

H) | 0 ∈ ρS(A) ∪ σ S
0 (A)}.

Proof. Let A ∈ B(V R
H). If A ∈ W(V R

H), then A ∈ F(V R
H) and, by Remark 4.15(e), A + K ∈ W(V R

H) for some K ∈ B0(V R
H).

Therefore, by Proposition 6.5, A + K is invertible and hence R0(A + K ) = (A + K )2 is invertible. Thus 0 ∈ ρS(A + K ),
which means 0 ̸∈ σS(A + K ). Therefore, by the definition of the Weyl S-spectrum 0 ̸∈ σ S

w(A), and hence by Theorem 6.6,
0 ∈ ρS(A) ∪ σ S

0 (A) . Conversely, let 0 ∈ ρS(A) ∪ σ S
0 (A). If 0 ∈ ρS(A), then R0(A) = A2 is invertible and hence A is invertible.

Therefore, by Remark 4.15(f), A ∈ W(V R
H). If 0 ∈ σ S

0 (A), then by Definition 5.9, R0(A) = A2
∈ W(V R

H) and 0 ∈ σS(A). Thus
by Theorem 4.9, A ∈ W(V R

H). Hence, W(V R
H) = {A ∈ B(V R

H) | 0 ∈ ρS(A) ∪ σ S
0 (A)}, and since W(V R

H) ⊆ F(V R
H), we get

W(V R
H) = {A ∈ F(V R

H) | 0 ∈ ρS(A) ∪ σ S
0 (A)}. □

Remark 6.11.

(a) Let A ∈ B(V R
H), by Theorem 6.6, σ S

e (A) ⊆ σ S
w(A). By Proposition 5.7, σ S

e (A) ̸= ∅ if and only if dim(V R
H) = ∞. Hence,

σ S
w(A) = ∅ implies dim(V R

H) < ∞. Further, since σ S
w(A) = {q ∈ H | Rq(A) ∈ B(V R

H) \ W(V R
H)}, by Remark 4.15(g),

dim(V R
H) < ∞ implies σ S

w(A) = ∅. Therefore, σ S
w(A) ̸= ∅ if and only if dim(V R

H) = ∞.
(b) Let K ∈ B0(V R

H) and q ̸= 0. Since Rq(K ) = K 2
−2Re(q)K +|q|2IVR

H
, clearly |q|2IVR

H
is Fredholmwith ind(|q|2IVR

H
) = 0 and

K 2
− 2Re(q)K is compact, by Theorem 4.11, Rq(K ) is Fredholmwith ind(Rq(K )) = 0. That is, Rq(K ) ∈ W(V R

H). Therefore,
by Proposition 6.8, σ S

w(K ) \ {0} = ∅. Thus, if dim(V R
H) = ∞, then by item (a) σ S

w(K ) = {0}. Since, by Proposition 5.7,
σ S
e (K ) ⊆ σ S

w(K ), if dim(V R
H) = ∞, then ∅ ̸= σ S

e (K ) ⊆ {0}. Hence, for K ∈ B0(V R
H), dim(V R

H) = ∞ if and only if
σ S
e (K ) = σ S

w(K ) = {0}.
(c) Suppose that A ∈ B(V R

H) is normal and Fredholm. Then clearly Rq(A) is normal. Therefore, by Proposition 3.2,
Rq(A) ∈ W(V R

H). Thus, by Corollary 5.6 and Proposition 6.8, T is normal implies σ S
e (A) = σ S

w(A).
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7. Browder s-spectrum in V R
H

In the complex case, the Browder theory uses the so-called Riesz points and Riesz idempotent and which is defined in
terms of Cauchy integral formula. The Cauchy integral formula, in the quaternionic setting, is only available on an axially
symmetric domain for slice regular functions in a quaternion slice. Due to this we are unable to provide a complete study
on the Browder S-spectrum. However, in this section, we provide certain results about Browder operator and Browder
S-spectrum on the whole set of quaternions without the use of the Riesz idempotent.

Let A ∈ B(V R
H) and N0 be the set of all non-negative integers. From now on we denote ker(A) = K(A) and ran(A) = R(A).

Then, for n ∈ N0, clearly

K(An) ⊆ K(An+1) and R(An+1) ⊆ R(An),

which means, in the inclusion ordering, {K(An)} and {R(An)} are nondecreasing and non-increasing sequences of V R
H

respectively.

Lemma 7.1. Let n0 ∈ N0.

(a) If K(An0+1) = K(An0 ), then K(An+1) = K(An) for every n ≥ n0.
(b) If R(An0+1) = R(An0 ), then R(An+1) = R(An) for every n ≥ n0.

Proof. The proof is same as the complex proof. For a complex proof see lemma 5.29 in [14]. □

Definition 7.2. Let N0 = N0 ∪ {+∞}. The ascent and descent of an operator A ∈ B(V R
H) are defined respectively as follows.

asc(A) = min{n ∈ N0 | K(An+1) = K(An)},

dsc(A) = min{n ∈ N0 | R(An+1) = R(An)}.

Note that for A ∈ B(V R
H) clearly we have

asc(A) = 0 ⇔ K(A) = {0}, that is, A is injective.

dsc(A) = 0 ⇔ R(A) = V R
H, that is, A is surjective.

Lemma 7.3. Let A ∈ B(V R
H).

(a) If asc(A) < ∞ and dsc(A) = 0, then asc(A) = 0.
(b) If asc(A) < ∞ and dsc < ∞, then asc(A) = dsc(A).

Proof. The proof is exactly same as its complex counterpart. For a complex proof see lemma 5.30 in [14]. □

Lemma 7.4. If A ∈ F(V R
H), then asc(A) = dsc(A†) and dsc(A) = asc(A†).

Proof. By Corollary 4.13, if A ∈ F(V R
H) then An

∈ F(V R
H) for all n ∈ N0. Therefore, by Proposition 4.2,R(An) is closed for every

n ∈ N0. With these facts the proof follows from its complex version. For a complex proof see lemma 5.31 in [14]. □

Definition 7.5. A right quaternionic Browder operator is a right quaternionic Fredholm operatorwith finite ascent and finite
descent. LetBr(V R

H) denote the set of all right quaternionic Browder operators from B(V R
H). Then

Br(V R
H) = {A ∈ F(V R

H) | asc(A) < ∞ and dsc(A) < ∞}.

Note that according to Lemma 7.3,

Br(V R
H) = {A ∈ F(V R

H) | asc(A) = dsc(A) < ∞} (7.1)
= {A ∈ F(V R

H) | asc(A) = dsc(A) = m for some m ∈ N0}

Hence

F(V R
H) \ Br(V R

H) = {A ∈ F(V R
H) | asc(A) = ∞ or dsc(A) = ∞} (7.2)

Also by Lemma 7.4

A ∈ Br(V R
H) ⇔ A†

∈ Br(V R
H). (7.3)

Definition 7.6. Let X be a right quaternionic linear space. The subspaces R and K are said to be algebraic compliments of
each other if

X = R + K and R ∩ K = {0}.
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Lemma 7.7. If A ∈ B(V R
H) with asc(A) = dsc(A) = m for some m ∈ N0, then R(Am) and K(Am) are algebraic compliments of

each other.

Proof. The proof is purely algebraic and it is the same as its complex counterpart. For a complex proof see lemma 5.32
in [14]. □

Theorem 7.8. Let A ∈ B(V R
H). Consider

(a) A ∈ Br(V R
H) and A ̸∈ G(V R

H).
(b) A ∈ F(V R

H) is such that R(Am) and K(Am) are complimentary subspaces for some m ∈ N.
(c) A ∈ W(V R

H).

Then (a) H⇒ (b) H⇒ (c).

Proof. (a) ⇒(b): A ∈ B(V R
H) is invertible if and only if A ∈ G(V R

H). That is, A ∈ B(V R
H) has a bounded inverse and R(A) = V R

H ,
K(A) = {0}. By Corollary 4.12, every invertible operator is Fredholm. Also by Definition 7.2, R(A) = V R

H and K(A) = {0}
if and only if asc(A) = dsc(A) = 0. Thus every invertible operator is Browder. That is, clearly the inclusion is strict,
G(V R

H) ⊂ Br(V R
H) ⊂ F(V R

H). Therefore, if A ∈ Br(V R
H) and A ̸∈ G(V R

H), then asc(A) = dsc(A) = m for some m ≥ 1. Hence
by Lemma 7.7, K(Am) and R(Am) are complimentary subspaces of V R

H.
(b) ⇒ (c): Suppose (b) holds. That is, A ∈ F(V R

H) and there exists m ∈ N such that R(Am) + K(Am) = V R
H and

R(Am) ∩ K(Am) = {0}. Since A ∈ F(V R
H), by Corollary 4.13, Am

∈ F(V R
H). Hence K(Am), K((Am)†) are finite dimensional,

and by Proposition 4.2, R(Am) is closed. Since R(Am) is closed, R(Am) + R(Am)⊥ = V R
H, where R(Am)⊥ = K((Am)†). Hence,

R(Am) + K((Am)⊥) = V R
H and R(Am) ∩ K((Am)†) = {0}. Thus K(Am) and K((Am)†) are both algebraic compliments of

R(Am), and therefore, they have the same finite dimension. Thus, by Remark 4.4, ind(Am) = 0. Since by Corollary 4.13,
mind(A) = ind(Am) = 0 andm > 0, we have ind(A) = 0. Hence A ∈ W(V R

H). □

Remark 7.9. From Theorem 7.8, it is now clear that, obviously the inclusions are strict, G(V R
H) ⊂ Br(V R

H) ⊂ W(V R
H) ⊂ F(V R

H).

Theorem 7.10. Let A ∈ B(V R
H). If A ∈ Br(V R

H) and 0 ∈ σS(A), then 0 ∈ π0(A).

Proof. Since σ S
0 (A) = {q ∈ H | Rq(A) ∈ W(V R

H)} and Br(V R
H) ⊂ W(V R

H), if A ∈ Br(V R
H) and 0 ∈ σS(A), then 0 ∈ σ S

0 (A).
Further, by Theorem 7.8, there is an integer m ≥ 1 such that R(Am) + K(Am) = V R

H and R(Am) ∩ K(Am) = {0}, equivalently
(the direct sum is not necessarily orthogonal) R(Am) ⊕ K(Am) = V R

H and R(Am) ∩ K(Am) = {0}. Further, R(Am) and K(Am)
are Am-invariant. Therefore, Am

= Am
|R(Am)⊕Am

|K(Am). Since Am is not invertible, K(Am) ̸= {0} and Am
|K(Am)= O, the zero

operator. Thus by the spectral mapping theorem (see theorem 4.3 (d) in [11]), σS(A)m = σS(Am) = σS(Am
|R(Am)) ∪ {0}. Since

Am
|R(Am): R(Am) −→ R(Am) is bijective and, by Corollary 4.13, Am

∈ F(V R
H), hence by Proposition 4.2, R(Am) is a closed

subspace of V R
H, A

m
|R(Am)∈ G(R(Am)). Therefore 0 ∈ ρ(Am

|R(Am)), thus 0 ̸∈ σS(Am
|R(Am)). Hence σS(Am) is a disconnected

set, and therefore 0 is an isolated point of σS(A)m = σS(Am). Thus 0 is an isolated point of σS(A). That is, 0 ∈ σ S
iso(A) and by

definition of π0(A), 0 ∈ π0(A) = σ S
0 (A) ∩ σ S

iso(A). □

Remark 7.11. Let A ∈ B(V R
H).

σS(A) \ π0(A) = σS(A) \ (σ S
iso(A) ∩ σ S

0 (A))
=

(
σS(A) \ σ S

iso(A)
)
∪

(
σS(A) \ σ S

0 (A)
)

= σ S
acc(A) ∪ σ S

w(A) by Theorem 6.6.

Definition 7.12. The Browder S-spectrum of an operator A ∈ B(V R
H), denoted by σ S

b (A), is

σ S
b (A) = {q ∈ H | Rq(A) ̸∈ Br(V R

H)}.

By Eq. (7.3), A ∈ Br(V R
H) if and only if A†

∈ Br(V R
H). Hence

σ S
b (A) = σ S

b (A
†)∗ (7.4)

Also by Proposition 6.8,

σ S
w(A) ⊆ σ S

b (A). (7.5)

Proposition 7.13. Let A ∈ B(V R
H), then σ

S
b (A) ⊆ σS(A).

Proof. If q ∈ σ S
b (A) then Rq(A) ̸∈ Br(V R

H), so either Rq(A) ̸∈ F(V R
H) or Rq(A) ∈ F(V R

H) and asc(Rq(A)) = dsc(Rq(A)) = ∞.
If A ̸∈ F(V R

H), then by Corollary 5.6, q ∈ σ S
e (A) ⊆ σS(A). If Rq(A) ∈ F(V R

H) and asc(Rq(A)) = dsc(Rq(A)) = ∞, then, since
K(Rq(A)) = {0} if and only if asc(Rq(A)) = 0, Rq(A) is not invertible. Therefore q ̸∈ ρS(A) and hence q ∈ σS(A). Thus
σ S
b (A) ⊆ σS(A). □
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Remark 7.14. By Remark 6.7, Eq. (7.5) and Proposition 7.13, for A ∈ B(V R
H), we have

σ S
e (A) ⊆ σ S

w(A) ⊆ σ S
b (A) ⊆ σS(A).

8. Conclusion

We have studied Weyl operators and Weyl S-spectrum of a bounded quaternionic right linear operator. We have also
given a characterization to the S-spectrum in terms of Weyl operators. We have studied the Browder operators and the
Browder S-spectrum in a limited sense, which is due to the unavailability of the Cauchy integral formula on the whole set of
quaternions. However, using the Cauchy integral formula and the S-functional calculus on an axially symmetric domain for
slice-regular functions, which is accessible [4,3,12], one may define the Riesz idempotent and study the Browder spectrum
on axially symmetric slice domains in the point of view of the S-spectrum. However, we have avoided studying it in this
manuscript and we will treat it elsewhere.
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