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Abstract
This paper proposes the addition of a weighted median Fisher
discriminator (WMFD) projection prior to length-normalised
Gaussian probabilistic linear discriminant analysis (GPLDA)
modelling in order to compensate the additional session vari-
ation. In limited microphone data conditions, a linear-weighted
approach is introduced to increase the influence of microphone
speech dataset. The linear-weighted WMFD-projected GPLDA
system shows improvements in EER and DCF values over the
pooled LDA- and WMFD-projected GPLDA systems in inter-
view-interview condition as WMFD projection extracts more
speaker discriminant information with limited number of ses-
sions/ speaker data, and linear-weighted GPLDA approach esti-
mates reliable model parameters with limited microphone data.
Index Terms: speaker verification, i-vectors, GPLDA, WMFD,
linear-weighted

1. Introduction
A significant amount of speech data is required to develop a ro-
bust speaker verification system, especially in the presence of
large intersession variability [1]. However, it is often difficult
to acquire a sufficient number of sessions for each individual
speaker for developing robust background models in many real-
world environments, limiting the availability of speaker verifi-
cation technology for many everyday applications. A significant
example of this problem is the relative scarcity of microphone
speech data available across the many NIST Speaker Recogni-
tion Evaluation (SRE) databases [2, 3], which have, at least un-
til more recent evaluations, focussed largely on collecting large
quantities of telephone speech.

Speaker verification is a data-driven research field, and it
has clearly been established that the development of state-of-
the-art speaker verification systems require a significant volume
of speech data covering multiple sessions across a large number
of speakers [1]. However, the volume of data required to ad-
equately model the background behaviour of speaker models
is not always available, particularly in new environments. Re-
cently, we have analysed the linear discriminant analysis (LDA)
projected Gaussian probabilistic linear discriminant analysis
(GPLDA) speaker verification system with limited development
data, and found that when the number of sessions/speaker are
reduced, the speaker verification performance is considerably
affected [4]. As an alternative approach to LDA projection,
we have also previously introduced the median Fisher discrim-
inator (MFD) and a weighted variant (WMFD) to show better
speaker discriminative performance from limited-session devel-
opment data than the mean-centroid approach of LDA [4].

In addressing the disparate microphone and telephone data

sources available in the NIST evaluations, researchers have
shown that pooling the telephone and microphone speech data is
the best approach for the development of GPLDA [5, 6] speaker
verification systems. In our recent work, we have introduced a
linear-weighted approach to effectively model the GPLDA pa-
rameters proportionally from telephone and microphone speech
data [7] that has shown promise in limited development session
conditions.

In this paper, initially a LDA-projected GPLDA speaker
verification system was analysed with limited development data
to investigate the effect on speaker verification performance.
This approach is then compared to the alternative, WMFD-
projected linear-weighted GPLDA approach, to show an im-
provement in speaker verification performance for limited mi-
crophone development sessions. In our GPLDA speaker verifi-
cation system, telephone speakers (of which we are developing
across 1286 female and 1034 male speakers) with more than
10 sessions and a limited number of microphone speakers (100
female and 83 male speakers) with more than 15 session were
used for GPLDA modelling. To demonstrate the effect of lim-
ited sessions during development, we have restricted both the
telephone and microphone speech speakers to 7 sessions per
speaker.

This paper is structured as follows: Section 2 outlines a
typical state-of-the-art GPLDA speaker verification system, and
Section 3 gives a brief overview of dimensionality reduction
approaches, including LDA and WMFD. Section 4 details the
GPLDA model-parameter estimation techniques for scarce mi-
crophone speech. The experimental protocol and corresponding
results are given in Section 5 and Section 6, and Section 7 con-
cludes the paper.

2. GPLDA Speaker Verification
2.1. I-vectors

I-vectors represent a Gaussian mixture model (GMM) mean
super-vector by a single total-variability subspace. This single-
subspace approach was motivated by the discovery that the
channel space of the earlier, related JFA technique contained
valuable speaker-discriminant information [8]. An i-vector
speaker-and-channel-dependent GMM super-vector µ can be
represented by,

µ = m + Tw, (1)

where m is a universal background model (UBM) mean super-
vector trained over a large development set and T is a low-
rank total-variability matrix. The total-variability factors (w)
are the i-vectors, and are normally distributed with parame-
ters N(0,1). Extracting an i-vector from the total-variability



subspace is essentially a maximum a-posteriori (MAP) adap-
tation of w in the subspace defined by T. An efficient pro-
cedure for the optimisation of the total-variability subspace T
and subsequent extraction of i-vectors is described by Dehak et
al. [9, 10]. In this paper, the pooled total-variability approach
is used for i-vector feature extraction where the total-variability
subspace (Rw

telmic = 500) is trained on telephone and mi-
crophone speech utterances together to provide the best i-vector
representation [11].

2.2. GPLDA modelling

When originally introduced by Kenny [12], the Gaussian
(GPLDA) and Heavy-tailed PLDA (HTPLDA) approaches were
introduced to model the speaker and channel variability directly
in the i-vector space, with better performance obtained using
HTPLDA at a cost of higher complexity. However, recently
Garcia-Romero et al. [13] have shown that a simple whitening
and length-normalisation approach can bring the performance
of GPLDA up to HTPLDA with a much simpler approach, and
it is therefore this length-normalised GPLDA approach that will
be used in this paper. The length-normalisation approach is de-
tailed by Garcia-Romero et al. [13], and this approach is applied
on development and evaluation i-vectors prior to GPLDA mod-
elling.

A speaker and session-dependent length-normalised i-
vector, w′s,i can be defined as,

w′s,i = w̄′ + U1x1,s + εs,i (2)

where for a given speaker, s, having nS sessions i = 1, . . . , ns,
w̄′ is the mean length-normalised i-vector, x1,s are the speaker
factors and εs,i is the residual for each session; Finally, U1 is
the eigenvoice matrix trained in PLDA modelling. The speaker
specific part can be represented as w̄′+U1x1,s, which represents
the between-speaker variability and the covariance matrix of the
speaker part is U1U1

T . The session-specific part is represented
as εs,i, which describes the within-speaker variability, and the
covariance matrix of the session variability is Λ−1. We assume
that the precision matrix (Λ) is full rank.

Prior to length-normalisation and GPLDA modelling, a
number of dimensional reduction techniques can be used, as
outlined in Section 3, to compensate for session variation prior
to GPLDA modelling as well as reducing the computational
time of the modelling itself [6]. Scoring in GPLDA speaker
verification systems is conducted using the batch-likelihood ra-
tio between a target and test i-vector [12].

3. Dimensionality reduction of i-vector
features

3.1. Linear discriminant analysis

Because i-vectors are calculated on a subspace covering both
speaker and session variation, session compensation techniques
are typically introduced after i-vector extraction and before
modelling to improve the speaker discriminative ability of
the i-vector subspace. A typical linear discriminant anal-
ysis (LDA) followed by within-class covariance normalisa-
tion (WCCN) (WCCN[LDA]) approach is to first reduce the
dimensionality using LDA and then scale the resultant space us-
ing WCCN. This WCCN[LDA] approach has been clearly ex-
plained in our previous work for the interested reader [14, 15].

3.2. Weighted median Fisher discriminator

In traditional LDA, the mean i-vector of each speaker plays a
major role in the definition of the between-class and within-
class scatter matrices. Therefore, the accuracy of estimate of
the mean has a substantial effect on the resulting projected di-
rections of the LDA transformation. In this paper, as we investi-
gate speaker verification with limited session development data,
averaging these few recording could lead to a loss of speaker-
discriminant information, as outliers can have a much bigger ef-
fect in small datasets. By taking the median as the estimator for
the central tendency, instead of the mean, the WMFD approach
should help to attenuate this loss, as the median tends to provide
a more robust estimate of the central tendancy [6, 4]. WMFD
estimation is performed by calculating the weighted between-
and within-class scatter estimations using the median as the cen-
tral tendency rather than the mean, Smedian

w and Sw−median
b ,

calculated as follows;

Smedian
w =

S∑
s=1

ns∑
i=1

(ws,i − w̃s)(ws,i − w̃s)T (3)

Sw−median
b =

1

N

S−1∑
p=1

S∑
q=p+1

w(dpq)npnq(w̃p − w̃q)(w̃p − w̃q)T ,

(4)

where the median i-vectors, w̃s for each speaker is defined by

w̃s = Median({ws,1,ws,2,ws,3, . . . ,ws,ns}) (5)

where w̃p and w̃q are the median i-vectors of speaker p and q
respectively estimated using Equation 5, np and nq the number
of sessions, and w(dpq) is a weighting function defined such
that the classes that are closer to each other will have a higher
weight in forming the final scatter matrix. In this paper, we
will be investigating the Euclidean distance weighting function,
w(dpq)

Euc,

w(dpq)
Euc = ((w̄p − w̄q)T (w̄p − w̄q))−n. (6)

n was selected as 4 for weighting function estimation. The
WMFD transformation is estimated using the same approach
as the LDA transformation as detailed in paper [14].

4. GPLDA parameter estimation
In i-vector feature domain, pooled total-variability approach
was used to exploit sufficient speaker variation from telephone
and microphone speech sources [5, 6]. In this section, in PLDA
model domain, both pooled and linear weighted approaches are
investigated to estimate the proper GPLDA model parameters
from rich telephone and scarce microphone speech data [7].

4.1. Pooled approach

It is commonly believed that robust probabilistic parameters can
be estimated if adequate amount of speech data is available. In
the pooled subspace training approach, telephone and micro-
phone speech is pooled together to create large development
data set, and the length-normalized GPLDA parameters, in-
cluding mean (w̄telmic), precision matrix (Λtelmic) and eigen-
voice matrix (U1telmic) are estimated using telephone and mi-
crophone pooled data.
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Figure 1: Comparison of EER values of pooled and linear-weighted based LDA- and WMFD-projected GPLDA systems at different
weighting coefficients on NIST 08 short2-short3 condition. ,(a) interview-interview and (b) telephone-telephone
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Figure 2: Comparison of DCF values of pooled and linear-weighted based LDA- and WMFD-projected GPLDA systems at different
weighting coefficients on NIST 08 short2-short3 condition. ,(a) interview-interview and (b) telephone-telephone

4.2. Linear weighted approach

If a sufficient amount of telephone and microphone speech data
is available, it is believed that the pooled approach would be the
better approach. However, this condition is rarely met in the
real world, and in the case of the limited microphone data con-
ditions of this examination, a linear weighted approach can be
used to increase the influence of microphone speech data [7].
Firstly, the GPLDA model parameters, including mean (w̄tel),
precision matrix (Λtel) and eigenvoice matrix (U1tel) are es-
timated using telephone speech. Similarly, the GPLDA model
parameters, including mean (w̄mic), precision matrix (Λmic)
and eigenvoice matrix (U1mic) are also estimated using micro-
phone speech. These two domain-specific sets of parameters
can then be combined using a linear weighted approach, esti-
mated as follows,

w̄telmic = αw̄tel + (1− α)w̄mic (7)
Λtelmic = αΛtel + (1− α)Λmic (8)

U1telmic = αU1tel + (1− α)U1mic (9)

5. Experimental methodology
The GPLDA experiments will be evaluated using the NIST
2008 SRE corpora. For NIST 2008, the performance was evalu-
ated using the equal error rate (EER) and the minimum decision
cost function (DCF), calculated using Cmiss = 10, CFA = 1,
and Ptarget = 0.01 [3].

We have used 13 feature-warped MFCCs with appended
delta coefficients and two gender-dependent UBM containing
512 Gaussian throughout our experiments. UBMs were trained
on telephone and microphone from NIST 2004, 2005, and 2006
SRE corpora for telephone and microphone i-vector experi-
ments. These gender-dependent UBMs were used to calculate
the Baum-Welch statistics before training a gender dependent
total-variability subspace of dimension Rw = 400, which was
then used to calculate the i-vector speaker representations. The
pooled total-variability representation was trained using tele-
phone and microphone speech data from NIST 2004, 2005 and
2006 SRE corpora as well as Switchboard II. The GPLDA pa-
rameters were trained using telephone and microphone speech
data from NIST 2004, 2005 and 2006 SRE corpora as well as



Switchboard II. We empirically selected the number of eigen-
voices (N1) equal to 120 as best value according to speaker ver-
ification performance. A full precision matrix was used for Λ,
rather than the diagonal. 150 eigenvectors were selected for
standard LDA and WMFD estimation. Randomly selected tele-
phone and microphone utterances from NIST04, 05 and 06 were
pooled to form the S-normalization dataset [16].

6. Results and discussions
Experiments were carried out to identify the best length-
normalized GPLDA-model parameter-estimation approach in
limited development data conditions. Both LDA- and WMFD-
projected GPLDA speaker verification systems were analysed
with pooled and linear weighted based GPLDA modelling ap-
proaches to estimate the robust GPLDA model parameters from
both telephone and microphone sourced speech. The LDA- and
WMFD-projected GPLDA systems were trained using a lim-
ited number of session/ speaker data (7 sessions/ speaker) with
a limited number of microphone speech speakers and a larger
number of telephone speech speakers (Female (1286 tel and 100
mic speakers), Male (1034 tel and 83 mic speakers)).

Figure 1 and 2 respectively compare the EER and DCF val-
ues of pooled and linear-weighted based LDA- and WMFD-
projected GPLDA systems at different weighting coefficients
on the NIST 2008 short2-short3 condition. In order to increase
the influence of microphone data, the linear weighted based
GPLDA approach was analysed across several values of the
telephone weighting parameter (αtel) at 0.1 intervals. Through
telephone-estimated and microphone-estimated PLDA parame-
ters are respectively good and poor estimates, the influence of
microphone can be increased by reducing the αtel weights. It
can be clearly seen that when the αtel is selected as 0.8, the
linear-weighted LDA-projected GPLDA shows improvement in
EER and DCF values over the pooled LDA-projected GPLDA
in interview-interview condition. However, as αtel is further re-
duced, the performance is reduced in microphone speech condi-
tions as the microphone-estimated GPLDA parameters provide
a poor estimate of the true parameters due to the scarcity of mi-
crophone data.

The linear-weighted WMFD-projected GPLDA system also
shows improvement in EER and DCF values over the pooled
LDA- and WMFD-projected GPLDA systems in interview-
interview condition as MFD projection extracts more speaker
discriminant information with limited number of sessions/
speaker data, and linear-weighted GPLDA approach estimates
reliable model parameters with limited microphone data. It
is also observed that when the telephone weighting parame-
ter (αtel) is reduced, it significantly affects the performance
of linear-weighted LDA- and WMFD-projected GPLDA sys-
tems in telephone-telephone condition as microphone-estimated
GPLDA parameters are a poor estimate.

7. Conclusions
This paper proposed the addition of a WMFD projection prior
to length-normalised GPLDA modelling in order to compensate
the additional session variation. In limited microphone data
conditions, a linear-weighted approach was introduced to in-
crease the influence of microphone speech dataset. The linear-
weighted WMFD-projected GPLDA system showed improve-
ments in EER and DCF values over the pooled LDA- and
WMFD-projected GPLDA systems in interview-interview con-
dition as WMFD projection extracts more speaker discriminant

information with limited number of sessions/ speaker data, and
linear-weighted GPLDA approach estimates reliable model pa-
rameters with limited microphone data.
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