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Abstract. Various iteration schemes are proposed by
various authors to solve non-linear equations arising in
the implementation of implicit Runge-Kutta methods.
In this paper, a class of general non-linear scheme based
on projection method is proposed to accelerate the rate
of convergence of already proposed more general linear
iteration scheme. Theoretical results are established
in order to improve the rate of convergence of linear
iteration schemes for two, three and four stage Gauss
method. To confirm the results established in this paper,
some numerical experiments are carried out.
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1. INTRODUCTION
Consider an initial value problem for stiff system of ordinary
differential equations

X=f(x(1), x(t)=x, f:R">R&". )

An s-stage implicit Runge-Kutta method computes an
approximation x_ ., tothe solutionx(r,, ) at discrete point

La=1,+h bY x =x +hY bf(y,) where the internal
=1

approximations y .y,.....y, satisfy sn equations
yi=x+hy a,f(y,), i=12,...s, 2)
J=1

and 4= [au] is the real coefficient matrix of the Runge-
Kutta method. Let Y =y, @y, ®---®y, eR ™ and

let F(Y)=f(»)®f(»,)®-®f(y,)eR™. Then the
equations (2) written by where D is the approximation
defect defined by D(y)=0, wher D is the approximation
defect definced by

D(Y)=e®x, ~Y +h(A®L)F(Y), ®

wheree=(11.....1)" and A®1I, and A®I is the tensor
product of the matrix A with identity matrix and, in
general A® B =[a,B]- This article deals with methods
suitable for stiff systems so that the matrix is not strictly
lower triangular. There are two general approaches
proposed by several authors to solve the system. D (y)
= O. In one approach, a modified Newton scheme is
used. I.ct be the Jacobian of evaluated at some recent
point updated infrequently. The modified Newton
scheme cvaluates Y')Y? Y’ --- to satisfy

Y Y2 Y3 .-, tosatisfy
(I,,~h4®J)(¥"—y¥"")=D(Y""), m=12,.... (4

In each step of this iteration, a set of sn linear equations

has to be solved so that this scheme is still expensive.
The other approach is to use schemes based directly
on iterative procedures. In this type, several authors
proposed several iteration schemes. A more general
scheme was proposed by Cooper and Butcher [ 1]. This
scheme sacrificing superlinear convergence for reduced
linear algebra cost. They consider the scheme

[1.®(1,~his)]E" =(BS" ®1,)D(Y"") +(L®L,)E",
Y"=Y"'+(S®L)E", m=12,..., (5

where B and S are real non-singular matrices and L
is strictly lower triangular matrix of order s, and is a
real constant. Cooper and Butcher [1] also showed that
successive over-relaxation may be applied to improve
the rate of convergence for scalar test problem. Cooper
and Vigneswaran [2] proposed an efficient scheme
wherethe Y" =)@y ®--- @y are obtained
in sequence and the approximation defect is updated
after each sub-step is completed. Only one vector
transformation is needed for each full step. The rate
of convergence of this scheme has been improved in
[5 - 7]. Cooper and Vigneswaran [3] proposed another
scheme, which is a generalization of the basic scheme
(5), to obtain improved rate of convergence, by adding
extra substeps. Further improvement in the rate of
convergence of this scheme has been obtained in [8].

In this Paper, in order to accelerate the convergence rate
of the proposed lincar iteration schemes we propose a
class of general non-linear scheme based on projection
method.

2. A CLASS OF NON-LINEAR SCHEMES BASED
ON PROJECTION METHOD
2.1 Projection Method for Linear system
Among the iterative methods for solving large lincar algebraic
systems of equations, those that have received the most attention
have been the Jacobi and the Gauss-Seidel schemes, and their
accelerated forms. But Houscholder [4] has dealt with another
class of method which has been called projection method.
Special cases include the method of steepest decent and the
other gradient based schemes used to solve lincar systems.
The techniques have been used to accelerate convergence
of iterative process for non-linear problems.
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Consider solving the linear system Ax=b, where A is assumed
to be a non-singular matrix. Let x, represent any iterate
andlet &, =x—x,, i, =b—Ax,, represent the error and
residual respectively, where X 1s the true solution. A method
of projection is one in which at cach step, the error

8, is resolved into two components, one of which is required
to lic in a subspace selected at that step, and the other 1s
8, ., which is required to be less than  in some norm. The
subspace is selected by choosing a matrix y, whose columns
are linearly independent and form a basis for the subspace.
In practice y, is generally a single vector y, That is, 6,,, ="
y,u,, where u, is a vector (or scalar if'y, isa vector) to be
selected at the  step so that k®Householder shows that 0L
<3, is minimized by choosing so that is the projection of
onto the subspace spanned by the columns of with respect to
G, where G is a positive definite matrix. This implies that is
minimized when ¥ =Y, where Y=Y, is the Hermitian
of y, Here||. ||is defined by 15, 1|>=8",G8,.

2.2 A class of Non-Linear Scheme

The above idea is used to solve the non-linear system of
equations D(Y)=0. Consider the iteration scheme of the form
where is scalarand is a vector. Let In this new scheme, is
chosen from the general linear iteration scheme. The scalar
is chosen as is the projection onto with respect to a positive
definite matrix  where Gis a non-singular matrix. Hence

©

where g™ 1=Y=+™ E™ | is scalar and is a vector. Let In this
new scheme, E™is chosen from the general linear iteration
scheme. The scalar z” is chosen as 4 E™ is the projection A™
onto E™ with respect to a positive definite matrix G" G, where
G is a sn x sn non-singular matrix. Hence A™"'=A"-p"E",

YnHl =ym +ﬂ”‘E’"’ m=L2.3,...,

(GE"’ )” GA™

(6] (")

u= =123 (@)
Suppose that the sequence Y” — Yas m—>»co. If E™is
chosen so that E™ —>0 gives D(Y "') —>0, it follows

that D(Y)=0. Here G and E™ have to be chosen so that the
scheme can be efficiently implemented and performs well. In
cach step of the iteration (6) the scalar 4™ has to be
calculated by using (7) but the numerator of 1" contains
A" which is not known. To make the process feasible the
matrix G may be chosen as (Q®l,,)D’(Y”'), where Q is a
matrix. Since

GA” may be approximated

EXS non-singular

(¥")=-p(r")a"+ 0 JA"’B)Z :
b)(Q@l,,)l)(Y"’). Since r'(y’") is the block diagonal
matrix and each diagonal block is the Jacobian of f* at one
of y, y2....,y". Thus the evaluation of [)’(Y"')roquires

more computation. To reduce this, the Jacobian is computed
infrequently. Let J be the Jacobian evaluated at recent point
x,. Then F*(x,)=1,®7 and p(y")=~(I,-h4®J). Hence

from (7), He obtain

" (p®1,)D(Y") . -

(Q®1,)(1 ~h48I) E”
- hA®J)E" |

# = l@or) (. -me)F] (@8N
where " =E"®E; @---OF" and
1:‘"'=UEB()&9-~-Q3U®3,"@06%-&30, O th

The non-singular matrix Q and E” have to be 1gh(l)scn 5(; E:;"
{he scheme performs well. The efficiency © 'llus sC ;;1 c1
examined when it is applied to the linear .sc.l ar problen
x' =gxwith rapid ~ convergence required  for  all

atl matrix 18
z=hgcD ={zC? |Re(z)<0}. The iteration

obtained in the following lemma.

¢ ZzC€ro vector.

eme (6) be applied to the scalar
problem x" = gx. Then there exists a strictly lower triangular
matrix L(z) and a diagonal matrix D(z) such that

A"'"=—D"(z)|:L(z)+L”(z):|A"', m=L2....
Proof: Since DY )=0, for the test
p(r®)=(1, —zA)(Y—-Y“’):(I‘ ~z4)A”. The scalar 4 is

Lemma 1. Let the sch

problem,

iven by - (Er)" (1, -24)" 2"0P (r) . where
v (£r) (=) Q"0 ) E
...€,are the natural

E" =&, where & is a scalar and &>
base vectors fiR [ 7. This implies

o (1,-24)" 0"0(1,-24)A(Y?)
“= & (1,-24)" 0701, -A)e, )
Let 1,(z)=¢"(1,-24)" @"Q(1,~zA)e,. Tt follows from the
scheme (6)
AU =AO_ymET =12,
By equating the i component of both sides of the above
cquation, we obtain
& A = AO —e yET, i=12,....5.
This implies, for #=12.....5,
A=A -L(e” (1,-=z4)" 0*0(1, —zA))(A,'e, +A%e, +--+A%),

y TEIY
where A" =(A7.47.....A7) and A =A"". Since 1L()=1,0),
by rearranging the above equations, we can write the above
equations in matrix form as D(z)A""’=—_L(z)+L”(z)]A‘"’,

where L(:)=(I,, (2))is a strictly lower triangular matrix and

D(z)=(4,(2))is a diagonal matrix. Then

A" =-D* (2)[L(z)+ L7 (2)]A", m=12..... [

The iteration matrix M(z) of the iteration (6) is given by

M@)=-D"(z)[L(z)+L"(z)]. ©)

The elements of M(z) are independent of the choice of .
Hence Q should be chosen to minimize the spectral radius
of . This seems to be very difficult. We apply a different
approach which is we impose spectral radius of M(z) to be
zero for real z. The following theorem gives an upper bound
for for the two stage Gauss method in the left half plane. The
coefficient matrix of the two stage Gauss method is given by
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i a,
o a,+b,

1
where q, = 2 and b, =

(10)

ol%

Theorem 1. Consider the two-stage Gauss method with
coefficient matrix given by (10)and S=1, Suppose that on
{he real axis z = X. Then there exists a non-

and

10
singular matrix O such that Q”Q=[ b—a,)'

0 1
p[M)]< fl [2] forall zel]".

Proof: 1t follows from the Lemma 1 that for two stage Gauss
method the iteration matrix M(2)=-D"(z)[1(z)+ I"(z)],

o h,(2) 0
D(z)—( 0 Iu(z)]‘

=

+a,

0 0
here 1(z) = A
N (]Z,(Z) 0)

0 _1|2(:)
is impli h(2
This implies M(z) = n
L@ 0
1y(2)

The spectral radius of the above iteration matrix is given by

’/.2(2)121(2)
1,(2)],(2)
The clements /,(2)'s are given in terms of the elements of
0"0 =, ] and the coefficient matrix of A by
I(2)=(1-2q, )[ocll (1-za,)-za,, (a, +5, )]
-Z(q, +b,)[a21 (1-za,)-za,, (a,+b, )]
1,(2) =(I—Ea,)[—za” (a,-b)+a,(1-2a, )]
-Z(aq, +b,)[—zaz, (a,—b,)+a, (1-za, )]
=-z(a —b,)[(l—fa,)a,, -Z(a, +bl)a2,]
-r(l—za,)[(l—fa,)a,2 -Z(a +b,)an],
L(2)=-Z(a,-b, )[(l —za,)a, —z(aq, +b1)a,2]

+(]—Ea,)[(] —7a,)a, —z(a, +b )au]

p[M(2)]= an

(12)

hy(2)=-Z(a, —b,):—Z(a, -b)a, +(l—za,)a,2]
+(]—Ea,)[—z(a, —b,)a2,+(l—za,)an].

We solve this set of equations by imposing the condition

p[M(2)]=0 on the real axis z — x. That is from (11) we

obtain /(2)=0. Hence the clements of "0 are obtained as
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b -a,

@y =ay =0, a, =1 and @y, =——1
LX)

Then from (12), we obtain

b =1+2b' ~(z+%)a,,

by =(a, hl)(‘? z),

n=hs,

(a, b,)(loszf (zoi)a,)

/:.‘ = >
(1+228 -(242)a)

Since (l +220) —(z+%)aq, ) is positive for all Y€, then

by the maximum modulus principle £[M(2)] attains its
maximum on the imaginary axis z = iy. This gives

b —a?)y? )

(; ﬁ)f,g F’l ~ % on the imaginary axix
(1+87%) b

2

z =iy. Thatis p[M(z)]< l—(%] 105000 for all ze(]

In this case we obtain

p[M(2)]=

1 0

Q”Q: 0 bl_al ¥
b +a

(13)

In this approach, it is difficult to handle the 3-stage Gauss
method and 4-stage Gauss method. We may transform the
coefficient matrix and the iteration matrix to a block diagonal
matrix. The result for s = 2 may be applied to other methods
when s > 2. For each s- stage method of order 2s there is a
real matrix S such that S'AS=A=4© 4, ©---@4 (14

real block diagonal matrix. The sub matrices are chosen to

have the form
a  a-b 5
A':’:a‘+b, ] T=12:0050

withb,>a, j=1,2.....,"and except that, when s is odd A= [a .
Many iterative methods have coefficient matrices which may
be transformed to real block diagonal matrices of the same
form as (14). The iteration matrix M(z) can be written as a
partition form corresponding to the partition of

1s5)

S$'4S:

STM(2)S=M(2)=M,(2) OM,(2)®---® M (2).
Then the spectral radius is given by
p[M(2)]=max p[M,(2)],

M@)=-D'@)[L@+L@)]. i=12.....r, (16)
D(z)=D(z)®D,(z2)®---®D (z) and
L(2)=L(2)®L,(2)®---®L(2)

corresponding to the partition of S '4S. When s = 3 the

method of order 2s has the matrix of coefficients

s 2.5 s s
36 9 15 36 30
P I R S BT
36 24 9 36 24
38 246 5
36 30 9 15 36
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and there is a mawrix S such that
[ - )
| @ a-b (
"a,+h, a 0|=404,
L O 0 a,

S'AS=A=

where 4, i
and a numerical calculation gives
"' -0.0455241821 00441943589 0.0721518521

S | -0.140048242  -0.139620426  0.118832579
{ 10 -0.244595668 10

4
where the columns are cigenvectors of [a,/ = 4] .
Let P=D,@D, and L=1,®L, 0 that the result of the
Theorem 1 may be applied using (16), we get
\2
1-| &
(&)
On the other hand, since 2; = [/y;]and L, =[0]. gives
M,(z)=0 imphes p[M,(z)]=0.
Then p[M(=)]=0.6903 and in this case we obtain
‘/1 0 0
= | a”n

P[M(2)]< 70.6903.

H0) =
(o o 1
Next, consider the four-stage Gauss method with matrix of

cocfficients 4= [a,] obtained by solving the sets of equations

4 r
Za‘;cf'—%, r=1234, for cach i=1234, where
J=)
6.6,6,¢ are the zeros of F(2x-1), the transformed
legendre polynomial of degree 4. The eclements of the
transformed matrix
T a a+b 0 0
a, 0
0 a, a,+b,
0 0 a+b a
where @, 0.091566240, a, " 0.158433760, &, [10.147520224,
b, 0165384116 and
f006377|667 -0.054434907 -0.231157907 0.013395896
| 0.027613999  0.161524607 -0.083606572 -0.040682019
| 0.784055901 -0.290017081 -0.859410259 -0.266775537
L 1.0 -1.164674610 1.0 -1.364336800
where the columns are eigenvectors of
[a/~4] and [ayf - 4] Again the result of the Theorem 1
may be applied using (16), we obtain

S'AS=A= "';"" =404,

ols (2]
/)[_M(-)JSVI fb/l 0.7840,

p[.‘vl:(:)]qul—(;i’-) 0.2869,
\ 2 )

where the matrices D and  are given by

[0 0 0 0] L, 0 0 0
L 0.0 0

L=, =" J./):/)ﬁa[)2= Oim 0 0
[0 0 0 of 001, 0
L0 017, 0 0.0 0 1/,

Then p| #(z)|=0.7840 and we obtain
(10 0 o0 )

| as)

0142342788, A [ 0.196731007, a, ] 0.215314423

i i were
In the next section, obtained theoretical results

confirmed by numerical experiments

3. NUMERICAL RESULTS ' '
A number of numerical experiments were carried out in order

10 evaluate the efficiency of the proposcq class of glcnclral
non-lincar scheme. Results for three noq—lmcar mm::) va 101;
problems are reported and compared with rcsulllls o[ ]lz]un
using the scheme described in Cooper and Butcher [ 1].

Problem 1 denotes the non-linear system
x ==0.013x, +1000x,x,, x(0)=1,

x, =2500x,x,, x,(0)=1,

x, =0.013x, —1000x,x, — 2500x,x,, x,(0)=0,

where the eigenvalues of the Jacobian at the initial point are
0, -0.0093 and -3500.

Problem 2 is also the non-linear system

x| ==55x, + 65x, — x,X;, x(0)=1,
x5 =0.0785(x, —x,), x(0)=1,
x,(0)=0,

x;=0.1x,,
where, the cigenvalues of the Jacobian at the initial point
are 0, -1.0 and -3.0 x 107

For each problem, a single step was carried out, in each
method, using the Jacobian evaluated at the initial point. For
cach scheme tested, the initial iterateY°is chosen as r*-cex
here x is the true solution at the initial point.

Method 1 denotes the two-stage Gauss method implemented
according to the basic scheme (5) with parameters given
in Cooper and Butcher [1] with relaxation parameter ©=1.

Method 1* denotes the two-stage Gauss method but
implemented using the non-linear scheme (6) proposed
here with the matrix Q given by (13) and E™ chosen from
the scheme (5).

Method 2 denotes the three-stage Gauss method implemented
according to the basic scheme (5) with parameters given
in Cooper and Butcher [1] with relaxation parameter w=1.

Method 2* denotes the three-stage Gauss method but
implemented using the non-linear scheme (6) proposed
here with the matrix Q given by (17) and chosen from the
scheme (5).

Methoq 3 denotes the four-stage Gauss method implemented
gccordmg to the basic scheme (5) with parameters given
in Cooper and Butcher [1] with relaxation parameter m=1.

Mgthod 3 denotes the four-stage Gauss method but implemented
using the pon-linear scheme (6) proposed here with the
matrix Q given by (18) and E® chosen from the scheme (5).
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For cach problem the quantities

e, :"Y"'—Y"’ l“r s m=1.23.:.,

are calculated. The values of e <ToL = 10" are tabulated
for each problem and method. Similar results are obtained
for different values of TOL. The Results are given in the
below table.

Table 1
Values of m giving e"<10” for Gauss method

rT— Methods
1 r 2 > 3 3
1 7 5 + 3 5 3

[}
o
W
~
=
o0
&

4. CONCLUSION
Numerical result shows that, the proposed class of general
non- linear iteration scheme accelerates the convergence rate
of the general linear iteration scheme proposed by Cooper and

Track: Pure & Applied Sciences
Butcher [ 1] for some stiff problems that has strong stiffness.
It will be possible to apply the proposed class of general
non-linear scheme to accelerate the rate of convergence of
other linear iteration schemes.
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