Cyclometallated Ir(III), Rh(III) and Ru(II) complexes as catalysts for the cyclotrimerisation of 1,6-diynes with monoynes

Ronald Grigg,^{a*1} Colin Kilner,^a Meena Senthilnanthanan,^a Ché R. Seabourne,^a Visuvanathar Sridharan,^a and Barry A. Murrer^b

 Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, The University of Leeds, Leeds LS2 9JT
Johnson Matthey, Blounts Court, Sonning Common, Reading RG4 9NH E-mail: r.grigg@leeds.ac.uk

Abstract

A new series of Rh, Ir and Ru precatalysts for the [2+2+2] cyclotrimerisation of 1,6-diynes with monoynes is reported. The precatalysts are reduced in situ to the active catalysts by reduction with alcohols. The precatalysts activity is in the order Ru>Rh>Ir which reflects the ease of this reduction. The Rh and Ir precatalysts require temperature in excess of 140 °C allowing their preparation in 2-methoxymethanol at 125 °C. The mechanism of this process is discussed.

Keywords: Cyclometallated complexes, cyclotrimerisation, divnes, precatalysts

Introduction

The exploitation of cyclometallated complexes in catalysis has recently evolved as a broad new strategy. A variety of palladacycles incorporating cyclometallated phosphines,¹ phosphites,² carbenes,³ imines,⁴ heterocycles,⁵ thioethers,⁶ and oximes⁷ have been reported to catalyse carbon-carbon (Heck, Suzuki) and carbon-nitrogen bond forming processes with high turnover numbers.^{8,9} Additionally, chiral palladacycles have been shown to catalyse carbon-carbon bond forming processes such as the aldol reaction,¹⁰ Michael addition¹¹ and cyclopropanation reactions¹² with high enantiomeric excesses. Studies on the synthesis and catalytic behaviour of orthometallated complexes of Rh(II)¹³, Rh(III)¹⁴, Ir(I)¹⁵, and Ru(II)¹⁶ have revealed active catalysts of high efficiency. For example, Nishiyama *et al.* reported that the chiral orthometallated rhodium (III) complex 1 effects the catalytic enantioselective allylation of aldehydes.¹⁷ Other useful applications of the cyclometallated transition metal complexes include electroluminescent/photoluminescent devices¹⁸ and antibacterial agents.¹⁹

ISSN 1551-7004 Page 145 [©]ARKAT USA, Inc.

¹ Ron Grigg was Chairman of the RSC Heterocyclic Group during the period 1983-1985.