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ABSTRACT 
 
Various iteration schemes are proposed by various authors to solve non-
linear equations arising in the implementation of implicit Runge-Kutta 
methods. In this paper, a class of s-step non-linear scheme based on 
projection method is proposed to accelerate the convergence rate of those 
linear iteration schemes. In this scheme, sequence of numerical solutions 
is updated after each sub-step is completed. For 2-stage Gauss method, 
upper bound for the spectral radius of its iteration matrix was obtained in 
the left half complex plane. This result is extended to 3-stage and 4-stage 
Gauss methods by transforming the coefficient matrix and the iteration 
matrix to a block diagonal form. Finally, some numerical experiments are 
carried out to confirm the obtained theoretical results. 
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1. INTRODUCTION  
 

Consider an initial value problem for stiff system of  1n 
 
ordinary 

differential equations 
 

       
 
An s-stage implicit Runge-Kutta method computes an 

approximation 1rx  to the solution  1rx t   
at discrete point 

1r rt t h  
 

by  1

1

s

r r i i

i

x x h b f y



    where the internal 

approximations 
1 2, , , sy y y  satisfy Sn equations 

 

 
1

, 1,2, , , (2)
s

i r ij j

j

y x h a f y i s


     

 

and 
ijA a   

 is the real coefficient matrix of the Runge-Kutta 

method. Let 
 

   
 
and let 
 

.  

Then the equations (2) written by   0,D Y 
 

where D is the 

approximation defect defined by 

      , (3)r nD Y e x Y h A I F Y    
 

 

Where  1,1, ,1
T

e 
 
and 

nA I   is the tensor product of the matrix 

A with n n  identity matrix
nI and, in general [ ]ijA B a B  .  This 

article deals with methods suitable for stiff systems so that the 

matrix A  is not strictly lower triangular. There are two general 
approaches proposed by several authors to solve the system

  0D Y  . In one approach, a modified Newton scheme is used. Let 

J be the Jacobian of f  evaluated at some recent point ,rx

updated infrequently. The modified Newton scheme evaluates 
1 2 3, , , ,Y Y Y  to satisfy 

 

    1 1 , 1,2, . (4)m m m

snI hA J Y Y D Y m        

 
In each step of this iteration, a set of sn linear equations has to be 
solved so that this scheme is still expensive. The other approach is 
to use schemes based directly on iterative procedures. In this type, 
several authors proposed several iteration schemes. A more 
general scheme was proposed by Cooper and Butcher [1]. This 
scheme sacrificing super linear convergence for reduced linear 
algebra cost. They consider the scheme  
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       

 

1 1

1

,

, 1,2, , (5)

m m m

s n n n

m m m

n

I I h J E BS I D Y L I E

Y Y S I E m

  



       

   

 

 
Where B and S are real s s non-singular matrices and L is strictly 

lower triangular matrix of order s, and  is a real constant. Cooper 

and Butcher [1] also showed that successive over-relaxation may 
be applied to improve the rate of convergence for scalar test 
problem. Cooper and Vigneswaran [2] proposed an efficient 

scheme where the elements 
1 2

m m m m

sY y y y     are 

obtained in sequence and the approximation defect is updated after 
each sub-step is completed. Only one vector transformation is 
needed for each full step. The rate of convergence of this scheme 
has been improved in [3], [4], and [5]. Cooper and Vigneswaran [6] 
proposed another scheme, which is a generalization of the basic 
scheme (5), to obtain improved rate of convergence, by adding extra 
sub- steps. Further improvement in the rate of convergence of this 
scheme has been obtained in [7].  
 
In this paper, in order to accelerate the convergence rate of the 
proposed linear iteration schemes Vigneswaran [8] proposed a 
class of non-linear iteration scheme based on projection method. 
This scheme is discussed detail in the section 2. In section 3, this 
result is extended to the higher order Gauss methods such as three-
stage and four-stage. In the final section numerical results are 
carried out to confirm the obtained results. 
 

2. A CLASS OF NON-LINEAR SCHEMES BASED ON 

PROJECTION METHOD 

 
2.1 Projection method for linear system  

 
More attention have been taken on Jacobi and the Gauss-Seidel 
schemes and their accelerated forms when solving large linear 
algebraic systems of equations. But Householder [9] proposed a 
class of method with the help of functional analysis approach which 
has been called projection method. This techniques have been used 
to accelerate convergence of iterative process for non-linear 
problems.  
 

Consider solving the linear system ,Ax b  where A is assumed to 

be a n n  non-singular matrix. Let kx  represent any iterate and let 

, ,k k k kx x r b Ax      represent the error and residual 

respectively, where x is the true solution. A method of projection is 

one in which at each step, the error k  is resolved into two 

components, one of which is required to lie in a subspace selected 

at that step, and the other is 1,k   which is required to be less than 

k  in some norm. The subspace is selected by choosing a matrix 

,kY whose columns are linearly independent and form a basis for 

the subspace. In practice kY is generally a single vector .ky  That 

is, 1 ,k k k kY u     where ku is a vector (or scalar if kY is a vector) 

to be selected at the 
thk  step so that 1 .k k    Householder shows 

that 1k   is minimized by choosing ku so that k kY u is the projection 

of k onto the subspace spanned by the columns of kY with respect 

to G, where G is a positive definite matrix. This implies that 1k  is 

minimized when   0,H

k k k kY G Y u   where 
H T

k kY Y is the 

Hermitian of .kY  Here   is defined by 
2

.H

k k kG    

2.2 A class of non-linear scheme 
 

The above idea is used to solve the non-linear system of equations 

  0.D Y   Vigneswaran [8] proposed a non-linear scheme based 

on projection method is of the form 
 

     1 , 1,2,3, , (6)m m m mY Y E m     

 

Where 
m is scalar and 

mE is a vector. Let .m mY Y    In this 

new scheme, 
mE is chosen from the general linear iteration 

scheme. The scalar 
m  is chosen as 

m mE is the projection 
m

onto 
mE with respect to a positive definite matrix  ,HG G  where G 

is a sn sn  non-singular matrix. Hence 

 
1 ,m m m mE      

 

 

   
, 1,2,3, . (7)

H
m m

m

H
m m

GE G
m

GE GE




 

 
 

Suppose that the sequence 
mY Y as .m   if 

mE is 

chosen so that 0mE   gives   0,mD Y   it follows that 

  0.D Y 
 
Here G and 

mE have to be chosen so that the scheme 

can be efficiently implemented and performs well. In each step of 

the iteration (6) the scalar 
m  has to be calculated by using (7) but 

the numerator of 
m  contains 

m which is not known. To make the 

process feasible the matrix G may be chosen as     ,m
nQ I D Y  

where Q is a s s  non-singular matrix. Since 

     
2

,m m m mD Y D Y O    
 

mG  may be approximated by

   m
nQ I D Y . Since  mF Y  is the block diagonal matrix and 

each diagonal block is the Jacobian off    at one of 
1 2, , , .m m m

sy y y  

Thus the evaluation of  mD Y requires more computation. To 

reduce this, the Jacobian is computed infrequently. Let J be the 

Jacobian evaluated at recent point .px  then  p sF x I J    and 

   .m
snD Y I hA J      Hence from (7), we obtain 

 

      

     
, (8)

H
m m

n sn nm

H
m m

n sn n sn

Q I I hA J E Q I D Y

Q I I hA J E Q I I hA J E


     

             

 
 

Where
1 2

m m m m

sE E E E    and 

 

,m m

i iE O O O O O         O the zero vector.  

 
2.2.1 The s-step non-linear scheme 
 
Vigneswaran [8] also consider the s-step non-linear scheme which 
is more efficient than the general class of non-linear scheme given 
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by (6) with (8). In this scheme elements of  

1 2

m m m m

sY y y y     are obtained in sequence and are 

updated after each sub-step is completed. He consider the scheme  
 

      
(1) ,mY Y  

      

      

     

( )

, (9)

H
m i

n sn i nm

i H
m m

n sn i n sn i

Q I I hA J E Q I D Y

Q I I hA J E Q I I hA J E


     

           

 

 
( 1) ( ) , 1,2, ,i i m m

i iY Y E i s     

 
( 1) 1, 1,2,3, .s mY Y m    

 
In this scheme  
 

   1 1( ) ( 1) ( 1) ( 1) ( )

1 2 1 1

m mi m m m m

i i i iY y y y y y y
    

           

 

for 1, 2, , .i s  

The non-singular matrix Q and 
mE have to be chosen so that the 

scheme performs well. The efficiency of this scheme examined 

when it is applied to the linear scalar problem x qx 
 
with rapid 

convergence required for all 
 

  
 
This gives   
 

1 ( ) , 1,2, .m mM z m     

 
 
Where the iteration matrix is given as 
 

 
1

( ) ( ) ( ), (10)HM z D z L z L z


    
 

 

Where    ( )ijL z l z is a strictly lower triangular matrix and 

   ( )iiD z l z  is a diagonal matrix and 

      ,
HH H

ij i s s jl z e I zA Q Q I zA e    these elements are 

independent of the choice of .mE  Hence Q should be chosen to 

minimize the spectral radius of . This seems to be 
very difficult. We apply a different approach which is we impose 
spectral radius of M (z) to be zero for real z.  The following theorem 

gives an upper bound for  ( )M z  for the two stage Gauss method 

in the left half plane. The coefficient matrix of the two stage Gauss 
method is given by 
 

1 1 1

1 1 1

, (11)
a a b

A
a b a

 
  

 

 

 

Where 1

1

4
a  and 1

3
b .

6
   

 
Theorem 1. Consider the two-stage Gauss method with coefficient 

matrix given by (11) and S = I. Suppose that  ( ) 0M z   on the real 

axis z = x.  Then there exists a non-singular matrix Q such that 

 
1 1

1 1

1 0

0

HQ Q b a

b a

 
 

  
  

  

and 

  
 
In this approach, it is difficult to handle the 3-stage Gauss method 
and 4-stage Gauss method. We may transform the coefficient 
matrix and the iteration matrix to a block diagonal matrix. The result 
for s = 2 may be applied to other methods when s > 2. 
 

3. IMPROVED CONVERGENCE RATE FOR S>2 
 
Many iterative methods have coefficient matrices which may be 
transformed to real block diagonal matrices.  
 
For each s- stage method of order 2s there is a real matrix S such 
that  
 
                                                                     

1

1 2 (12)rS AS A A A A       

 
A real block diagonal matrix. The sub matrices are chosen to have 
the form  
                                   

, 1, 2, , , (13)
i i i

i

i i i

a a b
A i r

a b a

 
  

 
 

 

with , 1,2, ,i ib a i r   and  except that, when s is odd   .r rA a  

Many iterative methods have coefficient matrices which may be 
transformed to real block diagonal matrices of the same form as 
(12). The iteration matrix M (z) can be written as a partition form 

corresponding to the partition of 
1 :S AS

  
                                     

1

1 2( ) ( ) ( ) ( ) ( ).rS M z S M z M z M z M z        

 
Then the spectral radius is given by 
                                    

 

 

1

1

1 2

1 2

( ) max ( ) ,

( ) ( ) ( ) ( ), 1,2, , , (14)

( ) ( ) ( ) ( ) and

( ) ( ) ( ) ( )

i
i r

H

i i i i

r

r

M z M z

M z D z L z L z i r

D z D z D z D z

L z L z L z L z

 
 



   

   

   

   

  

 

Corresponding to the partition of 
1 .S AS

 When s = 3 the method of 
order 2s has the matrix of coefficients 
 

                                 

5 2 15 5 15

36 9 15 36 30

5 15 2 5 15

36 24 9 36 24

5 15 2 15 5

36 30 9 15 36

A

 
  

 
 

   
 
 

  
  

  

 
And there is a matrix S such that 
 



29 

 

                   
1 1 1

1

1 1 1 1 2

2

0

0 ,

0 0

a a b

S AS A a b a A A

a



 
 

    
 
  

 

 

 
 
And a numerical calculation gives  
                                

 
 

Where the columns are eigenvectors of  
2

1 .a I A   

 

Let 1 2 1 2andD D D L L L     so that the result of the  
 
Theorem 1 may be applied using (14), we get 

 

                               
2

1
1

1

( ) 1  0.4765
a

M z
b


 

   
 

 For all z ϵ C-. 

 

On the other hand, since  2 33D l and  2 0 ,L   gives  

 

                                2 2( ) 0 implies ( ) 0.M z M z    

 
Then  

 

 
  
and in this case we obtain 
 

                            

1 1

1 1

1 0 0

0 0 . (15)

0 0 1

H b a
Q Q

b a

 
 

 
 
  
 

 

 
Next, consider the four-stage Gauss method with matrix of 

coefficients ijA a     obtained by solving the sets of equations 

4
1

1

, 1,2,3,4,
r

r i
ij j

j

c
a c r

r





    for each 1,2,3,4,i    

 

where 1 2 3 4, , ,c c c c  are the zeros of  4 2 1 ,P x  the transformed 

legendre polynomial of degree 4. The elements of the transformed 
matrix 
                               

1 1 1

1 1 11

1 2

2 2 2

2 2 2

0 0

0 0
,

0 0

0 0

a a b

a b a
S AS A A A

a a b

a b a



 
 


    
 
 

 

  

 

  

                                               

  
 

Where the columns are eigenvectors of    
2 2

1 2and .a I A a I A   

Again the result of the Theorem 1 may be applied using (14), we 

obtain                                         

 
 
Where the matrices D and L are given by 

  
                                       

11

21 22

1 2 1 2

33

43 44

0 0 0 0 0 0 0

0 0 0 0 0 0
, .

0 0 0 0 0 0 0

0 0 0 0 0 0

l

l l
L L L D D D

l

l l

   
   
        
   
   

  

  

 
Then  
 

  
 
and we obtain 
                                    

1 1

1 1

2 2

2 2

1 0 0 0

0 0 0

. (16)
0 0 1 0

0 0 0

H

b a

b a
Q Q

b a

b a

 
 

 
 

  
 
 
   

 

 

4. NUMERICAL RESULTS 
 
In this section, a number of numerical experiments were carried out 
in order to evaluate the efficiency of the proposed class of general 
non-linear scheme. Results for three non-linear initial value 
problems are reported and compared with results obtained using 
the scheme described in Cooper and Butcher [1].   
 
Problem 1 denotes the non-linear system 

 

1 1 1 3 1

2 2 3 2

3 1 1 3 2 3 3

0.013 1000 , (0) 1,

2500 , (0) 1,

0.013 1000 2500 , (0) 0,

x x x x x

x x x x

x x x x x x x

    

  

    

  

 
Where the eigenvalues of the Jacobian at the initial point are 0, -
0.0093 and -3500. 
 
Problem 2 is also the non-linear system 

 

 
1 1 2 1 3 1

2 1 2 2

3 1 3

55 65 , (0) 1,

0.0785 , (0) 1,

0.1 , (0) 0,

x x x x x x

x x x x

x x x

     

   

  
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Where, initially, the eigenvalues of the Jacobian are the complex 

conjugate pair -0.0062   0.01i and -55. 

 
Problem 3 Insulator physics non-linear problem 

 

 

 

8

1 1 3 1 1

7

2 2 3 2 2

3 1 2 3

10 1 , (0) 1,

10 3 10 1 , (0) 0,

, (0) 0,

x x x x x

x x x x x

x x x x

     

      

     

 

 
Where the eigenvalues of the Jacobian at the initial point are 0, -1.0 

and -3.0
710 . 

 
For each problem, a single step was carried out, in each method, 
using the Jacobian evaluated at the initial point. For each scheme 

tested, the initial iterate 0Y  is chosen as 0 ,Y e x   where x is the 

true solution at the initial point. 
 
Method 1 denotes the three-stage Gauss method implemented 

according to the basic scheme (5) with parameters given in Cooper 

and Butcher [1] with relaxation parameter 1.   

Method
*1 denotes the three-stage Gauss method but 

implemented using the non-linear scheme (9) proposed here with 

the matrix Q given by (15) and mE chosen from the scheme (5). 
 
Method 2 denotes the four-stage Gauss method implemented 

according to the basic scheme (5) with parameters given in Cooper 

and Butcher [1] with relaxation parameter 1.   

 

Table 1. Values of m giving 
9 10me  for Gauss method 

 

Problems 

 
 
Step size 

 
Methods 

1 *1  1 *2  

1 h = 10−5 6 3 3 2 

2 h = 2×10−6 7 3 8 2 

3 h = 3.3×10−8 8 3 10 2 

 

Method
*2 denotes the four-stage Gauss method but implemented 

using the non-linear scheme (9) proposed here with the matrix Q 

given by (16) and mE chosen from the scheme (5). 
For each problem the quantities 
 

1 , 1,2,3, ,m m

me Y Y m


      

 

Are calculated. The values of 
9TOL = 10me  are tabulated for 

each problem and method. Similar results are obtained for different 
values of TOL. The Results are given in table 1. 
 

5. CONCLUSION 

 
Numerical result shows that, the proposed class of general non- 
linear iteration scheme accelerates the convergence rate of the 
general linear iteration scheme proposed by Cooper and Butcher [1] 
for some stiff problems that has strong stiffness. It will be possible 
to apply the proposed class of general non-linear scheme to 
accelerate the rate of convergence of other linear iteration schemes. 
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