SOME EFFICIENT IMPLEMENTATION SCHEMES FOR IMPLICIT RUNGE-KUTTA METHODS

R. Vigneswaran ${ }^{1 \S}$, S. Kajanthan ${ }^{2}$
${ }^{1,2}$ Department of Mathematics and Statistics
Faculty of Science
University of Jaffna
SRI LANKA

Abstract

Several iteration schemes have been proposed to solve the nonlinear equations arising in the implementation of implicit Runge-Kutta methods. As an alternative to the modified Newton scheme, some iteration schemes with reduced linear algebra costs have been proposed A scheme of this type proposed in [9] avoids expensive vector transformations and is computationally more efficient. The rate of convergence of this scheme is examined in [9] when it is applied to the scalar test differential equation $x^{\prime}=q x$ and the convergence rate depends on the spectral radius of the iteration matrix $M(z)$, a function of $z=h q$, where h is the step-length. In this scheme, we require the spectral radius of $M(z)$ to be zero at $z=0$ and at $z=\infty$ in the z-plane in order to improve the rate of convergence of the scheme. New schemes with parameters are obtained for three-stage and four-stage Gauss methods. Numerical experiments are carried out to confirm the results obtained here.

AMS Subject Classification: 65L04, 65L05
Key Words: implementation, Gauss methods, rate of convergence, stiff systems

1. Backround

Let us consider an initial value problem for stiff system of $n(\geq 1)$ ordinary
Received: January 3, 2014
(C) 2014 Academic Publications, Ltd. url: www.acadpubl.eu
${ }^{\S}$ Correspondence author
differential equations

$$
\begin{equation*}
x^{\prime}=f(x(t)), \quad x\left(t_{0}\right)=x_{0}, \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where f is assumed to be as smooth as necessary. An s-stage implicit RungeKutta method computes an approximation x_{r+1} to the solution $x\left(t_{r+1}\right)$ at grid point $t_{r+1}=t_{r}+h$ by

$$
x_{r+1}=x_{r}+h \sum_{i=1}^{s} b_{i} f\left(y_{i}\right)
$$

where the internal approximations $y_{1}, y_{2}, \cdots, y_{s}$ satisfy the $s n$ equations

$$
\begin{equation*}
y_{i}=x_{r}+h \sum_{j=1}^{s} a_{i j} f\left(y_{j}\right), \quad i=1,2, \cdots, s \tag{2}
\end{equation*}
$$

$A=\left[a_{i j}\right]$ is the real coefficient matrix and $b=\left(b_{1}, b_{2}, \cdots, b_{s}\right)^{T}$ is the column vector of the Runge-Kutta method. Let $Y=y_{1} \oplus y_{2} \oplus \cdots \oplus y_{s} \in \mathbb{R}^{s n}$ and let $F(Y)=f\left(y_{1}\right) \oplus f\left(y_{2}\right) \oplus \cdots \oplus f\left(y_{s}\right) \in \mathbb{R}^{s n}$. Then equation (2) may be represented by the compact form

$$
\begin{equation*}
Y=e \otimes x_{r}+h\left(A \otimes I_{n}\right) F(Y) \tag{3}
\end{equation*}
$$

where $e=(1,1, \cdots, 1)^{T}$ and $A \otimes I_{n}$ is the Kronecker product of the matrix A with $n \times n$ identity matrix I_{n} and, in general $A \otimes B=\left[a_{i j} B\right]$. This article deals with methods suitable for stiff systems so that the matrix A is not strictly lower triangular and, in particular, is concerned with Gauss methods since they have highest order and good stability properties.

Equation (3) may be solved by a modified Newton iteration. Let J be the Jacobian of f evaluated at some recent point x_{r}, updated infrequently. The modified Newton scheme evaluates $Y^{1}, Y^{2}, Y^{3}, \cdots$, to satisfy

$$
\begin{equation*}
\left(I_{s n}-h A \otimes J\right)\left(Y^{m}-Y^{m-1}\right)=D\left(Y^{m-1}\right), \quad m=1,2, \cdots \tag{4}
\end{equation*}
$$

where D is the approximation defect, $D(Z)=e \otimes x_{r}-Z+h\left(A \otimes I_{n}\right) F(Z)$. In each step of this iteration, a set of $s n$ linear equations has to be solved. Schemes have been developed, to solve equation (4), which use the fact that J is constant [1], [6], [7]. In other schemes advantage is taken of the special forms of some implicit methods [2], [4], [5], [12].

In another approach, schemes based directly on iterative procedure have been developed [3], [8], [9], [10],[13],[21]. For a singly implicit method, there is a non-singular matrix S so that $S^{-1} A S=\lambda\left(I_{s}-L\right)^{-1}$, where L is zero except
for some ones on the sub-diagonal. On applying this transformation, the scheme (4) becomes

$$
\begin{align*}
{\left[I_{s} \otimes\left(I_{n}-h \lambda J\right)\right] E^{m} } & =\left[\left(I_{s}-L\right) S^{-1} \otimes I_{n}\right] D\left(Y^{m-1}\right)+\left(L \otimes I_{n}\right) E^{m} \\
Y^{m} & =Y^{m-1}+\left(S \otimes I_{n}\right) E^{m}, \quad m=1,2,3 \cdots \tag{5}
\end{align*}
$$

Cooper and Butcher [8] proposed an iterative scheme, sacrificing superlinear convergence for reduced linear algebra cost, which may be regarded as a generalization of the scheme (5) for singly implicit methods. They considered the scheme

$$
\begin{align*}
{\left[I_{s} \otimes\left(I_{n}-h \lambda J\right)\right] E^{m} } & =\left(B_{1} S^{-1} \otimes I_{n}\right) D\left(Y^{m-1}\right)+\left(L_{1} \otimes I_{n}\right) E^{m} \\
Y^{m} & =Y^{m-1}+\left(S \otimes I_{n}\right) E^{m}, \quad m=1,2, \cdots \tag{6}
\end{align*}
$$

where B_{1} and S are real $s \times s$ non-singular matrices and L_{1} is strictly lower triangular matrix of order s, and λ is a real constant. Cooper and Butcher [8] showed that successive over-relaxation may be applied to improve the rate of convergence for scalar test problem. Peat and Thomas [19], after extensive numerical experiments, concluded that the schemes proposed by Cooper and Butcher are, in general, the most efficient schemes for integration of stiff problems. Gladwell and Thomas [15] recommended this scheme for the two-stage Gauss method. Each step of the scheme (6) requires s function evaluations and the solution of s sets of n linear equations. These s sub-steps are performed in sequence and it is not possible to compute elements of $Y^{m}=y_{1}^{m} \oplus y_{2}^{m} \oplus \cdots \oplus y_{s}^{m}$ until all sub-steps are completed. Cooper and Vignesvaran [9] considered a scheme where these elements are obtained in sequence and the approximation defect is updated after each sub-step completed. Only one vector transformation is needed for each full step so that this scheme is more efficient. Another scheme was proposed by Cooper and Vignesvaran [10] in order to obtain improved rate of convergence, by adding extra sub-steps.Vigneswaran [20] obtained further improvement in the rate of convergence of the iteration scheme proposed in [10]. Gonzalez, Gonzalez and Montijano [16] proposed a scheme for Gauss methods using an iterative procedure of semi-implicit type in which the Jacobian does not appear explicitly. A scheme of this type was proposed in [17] in which convergence and stability properties of the scheme are discussed in detail.

2. Efficient Iteration Scheme

Cooper and Vignesvaran [9] proposed the scheme

$$
\begin{align*}
{\left[I_{s} \otimes\left(I_{n}-h \lambda J\right)\right] E^{m}=} & \left(L \otimes I_{n}\right)\left(e \otimes x_{r}-Y^{m}\right) \\
& +\left(U \otimes I_{n}\right)\left(e \otimes x_{r}-Y^{m-1}\right) \\
& +h\left(T \otimes I_{n}\right) F\left(Y^{m}\right) \\
& +h\left(R \otimes I_{n}\right) F\left(Y^{m-1}\right) \\
Y^{m}= & Y^{m-1}+E^{m}, m=1,2, \cdots \tag{7}
\end{align*}
$$

where B is a real non-singular matrix such that $B=L+U$ and $B A=T+R$, L and T are strictly lower triangular matrices, U and R are upper triangular matrices, and λ is a real constant. Cooper and Vignesvaran [9] showed that $D(Y)=0$ if the sequence $\left\{Y^{m}\right\}$ has a limit Y and f is continuous on \mathbb{R}^{n}. They observed that the scheme can be implemented efficiently by updating Y^{m-1} and $F\left(Y^{m-1}\right)$ as soon as each element of $Y^{m}=y_{1}^{m} \oplus y_{2}^{m} \oplus \cdots \oplus y_{s}^{m}$ is computed. The work involved is no more than is needed to carry out an evaluation of $D\left(Y^{m-1}\right)$ followed by a transformation to $\left(B \otimes I_{n}\right) D\left(Y^{m-1}\right)$.

Cooper and Vignesvaran [9] tested the rate of convergence of this scheme when it is applied to the scalar test problem $x^{\prime}=q x$ with rapid convergence required for all $z \in \mathbb{C}^{-}$, where $\mathbb{C}^{-}=\{z \in \mathbb{C}: \operatorname{Re} \leq 0\}$. For this test problem, the scheme gives (7) gives

$$
Y-Y^{m}=M(z)\left(Y-Y^{m-1}\right), \quad m=1,2, \cdots
$$

and the rate of convergence depends on the spectral radius $\rho[M(z)]$ of the iteration matrix

$$
\begin{equation*}
M(z)=I_{s}-\left[\left(I_{s}+L-z\left(\lambda I_{s}+T\right)\right]^{-1} B\left(I_{s}-z A\right)\right. \tag{8}
\end{equation*}
$$

Cooper and Vignesvaran[9] imposed the condition that the iteration matrix M has only one non-zero eigenvalue ϕ,

$$
\begin{equation*}
\phi(z)=1-\beta \frac{\operatorname{det}\left(I_{s}-z A\right)}{(1-\lambda z)^{s}} \tag{9}
\end{equation*}
$$

so that the spectral raqdius, $\rho[M(z)]$, given by $\rho[M(z)]=|\phi(z)|$ and λ and $\beta(=\operatorname{det} B)$ can be chosen to solve the problem

$$
\begin{equation*}
\min _{\lambda, \beta} \max _{z \in \mathbb{C}^{-}} \rho[M(z)] \tag{10}
\end{equation*}
$$

To solve the minimization problem (10), when $\lambda>0$ it follows from (9) that ϕ is analytic and bounded on \mathbb{C}^{-}and hence $|\phi|$ attains its maximum on the imaginary axis $z=i y, y$ real. The polynomial p, defined by

$$
\begin{equation*}
p(\omega)=|\phi(i y)|^{2}, \quad \omega=\frac{1}{1+(\lambda y)^{2}} \tag{11}
\end{equation*}
$$

is a polynimial of degree s. For a given method, the coefficients of p depends on λ and β only and Cooper and Vignesvaran[9] obtained these parameters to minimize the maximum of p on $[0,1]$ for the Gauss methods of order 4,6 and 8 respectively.

Consider the three-stage Gauss method with matrix of coefficients

$$
A=\left[\begin{array}{ccc}
\frac{5}{36} & \frac{2}{9}-\frac{\sqrt{15}}{15} & \frac{5}{36}-\frac{\sqrt{15}}{30} \tag{12}\\
\frac{5}{36}+\frac{\sqrt{15}}{24} & \frac{2}{9} & \frac{5}{36}-\frac{\sqrt{15}}{24} \\
\frac{5}{36}+\frac{\sqrt{15}}{30} & \frac{2}{9}+\frac{\sqrt{15}}{15} & \frac{5}{36}
\end{array}\right]
$$

and $\operatorname{det}(I-z A)=1-\frac{1}{2} z+\frac{1}{10} z^{2}-\frac{1}{120} z^{3}$.
Cooper and Vignesvaran[9]obtained the optimum values $\lambda=0.202740067$ and $\beta=1.159572736$ when solving the problem(10). For these values of λ and $\beta, \rho[M(z)]<0.1599$ for all $z \in \mathbb{C}^{-}$.

Next it remains to choose the elements of $B=\left[b_{i j}\right]$ so that the iteration matrix $M(z)=\left[m_{i j}(z)\right]$ is strictly upper triangular matrix except that $m_{s s}(z)=$ ϕ, a non-zero eigenvalue. For the three-stage Gauss method, the condition on $M(z)$ gives

$$
\begin{align*}
b_{11} & =1, \\
b_{12} a_{21}+b_{13} a_{31} & =\lambda-a_{11}, \\
b_{12}\left(a_{22}-\lambda\right)+b_{13} a_{32} & =-a_{12}, \\
b_{21} b_{12}-b_{22} & =-1, \\
b_{21}\left(a_{12}-b_{12} a_{11}\right)+b_{22}\left(a_{22}-a_{21} b_{12}\right)+b_{23}\left(a_{32}-a_{31} b_{12}\right) & =\lambda, \tag{13}\\
b_{31} b_{12} & =0, \\
b_{31} a_{11}+b_{32} a_{21}+b_{33} a_{31} & =0 .
\end{align*}
$$

From (13), it happens that $b_{31}=0$. Again the equations (13) together with $\operatorname{det} B=\beta$ may be solved by choosing $b_{21}=0$ and this gives

$$
B=\left[\begin{array}{ccc}
1 & 0.151290053 & 0.068750541 \tag{14}\\
0 & 1 & 0.058981649 \\
0 & -0.983175783 & 1.101583408
\end{array}\right]
$$

Consider the four-stage Gauss method with matrix of coefficients $A=\left[a_{i j}\right]$ obtained by solving the sets of equations

$$
\sum_{j=1}^{4} a_{i j} c_{j}^{r-1}=\frac{c_{i}^{r}}{r}, \quad r=1,2,3,4
$$

for each $i=1,2,3,4$, where $c_{1}, c_{2}, c_{3}, c_{4}$ are the zeros of $P_{4}(2 x-1)$, the transformed legendre polynomial of degree 4 . For this method,

$$
\operatorname{det}(I-z A)=1-\frac{1}{2} z+\frac{3}{28} z^{2}-\frac{1}{84} z^{3}+\frac{1}{1680} z^{4} .
$$

The condition on $M(z)$ with the choices $b_{31}=0$ and $b_{41}=b_{42}=0$ give a system of equations which may be ordered as a sequence of sets of lnear equations given below:

$$
\begin{align*}
b_{11} & =1 \\
b_{12} a_{21}+b_{13} a_{31}+b_{14} a_{41} & =\left(\lambda-a_{11}\right) \\
b_{12}\left(a_{22}-\lambda\right)+b_{13} a_{32}+b_{14} a_{42} & =-a_{12} \tag{15}\\
b_{12} a_{23}+b_{13}\left(a_{33}-\lambda\right)+b_{14} a_{43} & =-a_{13} \\
b_{12} b_{21}-b_{22} & =-1, \\
b_{13} b_{21}-b_{23} & =0 \\
\left(b_{12} a_{11}-a_{12}\right) b_{21}+\left(b_{12} a_{21}-a_{22}\right) b_{22} & \\
+\left(b_{12} a_{31}-a_{32}\right) b_{23}+\left(b_{12} a_{41}-a_{42}\right) b_{24} & =-\lambda, \tag{16}\\
\left(a_{13}-b_{13} a_{11}\right) b_{21}+\left(a_{23}-b_{13} a_{21}\right) b_{22} & \\
+\left(a_{33}-b_{13} a_{31}\right) b_{23}+\left(a_{43}-b_{13} a_{41}\right) b_{24} & =0,
\end{align*}
$$

$$
\begin{align*}
b_{33} & =1, \\
b_{32} a_{21}+b_{34} a_{41} & =-a_{31}, \tag{17}\\
b_{32} a_{23}+b_{34} a_{43} & =\lambda-a_{33}, \\
b_{43} a_{31}+b_{44} a_{41} & =0 . \tag{18}
\end{align*}
$$

Cooper and Vignesvaran[9] showed that these equations can be solved only for one positive value of $\lambda, \quad \lambda=0.146840443$ and they obtained the optimum value $\beta=1.034$ to solve the problem (10). In this case, $\rho[M(z)]<0.3467$ for $\operatorname{Re}(z) \leq 0$. With these values of λ and β, the set of equations (15),(16),(17),(18) and the equation $\operatorname{det} B=\beta$ give

$$
B=\left[\begin{array}{llll}
1 & 0.265166833 & 0.079402432 & -0.018488567 \tag{19}\\
0.124164683 & 1.032924356 & 0.009858978 & 0.124164683 \\
0 & -0.786754443 & 1 & -0.108118541 \\
0 & 0 & -1.109340683 & 1.045019753
\end{array}\right] .
$$

3. Schemes with Improving Rates of Convergence

In this section, additional constraints, which require super-linear convergence at the origin and infinity, are imposed on the spectral radius of the iteration matrix $M(z)$ in addition to the condition that $M(z)$ has only one non-zero eigenvalue. The results were obtained for the two-stage Gauss method in [22]. In this paper, new schemes corresponding to the iteration scheme (7) for threestage and four-stage Gauss methods are obtained respectively.

3.1. The Case $\rho[M(z)]=0$ at $z=0$

For the three-stage Gauss method, the additional constraint $\rho[M(z)]=0$ at $z=0$ gives $\beta=1$. Therefore, the other parameter λ has to be chosen to solve
the problem(10). It follows from (11) that the polynomial p is given by

$$
p(\omega)=a_{0} \omega(1-\omega)^{2}+(1-\omega)\left[a_{1} \omega-a_{2}(1-\omega)\right]^{2}
$$

where $a_{0}=3-\frac{1}{10 \lambda^{2}}, \quad a_{1}=3-\frac{1}{2 \lambda}, \quad, \quad a_{2}=1-\frac{1}{120 \lambda^{3}}$.
A simple grid search procedure shows that good approximation to the optimum value of λ to minimize the maximum of p on $[0,1]$ is given by $\lambda=$ 0.191729022 . Again the condition on $M(z)$ gives the set of equations (13) and these equations togethger with $\operatorname{det} B=\beta$ may be solved by choosing $b_{21}=0$. This gives

$$
B=\left[\begin{array}{ccc}
1 & 0.115697224 & 0.067542178 \tag{20}\\
0 & 1 & 0.009448755 \\
0 & -0.885047715 & 0.991637400
\end{array}\right]
$$

In this case $\rho[M(z)]<0.2326$ for all $z \in \mathbb{C}^{-}$.
For the four-stage Gauss method, the additional constraint $\rho[M(z)]=0$ at $z=0$ gives $\beta=1$. Again from (11), the polynomial p is given by

$$
p(\omega)=(1-\omega)^{2}\left[a_{4}(1-\omega)-a_{2} \omega\right]^{2}+\omega(1-\omega)\left[a_{1} \omega-a_{3}(1-\omega)\right]^{2}
$$

where $a_{1}=4-\frac{1}{2 \lambda}, a_{2}=6-\frac{3}{28 \lambda^{2}}, a_{3}=4-\frac{1}{84 \lambda^{3}}, a_{4}=1-\frac{1}{1680 \lambda^{4}}$. Again the system of equations (15),(16),(17) and (18) can be solved only for $\lambda=$ 0.146840443 and for these fixed values of λ and β, the equations (15), (16), (17), (18)and $\operatorname{det} B=\beta$ gives

$$
B=\left[\begin{array}{llll}
1 & 0.265166833 & 0.079402432 & -0.018488567 \tag{21}\\
0.124164683 & 1.032924356 & 0.009858978 & 0.124164683 \\
0 & -0.786754443 & 1 & -0.108118541 \\
0 & 0 & -1.072863330 & 1.010657402
\end{array}\right]
$$

In this case $\rho[M(z)]<0.3542$ for all $z \in \mathbb{C}^{-}$.
The equation $|\phi(z)|=c$ describes a closed curve in the z-plane. Typical curves are plotted for different values of c and sketched in Figures 1 and 2 for three-stage and four-stage Gauss methods respectively. In this case, $\rho[M(z)] \leq$ c on and interior to the curve. Since $\rho[M(0)]=0$, these schemes are expected to perform well as typical stiff problems have Jacobian with some eigenvalues of small modulus.

Figure 1: Curves $\rho[M(z)]=c \quad$ for sFigire 2: Curves $\rho[M(z)]=c \quad$ for $s=4$

3.2. The Case $\rho[M(z)]=0$ at $z=\infty$

The constraint $\rho[M(\infty)]=0$ for the three-stage Gauss method gives $\lambda=\sqrt[3]{\frac{\beta}{120}}$ and the polynomial p, given by (11), is

$$
p(\omega)=\omega\left[a_{0} \omega-a_{2}(1-\omega)\right]^{2}+a_{1}^{2} \omega^{2}(1-\omega)
$$

where $a_{0}=1-\beta, \quad a_{1}=3-\frac{\beta}{2 \lambda}, \quad a_{2}=3-\frac{\beta}{10 \lambda^{2}}$. By search procedure, a good approximation to the optimum value of β is obtained by $\beta=1.181387098$ and the corresponding λ is given by $\lambda=0.214323763$. In this case $\rho[M(z)]<0.2359$ for all $z \in \mathbb{C}^{-}$. With these values of λ and β, the equations (13) with $\operatorname{det} B=\beta$ may be solved by choosing $b_{21}=0$. This gives

$$
B=\left[\begin{array}{ccc}
1 & 0.187138824 & 0.071808998 \tag{22}\\
0 & 1 & 0.112237507 \\
0 & -0.958395854 & 1.073819136
\end{array}\right]
$$

For the four-stage Gauss method, the additional constraint $\rho[M(\infty)]=0$ gives $\beta=1680 \lambda^{4}$. It follows from (11) that the polynomial p is given by

$$
p(\omega)=\left[a_{0} \omega^{2}-a_{2} \omega(1-\omega)\right]^{2}+\omega(1-\omega)\left[a_{1} \omega-a_{3}(1-\omega)\right]^{2}
$$

where $a_{0}=1-\beta, \quad a_{1}=4-\frac{\beta}{2 \lambda}, \quad a_{2}=6-\frac{3 \beta}{28 \lambda^{2}}, \quad a_{3}=4-\frac{\beta}{84 \lambda^{3}}$. With the value $\lambda=0.146840443$, which solves the sets of equations 15$),(16),(17),(18)$, and the corresponding value of β, those sets of equations and $\operatorname{det} B=\beta$ give

$$
B=\left[\begin{array}{lllc}
1 & 0.265166833 & 0.079402432 & -0.018488567 \tag{23}\\
0.124164683 & 1.032924356 & 0.009858978 & 0.124164683 \\
0 & -0.786754443 & 1 & -0.108118541 \\
0 & 0 & -0.837985352 & 0.789397936
\end{array}\right]
$$

In this case $\rho[M(z)]<0.2189$ for all $z \in \mathbb{C}^{-}$.

Figure 3: Curves $\rho[M(z)]=c \quad$ for s FigBre 4: Curves $\rho[M(z)]=c \quad$ for $s=4$

As per the plotted curves for $\rho[M(z)]=c$ for different values of c in in Figures 3 and 4 for three-stage and four-stage Gauss methods,these schemes are expected to perform well as typical stiff problems have Jacobian with some eigenvalues of large negative real parts and $\rho[M(\infty)]=0$.

4. Numerical Results

To evaluate the efficiency of the schemes obtained here, a range of numerical experiments was carried out. For each experiment, a single step was carried out, in each case, using the Jacobian evaluated at the initial point. For each scheme tested, the initial iterate Y^{0} is chosen as $Y^{0}=e \otimes x$, where x is the true solution at the initial point.

Problem 1 denotes the non-linear system given by [14]

$$
\begin{array}{ll}
x_{1}^{\prime}=-0.013 x_{1}+1000 x_{1} x_{3}, & x_{1}(0)=1, \\
x_{2}^{\prime}=2500 x_{2} x_{3}, & x_{2}(0)=1, \\
x_{3}^{\prime}=0.013 x_{1}-1000 x_{1} x_{3}-2500 x_{2} x_{3}, & x_{3}(0)=0,
\end{array}
$$

where the eigenvalues of the Jacobian at the initial point are $0,-0.0093$ and -3500 .

Problem 2 is the elliptic two-body problem, with eccentricity 0.6 ,

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{3}, & x_{1}(0)=0.4 \\
x_{2}^{\prime}=x_{4}, & x_{2}(0)=0 \\
x_{3}^{\prime}=-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)^{-3 / 2}, & x_{3}(0)=0 \\
x_{4}^{\prime}=-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-3 / 2}, & x_{4}(0)=2
\end{array}
$$

The eigenvalues at the initial point are ± 5.5902 and ± 3.9528 i.
Problem 3 is the HIRES problem given by [18],

$$
\begin{array}{ll}
x_{1}^{\prime}=-1.71 x_{1}+0.43 x_{2}+8.32 x_{3}+0.0007, & x_{1}(0)=1, \\
x_{2}^{\prime}=1.71 x_{1}-8.75 x_{2}, & x_{2}(0)=0, \\
x_{3}^{\prime}=-10.03 x_{3}+0.43 x_{4}+0.035 x_{5}, & x_{3}(0)=0, \\
x_{4}^{\prime}=8.32 x_{2}+1.71 x_{3}-1.12 x_{4}, & x_{4}(0)=0, \\
x_{5}^{\prime}=-1.745 x_{5}+0.43 x_{6}+0.43 x_{7}, & x_{5}(0)=0, \\
\left.x_{6}^{\prime}=-280 x_{6} x_{8}+0.69 x_{4}+1.71 x_{5}\right)-0.43 x_{6}+0.69 x_{7}, & x_{6}(0)=0, \\
x_{7}^{\prime}=280 x_{6} x_{8}-1.81 x_{7}, & x_{7}(0)=0, \\
x_{8}^{\prime}=-x_{7}^{\prime}, & x_{8}(0)=0.0057 .
\end{array}
$$

The eigenvalues of the Jacobian at the initial point are $0,-10.4841$, $-8.278,-0.2595,-0.5058,-2.3147$ and $-2.6745 \pm 0.1499 i$.

Problem 4 denotes the system

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{2}, & x_{1}(0)=2 \\
x_{2}^{\prime}=10^{6}\left(\left(1-x_{1}^{2}\right) x_{2}\right)-x_{1}, & x_{2}(0)=0
\end{array}
$$

derived from the Van der Pol's equation and given by [11]. The eigenvalues of the Jacobian at the initial point are close to 0 and -3000000 .

Problem 5 denotes the system, with non-linear coupling between smooth and transient components,

$$
\begin{array}{ll}
x_{1}^{\prime}=-10^{5} x_{1}+2, & x_{1}(0)=1, \\
x_{2}^{\prime}=-10^{6} x_{2}+0.1 x_{1}^{2}, & x_{2}(0)=1, \\
x_{3}^{\prime}=-40 \times 10^{5} x_{3}+0.4\left(x_{1}^{2}+x_{2}^{2}\right), & x_{3}(0)=1, \\
x_{4}^{\prime}=-10^{7} x_{4}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, & x_{4}(0)=1,
\end{array}
$$

where the Jacobian has constant eigenvalues $-10^{5},-10^{6},-40 \times 10^{5}$ and -10^{7}.
For each problem, a single step was carried out, in each case, using the Jacobian evaluated at the initial point. For each scheme tested, the initial iterate Y^{0} is chosen as $Y^{0}=e \otimes x$, where x is the true solution at the initial point.

e_{m}	Method 1	Method 1 *	Method 2	Method 2*
e_{1}	0.000956220	0.000824833	0.000895782	0.000866327
e_{2}	0.000152341	0.000110398	0.000142783	0.000143328
e_{3}	0.000024273	0.000000910	0.000028768	0.000028367
e_{4}	0.000003867	0.000000031	0.000001011	0.000000127
e_{5}	0.000000616	0.000000005	0.000000054	0.000000033
e_{6}	0.000000098	0.000000001	0.000000016	0.000000008
e_{7}	0.000000016	0.000000000	0.000000005	0.000000002
e_{8}	0.000000002		0.000000001	0.000000001
e_{9}	0.000000000		0.000000000	

Table 1: Values of e_{m} for Problem 1 with $h=0.1$

Method 1 denotes the three-stage Gauss method implemented according to the iteration scheme(7) with $\lambda=0.202740067$ and the matrix B given by (14). Method 1^{*} is the same method implemented using the scheme (7) with $\lambda=0.191729022$ and B given by (20) for the case $\rho[M(z)]=0$ at $z=$ 0 . Method $1^{* *}$ is also the same method implemented using the scheme (7) with $\lambda=0.214323763, B$ given by (22) for the case $\rho[M(z)]=0$ at $z=\infty$. Method 2 denotes the four-stage Gauss method implemented according to the scheme (7) with $\lambda=0.146840443$ and B given by (19). Method 2^{*} is the same method implemented using the scheme (7) with $\lambda=0.146840443$ and B given by (21) for $\rho[M(0)]=0$. Method $2^{* *}$ is also the same method implemented using the scheme (7) with the same value of λ and B given by (23) for $\rho[M(\infty)]=0$.

For each method and problem, the quantities

$$
e_{m}=\left\|E^{m}\right\|, \quad m=1,2,3, \cdots
$$

were computed using the maximum norm on $\mathbb{R}^{n s}$. The values e_{m} for which $e_{m} \leq \mathrm{TOL}=10^{-9}$ are tabulated for each problem and method. Similar results are obtained for different values of TOL. The results are given below for each problem for three-stage and four-stage Gauss methods.

e_{m}	Method 1	Method 1*	Method 2	Method 2*
e_{1}	0.064323263	0.055470109	0.060234720	0.058254081
e_{2}	0.010337141	0.007429666	0.009595467	0.009632142
e_{3}	0.001670882	0.000067048	0.001945151	0.001918104
e_{4}	0.000270379	0.000000270	0.000072013	0.000008450
e_{5}	0.000043831	0.000000002	0.000002754	0.000000149
e_{6}	0.000007117	0.000000000	0.000000106	0.000000000
e_{7}	0.000001157		0.000000004	
e_{8}	0.000000189		0.000000000	
e_{9}	0.000000031			
e_{10}	0.000000005			
e_{11}	0.000000001			

Table 2: Values of e_{m} for Problem 2 with $h=0.01$

e_{m}	Method 1	Method 1*	Method 2	Method 2*
e_{1}	0.017382122	0.015000547	0.016278083	0.015742827
e_{2}	0.002728084	0.002012693	0.002608108	0.002618024
e_{3}	0.000428244	0.000013213	0.000523517	0.000516215
e_{4}	0.000067235	0.000000021	0.000017567	0.000003710
e_{5}	0.000010557	0.000000000	0.000000591	0.000000025
e_{6}	0.000001658		0.000000020	0.000000000
e_{7}	0.000000260		0.000000001	
e_{8}	0.000000041			
e_{9}	0.000000006			
e_{10}	0.000000001			
e_{11}	0.000000000			

Table 3: Values of e_{m} for Problem 3 with $h=0.01$

5. Concluding Remarks

According to the numerical results, for three-stage Gauss method, the method 1* performs better than method 1 for the problems whose Jacobian matrices have small eigenvalues and the method $1^{* *}$ performs better than method 1 for the problems whose Jacobian matrices have eigenvalues with large negative real part. For four-stage Gauss method, Method 2* is better than Method 2 for

e_{m}	Method 1	Method 1**	Method 2	Method 2**
e_{1}	0.000000820	0.000000840	0.000000884	0.000000876
e_{2}	0.000000149	0.000000155	0.000000364	0.000000275
e_{3}	0.000000024	0.000000018	0.000000119	0.000000007
e_{4}	0.000000004	0.000000000	0.000000039	0.000000001
e_{5}	0.000000001		0.000000013	0.000000000
e_{6}			0.000000004	
e_{7}			0.000000001	
e_{8}			0.000000001	

Table 4: Values of e_{m} for Problem 4 with $h=0.1$

e_{m}	Method 1	Method 1**	Method 2	Method 2**
e_{1}	1.229888995	1.259710539	1.325937141	1.313889816
e_{2}	0.223847832	0.232791462	0.546093036	0.412513120
e_{3}	0.035719849	0.026955933	0.177844840	0.010989760
e_{4}	0.005699876	0.000005372	0.057918610	0.000015235
e_{5}	0.000909531	0.000000009	0.018862359	0.000000018
e_{6}	0.000145134	0.000000001	0.006142907	0.000000000
e_{7}	0.000023159	0.000000000	0.002000561	
e_{8}	0.000003696		0.000651523	
e_{9}	0.000000590		0.000212182	
e_{10}	0.000000094		0.000069101	
e_{11}	0.000000015		0.000022504	
e_{12}	0.000000002		0.000007329	
e_{13}	0.000000000		0.000002387	
e_{14}			0.000000777	
e_{15}			0.000000253	

Table 5: Values of e_{m} for Problem 5 with $h=0.1$
problems with small eigenvalues and Method $2^{* *}$ is better than Method 2 for problems with eigenvalues which have large negative real parts. In overall, the numerical experiments confirm that the new schemes obtained for the Gauss methods peform well.

References

[1] T.A.Bickart, An efficient solution process for implicit RungeKutta methods, SIAM J. Numer.Anal., 14 (1977), 1022-1027. doi: http://dx.doi.org/10.1137/0714069
[2] J.C.Butcher, On the implementation of implicit Runge-Kutta methods, BIT, 16 (1976), 237-240. doi: 10.1007/BF01932265
[3] J.C.Butcher, Some implementation schemes for implicit Runge-Kutta methods, Proceeding of the Dundee Conference on Numerical Analysis ,Lecture Notes in Mathematics, Springer-Verlag, 773,(1980), 12-24. doi: 10.1007/BFb0094160
[4] J.C.Butcher, J.R.Cash, Towards efficient Runge-Kutta methods for stiff systems, SIAM J.Numer. Anal., 27 (1990), 753-761. doi: http://dx.doi.org/10.1137/0727044
[5] J.R.Cash, On a class of implicit Runge-Kutta procedures, IMA J. Appl. Math., 19 (1977), 455-470. doi: 10.1093/imamat/19.4.455
[6] F.H.Chipman, The implementation of Runge-Kutta implicit processes, BIT, 13 (1973), 391-393. doi: 10.1007/BF01933400
[7] A.G.Collings and G.J.Tee, An analysis of Euler and implicit Runge-Kutta numerical integration schemes for structural dynamic problems, Proceeding of the Sixth Australasian Conference on the Mechanics of Structures and Materials, 1 (1977), 147-154.
[8] G.J.Cooper and J.C.Butcher, An iteration scheme for implicit RungeKutta methods, IMA J. Numer. Anal., 3 (1983), 127-140. doi: 10.1093/imanum/3.2.127
[9] G.J.Cooper and R. Vignesvaran, A scheme for the implementation of implicit Runge-Kutta methods, Computing, 45 (1990), 321-332. doi: 10.1007/BF02238800
[10] G.J.Cooper and R. Vignesvaran, Some schemes for the implementation of implicit Runge-Kutta methods, J. Comp. App. Math., 45 (1993), 213-225. doi: http://dx.doi.org/10.1016/0377-0427(93)90276-H
[11] H.T.Davis, Introduction to non-linear differential and integral equations, Dover, New York (1962).
[12] W.H. Enright, Improving the efficiency of matrix operations in the numerical solution of ODEs, Technical Report 98 , Computer Science Dept., Univ. of Toronto (1976).
[13] R. Frank and C.W. Ueberhuber, Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations, BIT, 17 (1977), 146-159. doi: 10.1007/BF01932286
[14] C.W. Gear, The automatic integration of stiff ordinary differential equations, Proc. IFIP Congress, (1968), 187-193.
[15] I. Gladwell and R.M. Thomas, Efficiency of methods for second order problems, IMA J. Numer. Anal., 10 (1990), 181-207. doi: 10.1093/imanum/10.2.181
[16] S. Gonzalez, C. Gonzalez and J.I. Montijano, Iterative schemes for Gauss methods, Comp. Math. Applic., 27 (1994), 67-81. doi: http://dx.doi.org/10.1016/0898-1221(94)90150-3
[17] S. Gonzalez, J.I. Montijano and L. Randez, Iterative schemes for three stage implicit Runge-Kutta methods, App. Numer. Math., 17 (1995), 363382. doi: http://dx.doi.org/10.1016/0168-9274(95)00070-B
[18] E.Hairer and G.Wanner, Solving ordinary differential equations II: Stiff and Differential algebraic problems, Springer-Verlag, Berlin (1996).
[19] K.D. Peat and R.M. Thomas, Implementation of Iteration schemes for Implicit Runge-Kutta Methods, Numerical Analysis Report No. 169, Dept. of Mathematics, University of Manchester (1989).
[20] R.Vigneswaran, Improving Rates of Convergence of Iterative Schemes for Implicit Runge-Kutta Methods, Applied Numerical Analysis and Computational Mathematics., 1 (2004), 327-338. doi: 10.1002/anac. 200310029
[21] R.Vigneswaran, Some Linear Schemes for Two-stage Gauss Type RungeKutta Method, Proceeding of the Third Annual Research Session at the Eastern University, Sri Lanka, (2004), 160-183.
[22] R. Vigneswaran, Some Efficient Schemes with Improving Rate of Convergence for Two stage Gauss Method, Journal of Mathematics, Statistics and Operational Research(JMSOR), 2 (2013), 23-29.

