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ABSTRACT

In recent years, modifications of the classical Lindley distribution have been considered by

many authors. In this paper, we introduce a new generalization of the Lindley distribution

based on a mixture of exponential and gamma distributions with different mixing propor-

tions and compare its performance with its sub-models. The new distribution accommodates

the classical Lindley, Quasi Lindley, Two-parameter Lindley, Shanker, Lindley distribution

with location parameter, and Three-parameter Lindley distributions as special cases. Various

structural properties of the new distribution are discussed and the size-biased and the length-

biased are derived. A simulation study is conducted to examine the mean square error for the

parameters by means of the method of maximum likelihood. Finally, simulation studies and

some real-world data sets are used to illustrate its flexibility in terms of its location, scale

and shape parameters.

Key words: Lindley distribution, mixture distributions, size-biased distributions, maximum

likelihood estimation.

1. Introduction

In the modeling of the lifetime data, especially biomedical science, engineering, actu-

arial science, several continuous distributions bounded to 0 and ∞ have been developed,

which may have one or more parameter(s). Examples of such distributions are exponen-

tial, gamma, Lindley, log-normal, Weibull and their modifications. These distributions may

have various abilities to cover the tail-heaviness of a data set. The tail-heaviness of a data

set may be measured by the excess kurtosis (EK) and EK is defined as τ − 3, where τ is

the kurtosis of the data set. The EK > 0 is called a fatter tail (Leptokurtic) and EK < 0 is

called a thinner tail (Platykurtic) distributions. Among the distributions mentioned-above,

Lindley distribution (LD) which was developed by Lindley (1958), and its modifications

are more flexible than the above-mentioned distributions, especially when considering less

complexity of their mathematical forms, shapes, and failure rate criteria.
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The LD is a one-parameter exponential family lifetime distribution defined over the interval

[0,∞) having the density function:

fY (y) =
θ 2

1+θ
(1+ y)e−θy;y > 0,θ > 0, (1)

where θ is the shape parameter, and y is the respective random variable. The density func-

tion of this distribution can be verified that a two-component mixture of two different contin-

uous distributions namely exponential (θ) and gamma (2,θ) distributions with the mixing

proportion, p =
θ

1+θ
. Ghitany (2008) has done a comprehensive study on the mathemati-

cal and statistical properties of the LD and showed that the LD is more flexible and provides

a better fit than the exponential distribution for lifetime data.

Even though the LD is used for modeling of the lifetime data, researchers are more keen

on its modified forms in terms of increasing the flexibility of LD’s shapes and failure rate

criteria in recent years. Therefore, many researchers have proposed several modified forms

of the LD as an alternative to LD in the past few years. Proposed new distributions are

developed in terms of introducing new parameter(s) to the existing distributions. The new

parameter(s) might be introduced from the latent variable distribution or mixing components

that may be exponential and gamma or gamma and gamma. In this line of new proposed

distributions, we may make references to a considerable number of existing distributions

that are actual mixing components of LD with an exponential(θ ) and a gamma(2,θ ) distri-

butions mixture but different mixing proportions. The existing distributions are listed below.

Shanker et. al. (2013a) obtained Quasi Lindley distribution (QLD), and discussed its various

statistical properties. The distribution is a two-parameter family distribution with density

function:

fY (y) =
θ(α + yθ)

1+α
e−θy;y > 0,θ > 0,α >−1, (2)

where α and θ are shape, and scale parameters, respectively. The mixing proportion,

p =
α

α +1
. Note that the LD is a special case of the QLD when α = θ .

Shanker et. al. (2013b) introduced the two-parameter Lindley distribution (TwPLD) and

discussed its statistical properties. Its density function is given by:

fY (y) =
θ 2(1+αy)

θ +α
e−θy;y > 0,θ > 0,α >−θ , (3)

where θ and α are shape parameters. The mixing proportion, p =
θ

θ +α
. Note that the LD

is a special case of TwPLD when α = 1.

Shanker (2015) introduced a one-parameter family distribution, namely Shanker distribu-
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tion (SD) with the probability density function:

fY (y) =
θ 2

θ 2 +1
(θ + y)e−θy;y > 0,θ > 0, (4)

where θ is the shape parameter. The mixing proportion, p =
θ 2

θ 2 +1
.

To increase more flexibility in this line of development, Abdol-Monsef (2016) introduced

a new three-parameter family generalized Lindley distribution (TPLwLD) by adding the

location parameter for the exponential and gamma components. In this paper, a clear clari-

fication is given that the location parameter is an important parameter in a statistical model

to estimate the starting point of the distribution. The density function of TPLwLD is given

by:

fY (y) =
θ 2

θ +α
(1+α(y−β ))e−θ(y−β );y > β > 0,1+αy > 0,θ > 0,α +θ > 0, (5)

where θ and α are shape parameters and β is a location parameter. Equation (5) presents

two-component mixture of an exponential (θ ,β ) and gamma (2,θ ,β ) distributions with the

mixing proportion, p =
θ

θ +α
. Here the location parameter is added from the mixing com-

ponents when comparing with TwPLD. Note that LD is a special case of the TPLwLD when

α = 1,β = 0.

Shanker et. al. (2017) obtained the Three-parameter Lindley distribution (ThPLD) with

the following density function:

fY (y) =
θ 2

θα +β
(α +βy)e−θy;y > 0,θ > 0,β > 0,θα +β > 0, (6)

where θ , α and β are shape parameters. The mixing proportion, p =
θα

θα +β
. Note that

the LD is a special case of ThPLD when α = 1,β = 1.

It is clear that when introducing a new such types of LDs, the researchers incorporate with

three types of parameters, namely shape parameters from the latent variable distribution,

scale and location parameters from the mixing components. Table 1 summarizes the appli-

cation of the three types of parameters of the above-mentioned distributions.

The aim of this paper is to introduce a new generalized LD that accommodates all the

distributions given in Table 1, and study the importance of the location parameter in the

model and different mixing proportions in the development process of the new Lindly fam-

ily distributions. Further, the new distribution is based on the two-component mixture of

exponential and gamma distributions with different mixing proportions and it will be called

as the five-parameter generalized Lindley distribution (FPGLD). A simulation study will
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be done to study the performance of the maximum likelihood estimators of FPGLD. Fur-

ther, a comparison study will be done with its sub-models by using simulated data sets, and

real-world applications. The characteristics of the data sets will be differentiated by their

skewness, Excess kurtosis (EK), and Fano factor values.

Organization of this paper is as follows: in section 2 we introduce the FPGLD and its

sub-models. Its statistical properties and reliability properties are presented in section 3 and

section 4, respectively. Further, section 5 covers the size-biased form of the FPGLD. The

parameter estimation is discussed in section 6. Finally, a simulation study is conducted to

examine the performance of the maximum likelihood estimators for FPGLD, and simulated

data sets and real-world data sets are used for the comparison study with its sub-models.

Table 1. Application of three types of parameters

Distribution Authors Parameters

shape scale location

LD(θ ) Lindley (1958) θ - -

TwPLD(θ ,α) Shanker et.al.(2013a) θ ,α - -

QLD(θ ,δ ) Shanker et.al.(2013b) α θ -

SD(θ ) Shanker (2015) θ - -

TPLwLD(θ ,α,β ) Monsef (2016) θ ,α β
ThPLD(θ ,α,β ) Shanker et.al.(2017) θ ,α,β - -

2. Five parameter generalized Lindley distribution

In this section, we introduce the five-parameter generalized Lindley distribution (FPGLD)

with its sub-models.

The probability density function (pdf) of the FPGLD with parameters θ ,β ,α,δ and η is

defined by;

fY (y) =
θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β ), (7)

where y > β ≥ 0,θ > 0,δα >−η ,δα >−ηθ(y−β ), and the range of the parameters are

based on the log-likelihood function. The proposed distribution is a two-component mixture

of exponential distribution with parameters θ and β , and gamma distribution with parame-

ters 2,θ and β with mixing proportion, p =
δα

δα +η
, where δ ,α,η are shape parameters,

and θ and β are scale and location parameters, respectively. Note that the FPGLD has the

same mixing components of TPLwLD but different mixing proportion.

The probability density function of the FPGLD has some desirable properties:

(i) f (β ) =
θδα

δα +η
(ii) limy→∞ f (y) = 0

The first derivative of equation (7) is derived as:
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f
′
(y) =

θ 2e−θ(y−β )

δα +η

(
− (δα +ηθ(y−β ))+η

)
.

Then, f
′
(y) = 0 gives y0 =

η(1+θβ )−δα
ηθ

, when η >
δα

1+θβ
.

Therefore, the mode of the FPGLD is given by:

mode(y) =

⎧⎨
⎩

η(1+θβ )−δα
ηθ

if η >
δα

1+θβ
and η > 0.

β otherwise

Graphs in Figure 1 have drawn by fixing four parameters and changing the fifth parameter.

Figure 1 presents the possible shapes of the pdf of the FPGLD at different parameter values.

β α δ η

θ
θ
θ
θ

θ α δ η

β
β
β
β

θ α β η

δ
δ
δ
δ

θ α β δ

η
η
η
η

Figure 1: The probability density of FPGLD at different parameter values

(a) β ,α,δ and η are fixed, and θ values are changed, (b) θ ,α,δ and η are fixed, and β values are changed, (c)

θ ,β ,α and η are fixed, and δ values are changed, (d) θ ,β ,α and δ are fixed, and η values are changed.
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The corresponding cumulative distribution function of the FPGLD is given by:

F(y) = 1−
(

1+
ηθ(y−β )

δα +η

)
e−θ(y−β ), (8)

where, y > β ≥ 0,θ > 0,δα >−η ,δα >−ηθ(y−β ).

Sub-models of the FPGLD

The Five-parameter generalized Lindley distribution is nested with six existing Lindley

family distributions when setting different particular numerical values of subsets of pa-

rameters, namely Lindley distribution (Lindley, 1958), Two-parameter Lindley distribution

(Shanker et.al.,2013b), Quasi Lindley distribution (Shanker et.al.,2013a), Shanker distri-

bution (Shanker, 2015), Lindley distribution with location parameter (Monsef, 2016), and

Three-parameter Lindley distribution (Shanker et.al.,2017). Table 2 summarizes these mod-

ified Lindley distributions as sub-models of the FPGLD. From the knowledge of parameters

in the sub-models of the FPGLD, the performance of the newly introduced shape parame-

ters, δ and α in FPGLD in a data set could be studied comparing with TPLwLD, and the

performance of the location parameter in a data set could be studied comparing TPLwLD

and TwPLD.

Table 2. Sub-models of the FPGLD
Distribution Parameters References

Shape Scale Location

FPGLD(θ ,β ,α ,δ ,η) δ α η θ β in this paper

LD(θ ) θ 1 1 θ 0 Lindley (1958)

TwPLD(θ ,η) θ 1 η θ 0 Shanker et. al.(2013)

QLD (θ ,δ ) δ 1 1 θ 0 Shanker et. al.(2013)

SD(θ ) θ θ 1 θ 0 Shanker (2015)

TPLwLD(θ ,η ,β ) θ 1 η θ β Monsef (2016)

ThPLD(θ ,α,η) θ α η θ 0 Shanker et.al.(2017)

3. Statistical properties

In this section, we provide basic statistical properties of the FPGLD such as rth moment

about the origin, central moments, moment generating function, and characteristic function.

3.1. Moments and related measures

The statistical properties of the central tendency, dispersion, skewness, and kurtosis can

be studied through the moments. The following theorem gives the rth moment about the

origin.



STATISTICS IN TRANSITION new series, June 2020 95

Theorem 1. The rth moment about the origin of the FPGLD is given by:

μ ′
r =

eθβ

(δα +η)θ r

(
rΓ(r,θβ )(δα−ηβθ +η(r+1))+δα(θβ )re−θβ

+η(r+1)(θβ )re−θβ

)
. (9)

Proof.

μ ′
r =

∫ ∞

β
yr θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dy

=
θeθβ

δα +η

(
δα

∫ ∞

β
yre−θydy+ηθ

∫ ∞

β
yr+1e−θydy−ηθβ

∫ ∞

β
yre−θydy

)

=
θeθβ

δα +η

(
δα

θ r+1
Γ(r+1,θβ )+

η
θ r+1

Γ(r+2,θβ )− ηβ
θ r Γ(r+1,θβ )

)

=
eθβ

(δα +η)θ r

(
rΓ(r,θβ )(δα−ηβθ +η(r+1))+δα(θβ )re−θβ +

η(r+1)(θβ )re−θβ

)
.

Subtituting r = 1,2,3 and 4 in equation (9), the first four moments about the origin are

derived as:

μ ′
1 =

1

(δα +η)θ

(
δα(1+θβ )+η(2+θβ )

)
= μ ,

μ ′
2 =

1

(δα +η)θ 2

(
δα(2+θβ (2+θβ ))+η(6+θβ (4+θβ ))

)
,

μ ′
3 =

1

(δα +η)θ 3

(
δα

(
6+θβ (6+θβ (3+θβ ))

)
+η

(
24+θβ (18+θβ (6+θβ )

))
,

and

μ ′
4 =

1

(δα +η)θ 4

(
δα

(
24+θβ (24+θβ (12+θβ (4+θβ )))

)
+η

(
120+βθ(96+

θβ (36+θβ (8+θβ )))

))
.

Then, the rth-order moments about the mean can be obtained by using the relationship

between moments about the mean and moments about the origin, i.e)
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μr = E

[
(Y −μ)r

]
=

r

∑
r=0

(
r
i

)
(−1)r−iμ

′
i μr−i.

Therefore, some rth-order moments about the mean are:

μ2 =−μ2 +μ ′
2 =

δα(δα +4η)+2η2

(δα +η)2θ 2
= σ2,

μ3 = 2μ3−3μ ′
2μ +μ ′

3 =

2

(
δα

(
(δα)2 +6η2 +6η(δα)

)
+2η3

)

(δα +η)3θ 3
, and

μ4 =−3μ4 +6μ ′
2μ2−4μ ′

3μ +μ ′
4

=

3

(
δα

(
3(δα)3 +24η(δα)2 +44η2(δα)+32η3

)
+8η4

)

(δα +η)4θ 4
.

Now, the coefficient of variation (c.v), measures of skewness (γ1), measures of kurtosis

(γ2), and the Index of dispersion/Fano factor (γ3) of the FPGLD can be derived as:

c.v =
(μ2)

1/2

μ ′
1

=

√
δα(δα +4η)+2η2

δα(1+θβ )+η(2+θβ )
,

γ1 =
μ3

(μ2)3/2
=

2

(
δα

(
(δα)2 +6η2 +6η(δα)

)
+2η3

)

(δα(δα +4η)+2η2)3/2
,

γ2 =
μ4

(μ2)2
=

3

(
δα

(
3(δα)3 +24η(δα)2 +44η2(δα)+32η3

)
+8η4

)

(δα(δα +4η)+2η2)2
, and

γ3 =
μ2

μ ′
1

=
δα(δα +4η)+2η2

(δα +η)θ(δα(1+θβ )+η(2+θβ ))
.

The horizontal symmetry, and dispersion can be measured by γ1, and γ3, respectively. Fig-

ures 4 and 5 (Appendix) show various patterns of the kurtosis and the skewness functions

of FPGLD at different parameter values, respectively. From these figures, it is clear that the

kurtosis value is increasing when δ is increasing and decreasing when η is increasing for

δ ≤ 1. Among the different formats of α; α = 1,α = δ ,α = δ 2, and α = δ 3, the maximum

flexibility is obtained when α = 1, i-e) δα = δ , in terms of having higher kurtosis value for

δ ≤ 1. Further, the skewness value is increasing with δ and decreasing with η for δ ≤ 1.

Figures 6 and 7 (Appendix) represent different shapes of the Fano factor function of FPGLD

at different parameter values. Figure 6 (a) ,(b), (c), and (d) have drawn by fixing θ , β , and

η and changing δ and α . Note that all shapes are anti-U shaped and the higher Fano factor

values are obtained mostly when α = 1. Figure 7 (a), and (b) have drawn by fixing α,δ and
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η and changing θ , and β , respectively. All graphs show a monotonic decreasing pattern,

and the Fano factor value is increasing when β or θ value is decreasing. When comparing

Figures 6 and 7, it is clear that the effect on the Fano factor function of changing δ is totally

different than the effect of changing θ .

3.2. Moment generating and characteristic function

The moment generating function is useful to determine the distribution of a random

variable. The following theorem provides the moment generating function of the FPGLD.

Theorem 2. The moment generating function say MY (t) of the FPGLD is given as fol-

lows:

MY (t) =
θeβ t

(δα +η)(t−θ)2

(
−δα(t−θ)+ηθ

)
. (10)

Proof.

MY (t) = E(ety)

=
∫ ∞

β
ety θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dy

=
θ

δα +η

(
δα

∫ ∞

β
ety−θ(y−β )dy+ηθ

∫ ∞

β
yety−θ(y−β )dy−ηθβ

∫ ∞

β
yety−θ(y−β )dy

)

.

The integrals of the above equation will be taken separately as follows:

δα
∫ ∞

β
ety−θ(y−β )dy =

eθβ δα
t−θ

(
− eβ (t−θ)

)
=

δαeβ t

(θ − t)

ηθ
∫ ∞

β
yety−θ(y−β )dy

= eθβ ηθ
∫ ∞

β (θ−t)

z
θ − t

e−z dz
θ − t

; z = y(θ − t)

=
ηθeθβ

(θ − t)2
Γ(2,β (θ − t)) =

ηθeβθ

(θ − t)2

(
1+β (θ − t)

)

Therefore,

MY (t) =
θ

δα +η

(
−δαeβ t

(t−θ)
+

ηθeβ t

(θ − t)2
(1+β (θ − t))+ηθβeβ t(t−θ)

)

=
θeβ t

(δα +η)(t−θ)2

(
δα(θ − t)+ηθ

)
.
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Similarly, the characteristic function say, ψ(t) of the FPGLD can be derived as follows:

ψY (t) = E(eity) =
θeβ it

(δα +η)(θ − it)2

(
δα(θ − it)+ηθ

)
. (11)

3.3. Quantile function

The quantile function of FPGLD can be found by solving F(y) = u,0 < u < 1. It is

useful for the quantile estimations and for simulation studies. So, the uth quantile function

of FPGLD is derived as:

F(y) = 1−
(

1+
ηθ(y−β )

δα +η

)
e−θ(y−β ) = u

⇒
(

δα +η +ηθ(y−β )

)
e−θ(y−β ) = (1−u)(δα +η).

This equation can be rewritten as:

−
(

δα
η

+1+θ(y−β )

)
e
−θ(y−β )−

δα
η
−1

=
(u−1)(δα +η)

η
e

−δα
η

−1
.

Clearly−
(

δα
η

+1+θ(y−β )

)
is the negative branch of Lambert function, and one writes

it symbolically as W−1 . Therefore, the quantile function of the FPGLD can be written in

terms of the negative branch of the Lambert function as:

−
(

δα
η

+1+θ(y−β )

)
=W−1

(
(u−1)(δα +η)

η
e
−

δα
η
−1
)

.

Hence,

y = β − δα +η
ηθ

− 1

θ
W−1

(
(u−1)(δα +η)

η
e
−

δα
η
−1
)

;y > β ,0 < u < 1. (12)

Then, the first three quartiles of the FPGLD can be derived by substituting u = 0.25,0.5 and

0.75 in equation (12) and given by:

Q1 = β − δα +η
ηθ

− 1

θ
W−1

(
(−0.75)(δα +η)

η
e
−

δα
η
−1
)

,

Q2 = β − δα +η
ηθ

− 1

θ
W−1

(
(−0.5)(δα +η)

η
e
−

δα
η
−1
)

, and
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Q3 = β − δα +η
ηθ

− 1

θ
W−1

(
(−0.25)(δα +η)

η
e
−

δα
η
−1
)

.

4. Reliability properties

In this section, we study some important reliability properties of FPGLD, namely the

survival function/reliability function S(y), hazard rate function/failure rate function h(y),
reversed hazard rate function r(y), cumulative hazard rate function H(y), mean residual life

function m(y), Lorenz curve L(F(y)), and Benferroni curve B(F(y)) .

4.1. Hazard rate and mean residual life function

1. The survival function of equation (7) is defined as:

S(y) = 1−F(y) =

(
1+

ηθ(y−β )
δα +η

)
e−θ(y−β );y > β . (13)

It is clear that, S(β ) = 1 and limy→∞ S(y) = 0.

2. The hazard rate function(hrf) of the FPGLD is defined as:

h(y) = lim
Δy→0

P(y < Y < y+Δy|Y > y)
Δy

=
f (y)
S(y)

=

θ

(
δα +ηθ(y−β )

)

δα +η +ηθ(y−β )
;y > β .

(14)

Further, it can be seen that, h(β ) =
θδα

δα +η
= f (β ) and limy→∞ h(y) = θ .

Figure 2 illustrates the hazard rate function of FPGLD at different parameter values.

It is approximately same hazard rate shape of the TPLwLD.

3. The reversed hazard function of FPGLD is defined as:

r(y)= lim
Δy→0

P(y < Y < y+Δy|Y < y)
Δy

=

θ

(
δα +ηθ(y−β )

)
e−θ(y−β )

δα +η−
(

1+ηθ(y−β )

)
e−θ(y−β )

;y> β .

(15)

4. The cumulative hazard rate function of FPGLD is defined as:

H(y) =
∫ y

β
h(t)dt =−log[S(y)] =−log

(
1+

ηθ(y−β
δα +η

)
e−θ(y−β ). (16)

5. The following theorem gives the mean residual life function of FPGLD.
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Figure 2: The hazard rate function of FPGLD at different parameter values

(a) θ ,β ,α, and δ are fixed, and η values are changed, (b) θ ,α,δ and η are fixed, and β values are changed, (c)

β ,α, δ and η are fixed, and θ values are changed, (d) θ ,β ,η , and δ are fixed, and δ values are changed.

Theorem 3. The mean residual life function of FPGLD is given by:

m(y) =
δα +η(2+θ(y−β ))

θ

(
δα +η +ηθ(y−β )

) . (17)

Proof.

m(y) =
1

1−F(y)

∫ ∞

y
t f (t)dt− y, consider the integrals separately as follows:

∫ ∞

y
t f (t)dt =

∫ ∞

y
t

θ
θα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dt

=
θeθβ

δα +η

(
δα

∫ ∞

y
te−θ tdt +ηθ

∫ ∞

y
t2e−θ tdt−βηθ

∫ ∞

y
te−θ tdt

)

=
θeθβ

δα +η

(
δα

(
δα
θ 2

Γ(2,θy)+
ηθ
θ 3

Γ(3,θy)− βηθ
θ 2

Γ(2,θy)

)

=
(1+θy)(δα +2η−βηθ)+η(θy)2

θ(δα +η)
e−θ(y−β ).

Therefore,

m(y) =
(1+θy)(δα +2η−βηθ)+η(θy)2

θ
(

δα +η +ηθ(y−β )

) − y =
δα +η(2+θ(y−β ))

θ
(

δα +η +ηθ(y−β )

) .
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Then, equation (17) satisfies the following properties:

m(y)≥ 0, m(β ) =
δα +2η

θ(δα +η)
, and limy→∞ m(y) =

1

θ
.

4.2. Lorenz and Bonferroni curves

The concept of the Lorenz and Bonferroni curves were formulated by Bonferroni to

measure the income inequalities. They are widely used in economics, reliability, demogra-

phy, medicine, and insurance. The following theorem gives the function of the Lorenz curve

of FPGLD.

Theorem 4. The Lorenz curve is defined for FPGLD as:

L(F(y)) = 1−

∫ ∞

y
x f (x)dx

μ
= 1−

e−θ(y−β )

[
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]

αδ (1+θβ )+η(2+θβ )
. (18)

Proof.

L(F(y)) = 1−

∫ ∞

y
x f (x)dx

μ
.

Note that∫ ∞

y
x f (x)dx

=
∫ ∞

y
x

θ
δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dx

=
θ

δα +η

[
eθβ δα

∫ ∞

y
xe−θydx+ eθβ ηθ

∫ ∞

y
x2e−θydy−ηθβeθβ

∫ ∞

y
xe−θydy

]

=
θ

δα +η

[
eθβ δα

θ 2
Γ(2,yθ)+

eθβ ηθ
θ 3

Γ(3,yθ)− eθβ ηθβ
θ 2

Γ(2,yθ)

]

=
e−θ(y−β )

(δα +η)θ

[
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]
.

Therefore, L(F(y)) = 1−
e−θ(y−β )

[
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]

αδ (1+θβ )+η(2+θβ )
.
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Then, the function of Bonferroni curve for the FPGLD is defined as:

B(F(y)) =
L(F(y))

F(y)

=

(δα +η)

[
δα(1+θβ )+η(2+θβ )− e−θ(y−β )

(
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]
[
(δα +η)−

(
(δα +η)ηθ(y−β )

)
e−θ(y−β )

][
αδ (1+θβ )+η(2+θβ )

] .

(19)

4.3. Renyi entropy

The Renyi entropy (Renyi, 1961) is a basic uncertainty measure of a distribution say

HR(γ) and an extension of Shannon entropy (Shannon et.al.,1949). This entropy is widely

used in ecology and quantum information. The following theorem gives the Renyi entropy

of FPGLD.

Theorem 5. The Renyi entropy of the FPGLD is given by:

HR(γ) =
1

1− γ
log

∫ ∞

β
( f (y))γ dy

=
1

1− γ
log

(
θ γ−1(δα)γ

(δα +η)γ γ

γ

∑
k=0

(
γ
k

)(
η

δαγ

)k

kΓ(k)

)
;γ ≥ 0,γ �= 1. (20)

Proof.

HR(γ) =
1

1− γ
log

∫ ∞

β
( f (y))γ dy

=
1

1− γ
log

∫ ∞

β

(
θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )

)γ

dy

=
1

1− γ
log

∫ ∞

β

θ γ(δα)γ

(δα +η))γ

(
1+

ηθ(y−β )
δα

)γ

e−γθ(y−β )dy

=
1

1− γ
log

∫ ∞

β

θ γ(δα)γ

(δα +η))γ

γ

∑
k=0

(
γ
k

)(
ηθ(y−β )

δα

)k

e−γθ(y−β )dy

=
1

1− γ
log

(
θ γ(δα)γ

(δα +η))γ

γ

∑
k=0

(
γ
k

)(
ηθ
δα

)k ∫ ∞

β
(y−β )ke−γθ(y−β )dy

)

=
1

1− γ
log

(
θ γ−1(δα)γ

(δα +η)γ γ

γ

∑
k=0

(
γ
k

)(
η

δαγ

)k

kΓ(k)

)
.
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5. The size-biased of FPGLD

The application of the size-biased distributions known as weighted distributions has

been significantly used in forestry and wood product studies (Gove, 2003a) incorporating

sampling probabilities that are proportional to weighted function w(y). The size-biased

distributions is defined as:

fw(y) =
w(y) f (y)
E(w(y))

, (21)

where, w(y) = yγ is a non-negative weighted function of order γ . Then, equation (21) can

be rewritten as f γ
Y (y) =

yγ f (y)
E(yγ)

,where Yr ∼ f γ
Y (y) is the size-biased random variable. The

following theorem gives the density function for the size-biased FPGLD.

Theorem 6. The density function for sized-biased FPGLD is given by:

f γ
Y (y) = yγ θ γ+1

(
δα +ηθ(y−β )

A

)
e−θy;y > β ,γ > 0, (22)

where, A = γΓ(γ,θβ )
(

δα +η(γ +1−θβ )
)
+ e−θβ (θβ )γ

(
δα +η(γ +1)

)
.

Proof.

f γ
Y (y) =

yγ f (y)
E(yγ)

.

Note that

E(yγ) =
∫ ∞

β
yγ f (y)dy

=
∫ ∞

β
yγ θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dy

=
θeθβ

δα +η

(
δα

θ γ+1
Γ(γ +1,θβ )+

ηθ
θ γ+2

Γ(γ +2,θβ )− ηθβ
θ γ+1

Γ(γ +1,θβ )

)

=
θeθβ

(δα +η)θ γ+1

(
Γ(γ,θβ )

(
δαγ +ηγ(γ +1)−ηθβγ

)
+δα(θβ )γ e−θβ +

η(γ+1)(θβ )γ e−θβ

)

=
θeθβ

(δα +η)θ γ

(
γΓ(γ,θβ )

(
δα +η(γ +1−θβ )

)
+

e−θβ (θβ )γ
(

δα +η(γ +1)

))
.
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Therefore,

f γ
Y (y)=

yγ θ
δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )

θeθβ

(δα +η)θ γ

(
γΓ(γ,θβ )

(
δα +η(γ +1−θβ )

)
+ e−θβ (θβ )γ

(
δα +η(γ +1)

))

= yγ θ γ+1

(
δα +ηθ(y−β )

γΓ(γ,θβ )(δα +η(γ +1−θβ ))+ e−θβ (θβ )γ(δα +η(γ +1))

)
e−θy.

The length biased probability density function can be derived from size-biased pdf of FPGLD

by substituting γ = 1. The length-biased probability density function is given by:

f 1
Y (y) = yθ 2

(
δα +ηθ(y−β )

δα +η(2−θβ )+θβ (δα +2η)

)
e−θ(y−β );y > β ,γ > 0. (23)

6. Parameter estimation and inference

In this section, the parameter estimation and inference are given. In the parameter es-

timation of FPGLD, the method of moment estimators (MME) and maximum likelihood

estimators (MLE) methods are introduced.

6.1. Method of moment estimation

The method of moment estimators can be derived by equating the raw-moments, say μ ′
r,

to the sample moments, say

n

∑
i=1

yr
i

n
,r = 1,2,3,4,5

Then, we need to solve the following system of non-linear equations.

n

(
δα(1+θβ )+η(2+θβ )

)
−θ(δα +η)

n

∑
i=1

yi = 0

n

(
δα(2+θβ (2+θβ ))+η(6+θβ (4+θβ ))

)
−θ 2(δα +η)

n

∑
i=1

y2
i = 0

n

(
δα

(
6+θβ (6+θβ (3+θβ ))

)
+η

(
24+θβ (18+θβ (6+θβ )

))
−

θ 3(δα +η)
n

∑
i=1

y3
i = 0

n

(
δα

(
24+θβ (24+θβ (12+θβ (4+θβ )))

)
+η

(
120+βθ(96+
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θβ (36+θβ (8+θβ )))

))
−θ 4(δα +η)

n

∑
i=1

y4
i = 0

n

(
δα

(
120+θβ (120+θβ (60+θβ (20+θβ (5+θβ ))))

)
+η

(
720+

θβ (600+θβ (240+θβ (60+θβ (10+θβ ))))

))
−θ 5(δα +η)

n

∑
i=1

y5
i = 0

6.2. Maximum likelihood estimation

Let y1,y2, ...yn be identically and independently distributed random variables from FPGLD

with the likelihood function of the ith sample value yi as:

L(θ ,β ,α,δ ,η |yi) =
θ

δα +η

(
δα +ηθ(yi−β )

)
e−θ(yi−β ).

Then, the log-likelihood function is given by:

log

(
L(θ ,β ,α ,δ ,η |yi)

)

= l = nlogθ +
n

∑
i=1

log(δα +ηθ(yi−β ))−
n

∑
i=1

θ(yi−β )−nlog(δα +η).

The maximum likelihood estimators (MLE), say θ̂ , β̂ , α̂, δ̂ , η̂ can be derived by equating

the partial derivatives of the l with respect to each parameter to zero. Then, we have:

∂ l
∂θ

=
n
θ
+

n

∑
i=1

η(yi−β )
δα +ηθ(yi−β )

−
n

∑
i=1

(yi−β ) = 0,

∂ l
∂β

=
n

∑
i=1

−ηθ
δα +ηθ(yi−β )

+nθ = 0,

∂ l
∂α

=
n

∑
i=1

δ
δα +ηθ(yi−β )

− nδ
δα +η

= 0,

∂ l
∂δ

=
n

∑
i=1

α
δα +ηθ(yi−β )

− nα
δα +η

= 0, and

∂ l
∂η

=
n

∑
i=1

θ(yi−β )
δα +ηθ(yi−β )

− n
δα +η

= 0.

The asymptotic confidence intervals for the parameters of FPGLD, say θ ,β ,α ,δ ,η are

derived under the regularity conditions of the maximum likelihood estimations. The second

partial derivatives of the log-likelihood function are:

∂ 2l
∂θ 2

=
−n
θ 2

+
n

∑
i=1

−η2(yi−β )2

(δα +ηθ(yi−β ))2
,
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∂ 2l
∂β 2

=
n

∑
i=1

(ηθ)2

(δα +ηθ(yi−β ))2
,

∂ 2l
∂α2

=
n

∑
i=1

−δ 2

(δα +ηθ(yi−β ))2
+

nδ 2

(δα +η)2
,

∂ 2l
∂δ 2

=
n

∑
i=1

−α2

(δα +ηθ(yi−β ))2
+

nα2

(δα +η)2
,

∂ 2l
∂η2

=
n

∑
i=1

−θ 2(yi−β )2

(δα +ηθ(yi−β ))2
+

n
(δα +η)2

,

∂ 2l
∂θ∂β

=
n

∑
i=1

−ηδα
(δα +ηθ(yi−β ))2

+n,

∂ 2l
∂θ∂α

=
n

∑
i=1

−ηδ (yi−β )
(δα +ηθ(yi−β ))2

,

∂ 2l
∂θ∂δ

=
n

∑
i=1

−ηα(yi−β )
(δα +ηθ(yi−β ))2

,

∂ 2l
∂θ∂η

=
n

∑
i=1

δα(yi−β )
(δα +ηθ(yi−β ))2

,

∂ 2l
∂β∂α

=
n

∑
i=1

ηθδ
(δα +ηθ(yi−β ))2

,

∂ 2l
∂β∂δ

=
n

∑
i=1

ηθα
(δα +ηθ(yi−β ))2

,

∂ 2l
∂β∂η

=
n

∑
i=1

−ηδθ
(δα +ηθ(yi−β ))2

,

∂ 2l
∂α∂δ

=
n

∑
i=1

ηθ(yi−β )
(δα +ηθ(yi−β ))2

− nη
(δα +η)2

,

∂ 2l
∂α∂η

=
n

∑
i=1

−δθ(yi−β )
(δα +ηθ(yi−β ))2

+
nδ

(δα +η)2
, and

∂ 2l
∂δ∂η

=
n

∑
i=1

−αθ(yi−β )
(δα +ηθ(yi−β ))2

+
nα

(δα +η)2
.

Let p̂ = (θ̂ , β̂ , α̂, δ̂ , η̂) be MLE of p. By the asymptotic theory the estimators are asymptot-

ically normal 5-variate with mean (θ ,β ,α,δ ,η), and observed information matrix is given
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by:

I(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∂ 2l
∂θ 2

− ∂ 2l
∂θ∂β

− ∂ 2l
∂θ∂α

− ∂ 2l
∂θ∂δ

− ∂ 2l
∂θ∂η

− ∂ 2l
∂β∂θ

− ∂ 2l
∂β 2

− ∂ 2l
∂β∂α

− ∂ 2l
∂β∂δ

− ∂ 2l
∂β∂η

− ∂ 2l
∂α∂θ

− ∂ 2l
∂α∂β

− ∂ 2l
∂α2

− ∂ 2l
∂α∂δ

− ∂ 2l
∂α∂η

− ∂ 2l
∂δ∂θ

− ∂ 2l
∂δ∂β

− ∂ 2l
∂δ∂α

− ∂ 2l
∂δ 2

− ∂ 2l
∂δ∂η

− ∂ 2l
∂η∂θ

− ∂ 2l
∂η∂β

− ∂ 2l
∂η∂α

− ∂ 2l
∂η∂δ

− ∂ 2l
∂η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

at θ = θ̂ ,β = β̂ ,α = α̂,δ = δ̂ ,η = η̂ . By the asymptotic theory, the estimates are ap-

proximately multivariate normal. Therefore, the (1−α)100% confidence interval for the

parameters θ ,β ,α,δ ,η are given by:

θ̂ ± za/2

√
var(θ̂), β̂ ± za/2

√
var(β̂ ), α̂± za/2

√
var(α̂),

δ̂ ± za/2

√
var(δ̂ ), η̂± za/2

√
var(η̂)

wherein, the var(θ̂),var(β̂ ),var(α̂),var(δ̂ ), and var(η̂) are the variance of θ̂ , β̂ , α̂, δ̂ , and

η̂ , respectively, and can be derived by diagonal elements of I−1(y) and za/2 is the critical

value at a level of significance.

7. Applications

In this section, we perform a simulation study to examine the behavior of FPGLD’s pa-

rameter estimates by MLE method, performance of location parameter β , and performance

of scale parameter θ when it is incoperated in the mixing proportion. Further,the real-world

applications are used to study the performance of the FPGLD with TPLwLD, LD, TwPLD,

QLD, SD, and ThPLD. The estimates of the parameters for each distribution has been de-

rived by the MLE method.

7.1. Simulation study

7.1.1 Performance of maximum likelihood method

Here, we discuss the simulation study for the unknown parameter estimations of FPGLD

by maximum likelihood method for different sample sizes. The combination of parameter

values are set to θ = 0.5,δ = 0.1,α = 0.2,η = 0.4,β = 1.5. Then, the steps of the simula-

tion study are given below:

1. Generate 1000 samples for each of the sample size, n= 20,n= 50,n= 80 and n= 100

using equation (12).

2. Calculate the average MSE for the parameters of FPGLD using the equation
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MSE(p)=

1000

∑
i=1

( p̂i− p)2

1000
, where p = (θ ,δ ,α,η ,β ), represents the parameter set.

Table 3 summarizes the average mean square error(MSE) values of FPGLD at different

sample sizes. According to Table 3, the average MSE values for parameters θ ,β , α,δ
and η decreases when sample size increases. Further, it is notable that decreasing rates of

average MSE for the parameters θ and β are higher than decreasing rates of average MSE

for the parameters δ ,α , and η . This indicates that the parameters of the mixing components,

θ and β are highly sensitive than the parameters δ ,α, and η that are introduced from the

latent variable distribution in the unknown parameter estimations for this model.

Table 3. Simulation results for the average MSE values

Parameter MSE

n = 20 n = 50 n = 80 n = 100

θ = 0.5 0.014061 0.004528 0.004479 0.002029

δ = 0.1 0.009918 0.009916 0.009871 0.009870

α = 0.2 0.039809 0.039541 0.039524 0.039456

η = 0.4 0.158916 0.158795 0.156714 0.156594

β = 1.5 0.135841 0.040434 0.025789 0.019406

7.1.2 Performance of the FPGLD when the location parameter β = 0

In this subsection, the performance of the FPGLD is examined by a simulation study

when the location parameter β = 0. It was done by comparing FPGLD (θ ,β ,α,δ ,η) and

FPGLD(θ ,β = 0,α,δ ,η) for selected values of skewness, EK, and Fano factor. The study

is designed as follows:

1. Generate random samples of size, n = 150 from FPGLD (θ ,β ,α,δ ,η) with various

skewness (SK), Excees kurtosis (EK), and Fano factor (FF) values by setting the

parameter values.

2. Fit the FPGLD (θ ,β ,α,δ ,η) and FPGLD (θ ,β = 0,α,δ ,η) to the generated data

sets.

3. Calculate the differences of negative log-likelihood (−2logL) values for every gener-

ated data sets as:(
−2logL(FPGLD (θ ,β = 0,α,δ ,η))

)
−
(
−2logL(FPGLD (θ ,β ,α,δ ,η)))

)

The table 6 (Appendix) summarizes the differences of −2logL values between FPGLD

(θ ,β = 0,α,δ ,η) and FPGLD (θ ,β ,α,δ ,η). We may notice that −2logL difference is

decreasing when skewness, EK, and Fano factor values are increasing. Hence, this simula-

tion study reveals that the inclusion of the location parameter in this distribution resists the

flexibility to cover the higher skewness, EK, and Fano factor values.
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7.1.3 Performance of scale parameter θ when that is incorporated in the mixing pro-
portion

Here, we compare the LD and QLD using a simulation study since they just differ in

their defined mixing proportion. i-e) while the LD′s mixing proportion is defined incorpo-

rating the scale parameter of the mixing component θ , the QLD′s mixing proportion is not

incorporated with θ . The similar steps that have designed in section 7.1.2 are followed and

−2logL differences are calculated as: (−2logL(QLD(θ ,α)))-(−2logL(LD(θ))). Table 7

summarizes the differences of −2logL values between QLD and LD. We may notice that

−2logL difference is decreasing when skewness, EK, and Fano factor values are increasing.

The results indicates that the incorporation of the scale parameter in the mixing proportion

in LD resists the flexibility to cover the higher skewness, EK, and Fano factor values.

7.2. Real-world applications

The performance of the FPGLD with respect to the sub-models is now considered by

using real-world applications. The negative log-likelihood (−2logL), Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov Statistics

(K-S Statistics) are utilized to compare the performance of distributions. The estimates of

the parameters for each distribution has been derived by the MLE method. The following

four real-world data sets have been fitted to the distributions for the goodness of fit of dis-

tributions.

Data set 1: This data set is the relief times (in minutes) of the 20 patients receiving an

analgesic and reported by Gross and Clark (1975).

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5 1.2, 1.4, 3.0 , 1.7, 2.3, 1.6, 2.0.

Data set 2: The data set reported by Bjerkedal (1960) that represents the survival times(in

days) of 72 guinea pigs infected with virulent tubercle bacilli is given below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59,

60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91,

95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258,

263, 297, 341, 341, 376.

Data set 3: The data set was given by Fuller et. al. (1994) that represents the strength data

of glass of the aircraft window is given below:

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78,

27.05, 27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08,

37.09, 39.58, 44.045, 45.29, 45.381.

Data set 4: The data set was used by Lawless (1982) and the data were recorded in tests

on the endurance of deep groove ball bearings. The corresponding random variable is the

number of million revolutions before failure for each of the 23 ball bearings in the life tests.

17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56, 67.8, 68.44, 68.64,

68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4.
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Some of the important statistical measures for the data set 1 to 4 are summarized in

Table 4:

Table 4. Statistical measures for data set 1 to 4
Data Sample size Minimum value Mean Median Skewness EK Fano factor

Data 1 20 1.100 1.900 1.700 1.720 2.924 0.261

Data 2 72 12.000 99.819 70.000 1.796 2.614 65.920

Data 3 31 18.830 30.811 29.900 0.405 -0.713 1.708

Data 4 23 17.880 72.230 67.800 0.941 0.488 19.448

Figure 3 (Appendix) shows the density plots that compare the fitted densities of each

model with the empirical histogram of the real-world data sets. We can observe that the

fitted densities for the FPGLD and TPLwLD show a closer fit with the empirical distri-

butions for real-data sets 1, 3 and 4, and both fitted densities are approximately the same.

Further, QLD shows a closer fit with the empirical distribution for the data set 2. Table 8

( Appendix) shows the values of −2logL, AIC, BIC and K-S statistics and critical values

of the K-S statistics. According to Table 8, we may note that AIC and BIC values increase

when the number of parameters of the distributions increases. Therefore, we use −2logL
values and K-S statistics for the comparison of all models.

Based on the minimum −2logL, and the significant results by K-S statistics, FPGLD and

TPLwLD provide a better fit than all other sub-models for the data sets 1, 3, and 4. Data set

1, 3, and 4 have considerably smaller skewness and EK values or smaller Fano factor value.

There is no difference between the log-likelihood values of FPGLD and TPLwLD for these

data sets. This indicates that δα = θ and the performance of both distributions are the same.

Further, when we compare TPLwLD and TwPLD, the likelihood ratio (LR) test statistics for

the hypothesis testing H0 : β = 0 versus Ha : β �= 0 for data 1, 3 and 4 are 22.686, 53.413,

and 16.663, respectively, and all are greater than χ2
1,0.05 = 3.841. These results indicate the

importance of the location parameter in such type of lifetime data analysis than introducing

new shape parameters from the latent variable distribution to give different weights.

On the other hand, it is notable that in most of the real-data applications, the performance

of TwPLD, QLD, and ThPLD are the same except for data set 2, where the QLD shows

the minimum −2logL significant result by K-S statistic. The data set 2 has considerably

higher skewness, EK and Fano factor values. To show the effect of the higher skewness,

EK, and Fano factor values, data set 5 (Appendix) was also used to fit the distributions, and

Table 5 summarizes the results of the goodness of fittest. These results indicate that QLD

performs well than other distributions for the data sets with considerably higher skewness,

EK and Fano factor values. A possible reason may be that it has the flexibility with the

format δα = δ �= θ and exclusion of the location parameter. Therefore, when developing

a best-fitted distribution for the data sets that have higher skewness, EK, and Fano factor

values, it is recommended to use proper mixing weights and mixing components without a

location parameter.

We hope these findings could be helpful for the researchers when they develop a new Lind-

ley family distribution.
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Table 5. −2logL, and K-S statistics of the NGAD and LwLD for different data sets with various EK values

Data Distribution Sample size Skewness EK Fano factor −2logL AIC

FPGLD 252.416 262.416

TPLwLD 252.416 258.416

TwPLD 266.401 270.401

Data 5 QLD 60 2.437 7.018 2.547 250.920 254.920
ThPLD 266.401 272.401

LD 259.171 261.171

SD 257.096 259.096

8. Conclusions

In this paper, we have introduced a new five-parameter generalized Lindley distribu-

tion(FPGLD) based on exponential and gamma mixtures with different mixing proportions

and done a comparison study with its sub-models. The FPGLD generalizes the Lindley

distribution with location parameter(TPLwLD), Quasi Linley distribution (QLD), Two-

parameter Lindley distribution (TwPLD), Three-parameter Lindley distribution (ThPLD),

Shanker distribution (SD), and classical Lindley distribution (LD). Hence, using FPGLD

a researcher can compare the other existing lifetime distributions without considering its

sub-models separately. The statistical properties and estimates of parameters are obtained

for the FPGLD and compared it with its sub-models.
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APPENDIX

Table 6. Differences of −2logL values between FPGLD (θ ,β = 0,α,δ ,η)

and FPGLD (θ ,β ,α,δ ,η)
↓ SK(EK) FF→

6.70 7.70 12.70 15.80 20.50 28.30 34.60

0.918 (0.496 ) 37.442 32.105 19.087 15.009 11.112 7.656 6.147

0.920 (0.498) 34.758 29.892 16.788 12.822 9.151 5.896 4.435

0.928 (0.509) 31.223 26.807 13.746 9.840 6.392 3.392 2.239

0.969 (0.571) 28.037 23.353 10.201 6.563 3.370 1.160 0.421

1.044 (0.709) 27.116 22.081 8.693 5.069 2.164 0.368 0.014

1.102 (0.837) 27.108 22.031 8.321 4.656 1.822 0.189 0.002

1.208 (1.107) 27.082 22.003 8.242 4.540 1.634 0.089 0.001

Table 7. Differences of −2logL values between QLD (θ ,α) and LD (θ)
↓ SK(EK) FF→

6.70 7.70 12.70 15.80 20.50 28.30 34.60

0.918 (0.496 ) 71.804 70.212 64.911 62.578 59.815 56.668 54.969

0.920 (0.498) 70.585 69.019 63.197 60.659 57.701 54.250 52.264

0.928 (0.509) 68.506 66.906 60.250 57.248 53.771 49.493 47.189

0.969 (0.571) 65.186 63.199 54.971 51.261 46.605 41.265 38.026

1.044 (0.709) 62.391 60.046 50.563 46.135 40.695 34.049 29.988

1.102 (0.837) 60.962 58.641 48.365 43.576 37.731 30.405 27.083

1.208 (1.107) 57.306 52.694 41.795 36.615 30.199 22.009 20.084

Data set 5 (Hibatullah.et.al.,(2018): average wind speed per month.
1.04525, 2.78426, 2.54918, 6.90446, 2.46577, 2.83905, 2.09819, 0.47927, 1.41378, 4.77888,

2.28740 ,4.79976, 1.32359 ,1.71967, 3.52471, 0.38095, 10.9028 ,1.38314 ,1.89628, 1.03046,

2.44529, 13.1893 ,2.16495 ,3.78884, 2.20266, 0.71543 ,16.4941, 3.14792, 7.72747, 2.84926

,2.68460, 5.45061, 1.32353, 1.48582, 5.10102, 3.00342, 1.77735 ,4.88295, 0.80280, 5.02584,

1.50003, 2.01266, 1.74341, 3.11761,0.80668 ,2.65187, 4.64156, 1.65586, 6.95507, 5.83996

,3.33749, 1.27453, 2.29751 ,3.26983,2.65993, 4.53323, 5.73434, 2.09596, 1.52554, 2.71060.
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Figure 3: Empirical histograms with fitted densities of distributions
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Figure 4: The kurtosis values of FPGLD at different parameter values of δ ,α and η
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Figure 5: The skewness values of FPGLD at different parameter values of δ ,α and η
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Figure 6: The Fano factor values of FPGLD at different parameter values of δ ,α and η

(a) to (d): θ , β and η are fixed, and δ and α values are changed
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Figure 7: The Fano factor values of FPGLD at different parameter values of β and θ

(a) and (b): δ , α and η are fixed, and θ and β values are changed


