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Abstract
Tropical and subtropical xanthid crabs are known for containing potent neurotoxins, such as paralytic shellfish poison and 
tetrodotoxin (TTX), which can cause human intoxication. Although the toxic xanthid crab Atergatis floridus is known to 
be distributed on Jeju Island on the south coast of Korea, information about TTX in this crab is yet to be available. In this 
study, we used a competitive enzyme-linked immunosorbent assay (cELISA) to screen for TTX levels in A. floridus and 
A. integerrimus, a member of the family Xanthidae recently collected from the southern coast of Jeju Island. The cELISA 
assay indicated A. floridus contained weak to moderate toxic levels of TTX in their tissues; the walking leg muscle showed 
the highest TTX concentration, followed by the gonad, hepatopancreas, chelipeds muscle, stomach, gills, and cephalothorax 
muscle, with the TTX contents per individual ranging from 29.64 to 109.06 μg. In contrast, the ELISA revealed that TTX 
levels in all A. integerrimus tissues analyzed were below the detection limit. This study first reports TTX toxin in the xanthid 
crab A. floridus, and the findings provide fundamental information for monitoring the toxicity of the xanthid crabs on the 
coast of Jeju Island.
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1  Introduction

Tetrodotoxin (TTX) is a water-soluble, heat-resistant, and 
highly potent natural toxin that blocks voltage-gated sodium 
channels on the surface of nerve cells, failing in the nerve 
impulse transmission and subsequent paralysis in the poi-
soned animals (Saoudi et al. 2010; Bane et al. 2014; Mel-
nikova and Magarlamov 2022). TTX is recognized for being 
found in several species of pufferfish, as well as in certain 
other marine invertebrates, such as flatworms (Yamada et al. 
2017; Okabe et al. 2019), gastropods (Noguchi et al. 1984; 
Hwang et al. 2005; Costa et al. 2021), octopuses (Sheumack 
et al. 1984; Williams and Caldwell 2009; Asakawa et al. 
2019; Yamate et al. 2021), and tropical and subtropical xan-
thid crabs (Yasumura et al. 1986; Saito et al. 2006; Tsai 
et al. 2006). In coastal marine ecosystems, TTX is utilized 
by certain animals as an antipredator defense or a venom to 
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explore the prey (Williams 2010; Nagashima and Arakawa 
2014; Melnikova and Margarlamov 2022).

Most toxic crabs of the family Xanthidae occur predomi-
nantly in coral reefs and rocky shores within tropical and 
subtropical regions. In southern Japan, the floral egg crab 
A. floridus, Zosimus aeneus, and Platypodia granulosa have 
been reported as vectors containing TTX (Noguchi et al. 
2011). The floral egg crab A. floridus is known for its high 
toxicity among xanthid crabs occurring in southern Japan 
and Taiwan and the Great Barrier Reef (Endean et al. 1983; 
Hwang and Tsai 1999; Noguchi et al. 1983, 1986; Tsai et al. 
1997, 2002, 2006). The floral egg crab is also known to be 
distributed in Jeju Island. One species in the family, Xanthi-
dae A. integerrimus, was recently collected from the south 
coast of Jeju Island, marking its first recorded occurrence in 
Korean waters. A. integerrimus has a wide geographic distri-
bution in tropical and subtropical regions in the Indo-Pacific, 
including subtropical Japan (Tanaka et al. 2010), the Philip-
pine Seas (Jiang et al. 2016; Karagozlu et al. 2018), South 
China Sea (Xie et al. 2018), Gulf of Thailand (Kunsook and 
Karinthanyakit 2021), Bay of Bengal (Elayabharathi et al. 
2020), and the Persian Gulf (Naderloo et al. 2016). Infor-
mation on the toxicity of xanthid crabs A. floridus and A. 
integerrimus in Korean waters is yet to be available.

The mouse bioassay (MBA) has been the primary method 
used for extensive testing of TTX toxicity until recent years 
(Hwang and Jeng 1991; Noguchi and Mahmud 2001; Yu 
et al. 2004; Tsai et al. 2006). However, due to ethical con-
cerns associated with the use of animals and the lack of 
toxin specificity in MBA, there is an increasing need for 
the development of alternative analytical methods (Christian 
and Luckas 2008; Visciano et al. 2016; Bane et al. 2016). 
The enzyme-linked immunosorbent assay (ELISA) is one of 
the effective alternative detection methods, offering rapid-
ity, simplicity, and specificity while requiring only minimal 
sample preparation and equipment (Akbora et al. 2020; Dil-
lon et al. 2021; Turner et al. 2023). To screen TTX in the 
animal tissues, monoclonal or polyclonal antibodies were 
developed using TTX molecules as antigens, and the level 
of TTX in the homogenized tissues was quantified success-
fully using ELISA or competitive ELISA (cELISA)(Tao 
et al. 2010; Reverté et al. 2018; Vlasenko et al. 2020; Thuy 
et al. 2020). Owing to its strengths, the immunologic assays 
have also been widely applied to detect marine biotoxins, 
including azaspiracids (Samdal et al. 2015), okadaic acid 
(Lu et al. 2012), palytoxin (Boscolo et al. 2013), and yes-
sotoxin (Samdal et al. 2004).

Located off the southern coast of Korea, the coastal eco-
system of Jeju Island is enriched with benthic fauna of sub-
tropical origin (Cho et al. 2014; Noseworthy et al. 2016). In 
particular, the rocky shores on Jeju Island include numerous 
species of subtropical brachyuran crabs. Among the 40 spe-
cies of xanthid crabs reported in Korean waters, 21 species 

of xanthid crabs have been identified on Jeju Island, includ-
ing the toxic A. floridus (Hong et al. 2009; NIBR 2023). 
There is currently a lack of comprehensive toxicity data on 
TTX-containing or potentially TTX-containing xanthid crabs 
in Korean waters, necessitating toxicity information for toxin 
management and ecological research. In this study, we inves-
tigated TTX content in A. floridus collected from tidal pools 
on the east coast of Jeju Island and the unrecorded xanthid 
crab A. integerrimus, from the west coast of Jeju Island 
using ELISA, with the aim of providing critical baseline 
data for future toxin research on xanthid crab.

2 � Materials and Methods

2.1 � Sampling Effort

In November 2023, six specimens of A. floridus with a 
carapace width ranging from 1.5 to 3.8 cm were collected 
from the rocky tidal pools on the east coast of Jeju Island. In 
addition, two A. integerrimus trapped in a shallow subtidal 
gill net were obtained from the west coast of Jeju Island in 
October and November 2023 (Fig. 1). To understand the 
distribution of TTX in the tissue, we selected the two large 
specimens of A. floridus (14.4 and 31.5 g) and extracted the 
tissues from the walking legs, chelipeds, and cephalothorax. 
The gonad, hepatopancreas, stomach, and gill tissues were 
also isolated from the crabs, weighed, and homogenized. 
Alternatively, the entire body of the remaining four small 
A. floridus (3.0–12.5 g) was homogenized for the assay. The 
muscles in the walking leg, cheliped, and cephalothorax of 
the two A. integerrimus (205.7 and 245.5 g) were extracted 
from the shell separately, weighed using an electronic bal-
ance and homogenized. The gonad, hepatopancreas, stom-
ach, and gill tissues of the two crabs were also isolated and 
homogenized for the assay.

2.2 � DNA Extraction, PCR, and Sequencing

Using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Ger-
many), genomic DNA was extracted from the muscles of 
appendages. For species identification, the cytochrome c oxi-
dase subunit I (COX1) gene from the mitochondrial genes 
of the two xanthid crabs was subsequently amplified by the 
polymerase chain reaction (PCR) using the primer set F: 
LCO1490 (5’- GGT CAA CAA ATC ATA AAG ATA TTG 
G-3’) and R: HCO2198 (5’- TAA ACT TCA GGG TGA 
CCA AAA AAT CA-3’) (Folmer et al. 1994). The PCR-
reaction mixture contained 100 ng of template DNA, Taq 
MasterMix 2X with Dye (MGmed, Seoul, Korea), and ten 
pmol of each primer, with a total volume of 50 µL. The ther-
mal cycling conditions were as follows: initial denaturation 
at 94 °C for 5 min, followed by 40 cycles of denaturation 
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at 95 °C for 30 s, annealing at 50 °C for 45 s, extension at 
72 °C for 1 min, and then a final elongation at 72 °C for 
10 min. After purification with the Accuprep® PCR puri-
fication kit (Bioneer, Daejeon, Korea), the obtained PCR 
products were sequenced by Macrogen Inc. (Seoul, Korea) 
using an ABI 3730xl analyzer (Applied Biosystems, Foster 
City, CA, USA).

2.3 � Species Identification

The basic local alignment search tool (BLAST) tool in the 
National Center for Biotechnology Information (NCBI) data-
base (Sayers et al. 2022) was used to analyze the nucleotide 
sequences of the COX1 gene isolated from the two xanthid 
crabs. The COX1 gene sequences were aligned with those 
available from the genera Atergatis and Atergatopsis using 
multiple alignment with the fast Fourier transform (MAFFT) 
software (Katoh et al. 2019). The best fit model based on the 
Akaike Information Criterion was TIM2 + F + I implemented 
in IQ-TREE (Minh et al. 2020). Finally, phylogenetic trees 
were constructed based on the COX1 gene sequences gener-
ated using the maximum likelihood (ML) method with 1,000 
bootstrap replicates in the RAxML software (Stamatakis 
2006). The phylogenetic trees were condensed by applying 
a 60% cut-off value.

2.4 � TTX Screening Using cELISA

The TTX level in the different tissues of A. flrodidus and A. 
integerrimus was determined using a EuroProxima Tetro-
dotoxin cELISA kit (R-Biopharm Nederland B.V., Arnhem, 
The Netherlands) containing a mouse monoclonal antibody 
raised from TTX. The EuroProxiam kit has been validated 

for screening TTX with detection limits of 9.4 ng/g and 
detection capability of 20 ng/g.

According to the manufacturer’s protocol, 5 mL of sodium 
acetate buffer (comprising 300 mL of 0.1 M C2H3NaO2 and 
200 mL of 0.1-M CH3COOH, pH 4.8) was mixed with the tis-
sues and homogenized using a Sonifier 450 (Branson, USA), 
operating at 20 kHz for 5 min. Subsequently, the homogenate 
was centrifuged at 4000 × g, and the supernatant was isolated 
and proceeded for quantitative TTX analysis. A volume of 
50 μL of the supernatant and TTX standard solutions ranging 
from 0.6 to 20.0 ng/mL were added to wells in a microplate 
pre-coated with TTX. Then, 50 μL of the mouse-antiTTX 
primary antibody was added to each well and incubated in 
the dark at room temperature (20–25 °C) for 30 min. After 
incubation, the wells were washed with rinsing buffer, and 
100 μL of anti-mouse IgG horseradish peroxidase-labeled as 
the secondary antibody was added to each well and incubated 
for 30 min. Finally, 100 μL of substrate solution containing 
hydrogen peroxide/tetramethylbenzidine was added to visual-
ize the bound TTX-antibody complex. The antibody-substrate 
mixture was incubated for another 30 min, and sulfuric acid 
was added to terminate the reaction. The optical density of 
the TTX-antibody complex was measured at 450 nm using a 
VersaMax microplate spectrophotometer (Molecular Devices, 
San Jose, CA, USA). The TTX concentrations, expressed as 
the TTX weight per gram tissue (μg/g), were referred from the 
standards included in each microplate using RIDASOFT Win 
software (R-Biopharm, Darmstadt, Germany).

Fig. 1   Sampling site location. Two xanthid crabs were collected from rocky intertidal zones on Jeju Island, located off the south coast of Korea. 
Atergatis integerrimus and A. floridus were collected in Moselpo and Seongsan, respectively
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3 � Results

3.1 � Identification of the Xanthid Crab

In this study, we successfully identified two Atergatis species 
through morphologic and molecular analyses. The brown-
colored xanthid crabs collected from the east coast of Jeju 
Island exhibited carapace widths (i.e., the longest axis of 
the carapace) ranging from 22.0 to 51.0 mm and carapace 
lengths (i.e., the vertical axis of the carapace) from 15.1 to 
38.4 mm. Their carapace was broadly oval with a smooth 
surface and displayed a brown color with intricate, lighter 
colored patterns resembling a lace-like structure (Fig. 2). 
In contrast, the red-colored xanthid crabs trapped in the gill 
nets had carapace widths of 98.8 and 115.7 mm and carapace 
lengths of 62.6 and 75.2 mm. These crabs also had a broadly 
oval carapace, which was reddish, with small white spots 
sparsely distributed across its surface (Fig. 2).

In the ML tree based on the COX1 sequences, the two 
Atergatis species sequences clustered with high similar-
ity into distinct clades corresponding to A. floridus and A. 
integerrimus (Fig. 3). This clustering strongly supported 
the species-level identification of the specimens. Moreover, 
the shallow genetic divergence observed within each clade 
underscored the reliability of COX1 sequences for precise 

species identification. A. floridus exhibited a remarkable 
sequence similarity of 98.9–100% with sequences previ-
ously reported from Singapore, Bangladesh, and the Philip-
pines. Similarly, A. integerrimus showed a high similarity 
of 99.3–100% with sequences from tropical and subtropical 
regions such as southern China, India, Philippines, Singa-
pore, and Thailand (Table S1).

3.2 � TTX Concentration Determined by cELISA

The cELISA demonstrated strong linearity with a coefficient 
of determination (r2) of 0.99 for the TTX calibration curve 
(Fig. S1). Screening for TTX using cELISA revealed that the 
four specimens of A. floridus, which were analyzed as whole 
bodies due to their small size, exhibited TTX concentrations 
ranging from 5.93 to 12.05 µg/g. In the analysis of each tis-
sue, the highest TTX concentrations were found in the walk-
ing leg muscle, with levels of 15.14 µg/g and 28.69 µg/g, 
followed by the gonad (4.76 µg/g and 16.14 µg/g), hepato-
pancreas (3.19  µg/g and 13.49  µg/g), cheliped muscle 
(10.50  µg/g and 12.60  µg/g), stomach (3.11  µg/g and 
8.75 µg/g), gills (2.32 µg/g and 6.16 µg/g), and cephalotho-
rax muscle (0.51 µg/g and 1.12 µg/g) (Table 1). The total 
TTX content per individual was up to 109.06 µg (Table 1). 
Conversely, the ELISA results demonstrated that TTX levels 

Fig. 2   Atergatis integerrimus (left) and A. floridus (right) specimens collected from Jeju Island off the south coast of Korea. Scale bar = 1 cm
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Fig. 3   Maximum likelihood tree of Atergatis crabs based on the cytochrome c oxidase subunit I sequence. The bootstrap values > 60 are shown 
on the branches. Atergatopsis germaini is used as an outgroup. Red arrowheads indicate the specimens analyzed in this study

Table 1   TTX concentrations 
(μg/g tissue) in various tissues 
of Atergatis integerrimus and A. 
floridus determined by cELISA

ND not detected
- Not analyzed

TTX in 
A.integerrimus 
(μg/g)

TTX in A. floridus (μg/g)

Sampling month Oct Nov Nov

Sex M M F M F M M M

Whole body – – – – 8.73 8.52 5.93 12.05
Chelipeds muscle ND ND 10.50 12.60 – – – –
Walking legs muscle ND ND 28.69 15.14 – – – –
Cephalothorax muscle ND ND 0.51 1.12 – – – –
Hepatopancreas ND ND 3.19 13.49 – – – –
Gills ND ND 2.32 6.16 – – – –
Gonad ND ND 4.76 16.14 – – – –
Stomach and mid-gut ND ND 3.11 8.75 – – – –
TTX in individuals (μg) ND ND 37.86 29.64 109.06 90.34 78.29 36.14
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in all analyzed tissues of A. integerrimus were below the 
detection limits (Table 1).

4 � Discussion

In this study, we collected two species in the family Xan-
thidae from rocky intertidal in Jeju Island, and the COX1 
gene sequence analysis confirmed that they are A. flori-
dus and A. integerrimus. During the study, the floral egg 
crab A. floridus occurred in small tide pools near the low 
tide line during the night, where they crawled slowly and 
were observed to forage on seaweed. Limited studies have 
investigated the feeding ecology of A. floridus, which may 
provide crucial information about TTX accumulation in the 
crab. According to Kotaki et al. (1983), A. floridus collected 
from Ishigaki Island in Okinawa contained the calcareous 
coralline algae Jania sp., and the algae contained marine 
biotoxin gonyautoxins. Saisho et al. (1983) also examined 
the stomach contents of A. floridus collected from Ishigaki 
Island, reporting that the stomach included the red algae 
Hypnea sp, unidentified animal tissues, marine sponge, and 
fish fragments. In this study, no recognizable objects were 
identified in the stomachs of the floral egg crabs used in the 
analysis. The stomach contents of A. floridus collected in 
this study were not analyzed, due to the limited number of 
specimens collected.

The cELISA revealed that the TTX levels in the append-
ages and internal organs of the two male A. integerrimus 
were below the detection limit, indicating that they are not 
toxified with TTX. While several studies have reported the 
geographic distribution of the egg crab in tropical and sub-
tropical Indo-Pacific regions (Naderloo et al. 2016; Xie et al. 
2018; Kunsook et al. 2021; Karim et al. 2022), limited stud-
ies have examined TTX toxins in A. integerrimus. Yasumura 
et al. (1986) screened TTX in A. integerrimus collected from 
the central Philippines using liquid chromatography (LC), 
reporting that the two male egg crabs contained TTX and 
its analogs, including 4-epitetrodotoxin and anhydrotetro-
dotoxin. However, the toxicity of TTX and its analogs in 
the crabs tested using MBA revealed that the toxicity was 
marginal, as two mouse units per gram (MU/g). The TTX 
values of A. integerrimus identified in this study may be 
attributed to the ELISA detection limit, indicating the need 

for further instrumental analysis to detect trace amounts of 
TTX and confirm the presence of TTX analogs.

Despite the long-standing recognition of A. floridus toxic-
ity, few studies have quantitatively analyzed TTX levels in 
its tissues. Here, we present the TTX concentrations in A. 
floridus determined in our study alongside those reported 
from Nagasaki, Japan (Zhang et al. 2023), as summarized in 
Table 2. The TTX levels in individual crabs from our study 
ranged from 29.64 to 109.06 µg, which are comparatively 
lower than those reported in Nagasaki, where levels ranged 
from 2.16 to 421.88 µg. Notably, the highest TTX concentra-
tion reported by Zhang et al. (2023) is approximately four 
times greater than the maximum level observed in our study 
(Table 2). The dynamics of TTX accumulation in xanthid 
crabs remain unclear, though dietary intake is suspected to 
play a crucial role in its toxicification (Kotaki et al. 1983; 
Saisho et al. 1983).

Since previous studies primarily analyzed xanthid crab 
toxicity using MBA, a direct comparison with our findings is 
essential. To facilitate this comparison, the TTX concentra-
tions (expressed in µg/g) from both our study on A. floridus 
and the study by Zhang et al. (2023) were converted to MU 
using the conversion factor 1 MU = 0.2 µg TTX (Biessy et al. 
2019). Table 3 presents a summary of xanthid crab toxic-
ity as analyzed in this and previous studies as MU. Saito 
et al. (2006) also assessed TTX levels in various body parts 
of Atergatis floridus crabs collected from Kanagawa and 
Wakayama using MBA. Their findings indicated that TTX 
toxicity was noticeably higher in the chelipeds muscle of 
all samples and walking legs muscles in several samples 
compared to other tissue. Notably, the muscle in the cepha-
lothorax of crabs in Wakayama and Kanagawa Japan was 
either non-toxic or exhibited only marginal toxicity. In our 
study, we similarly observed the highest TTX contents in 
the walking leg muscles, with the cheliped muscles showing 
the second-highest average TTX content after the walking 
legs. In contrast, the lowest TTX content was found in the 
cephalothorax muscles (Table 3). These results suggest that 
TTX accumulation in the appendages may be utilized for 
defensive purposes. The low concentration of TTX in the 
cephalothorax may be intended to protect the chest ganglion 
in that region, as presumed by Saito et al (2006).

As shown in Table 3, the maximum total toxicity of A. 
floridus determined in this study (545 MU) was relatively 
lower than the toxicities reported for various xanthid crab 

Table 2   Comparison of TTX levels in the whole body of A. floridus specimens analyzed in this study and those collected from Nagasaki, Japan 
(Zhang et al. 2023)

Location Sampling date Body weight (g) TTX levels (μg/g) Total TTX (μg) References

Jeju, Korea Nov-2023 3.00–31.50 (14.20 ± 9.40) 0.94–12.05 (6.32 ± 4.33) 29.64–109.06 (63.56 ± 33.37) Present study
Nagasaki, Japan Dec-2020 2.96–11.59 (7.53 ± 3.40) 0.6–45.46 (11.93 ± 13.80) 2.16–421.88 (110.05 ± 131.30) Zhang et al. 2023
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Table 3   The highest levels of TTX toxicity in xanthid crabs reported in this study and previous studies

Species Toxin type Tissue Maximum 
toxicity 
(MU/g)

Maximum 
total toxicity 
(MU)

Method Locality References

Actaeodes tomen-
tosus

TTX Whole body 4 40 HPLC; LC–MS; 
GC–MS

Taiwan Ho et al. 2006

Atergatis floridus TTX Whole body 60* 545* cELISA Korea Present study
Chelipeds muscle 63*
Walking legs 

muscle
143*

Cephalothorax 
muscle

6*

Hepatopancreas 67*
Gills 31*
Gonad 81*
Stomach 44*

TTX Whole body 227* 2,109* MBA; HPLC; 
LC–MS/MS

Japan Zhang et al. 2023

Appendages 128*
TTX Chelipeds muscle 237 MBA Japan Saito et al. 2006

Chelipeds outer 
shell

27

Walking legs 
muscle

325

Other shell 57
Liver 25
Gills 95
Gonad 107

Atergatopsis 
germaini

TTX Appendages 25 1,148 MBA; LC–MS; 
GC–MS

Taiwan Tsai et al. 2006

Cephalothorax 3.1
Viscera 23

Demania cultripes TTX; 4-epiTTX; 
4,9-anhy-
droTTX; PSP

Appendages 7.7 MBA; HPLC-
FLD; GC–MS

Philippines Asakawa et al. 
2010

Viscera 52.1
TTX; anh-TTX Appendages 3.5 800 MBA; LC–MS; 

GC–MS
Taiwan Tsai et al. 2006

Cephalothorax 5.3
Viscera 25

D. reynaudi TTX Appendages 4.3 511 MBA; LC–MS; 
GC–MS

Taiwan Tsai et al. 2006

Cephalothorax 4.5
Viscera 9.8

TTX; anh-TTX; 
4-epiTTX

Soft tissue 195 MBA; HILIC/
MS–MS

Vietnam Ha et al. 2023

D. toxica TTX Appendages 3.1 71 MBA; LC–MS; 
GC–MS

Taiwan Tsai et al. 2006

Cephalothorax 3
Viscera 5

Lophozozymus 
incisus

TTX Appendages 6.5 300 MBA; LC–MS; 
GC–MS

Taiwan Tsai et al. 2006

Cephalothorax 3.9
Viscera 8.4

L. pictor TTX Appendages 3.1 247 MBA; LC–MS; 
GC–MS

Taiwan Tsai et al. 2006
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species in Taiwan and Japan, which range from 800 to 
1148 MU. According to Noguchi and Arakawa (2008), 
TTX toxicity levels are categorized into three groups: (1) 
weakly toxic (10–100 MU/g tissue), (2) moderately toxic 
(100–1000 MU/g tissue), and (3) strongly toxic (> 1000 
MU/g tissue). Based on this classification, the TTX levels 
in the whole body of A. floridus from Jeju Island, which 
range from 29.65 to 60.25 MU/g, are considered weakly 
toxic. However, it is noteworthy that the highest TTX con-
centration recorded in the walking leg muscle of one crab, 
at 143.45 MU/g, falls within the moderately toxic range.

TTX acquisition and distribution regulation mecha-
nisms within the tissues of xanthid crabs remain poorly 
understood. The observed variations in toxin levels among 
individuals and across regions within the same species 
support the hypothesis that xanthid crabs, similar to other 
marine organisms such as pufferfish and blue-ringed octo-
puses, acquire their toxins exogenously through the food 
chain (Noguchi et al. 1986; Zhang et al. 2021). Moreover, 
the origin of paralytic shellfish toxins in xanthid crabs 
distributed in Ishigaki Island has been identified as the 
calcareous red alga Jania sp. (Kotaki et al. 1983). The 
amount of toxin acquired through exogenous pathways 
is directly influenced by the quantity of toxin-bearing 
prey consumed, resulting in inter-individual variations in 
toxin levels (Noguchi et al. 2006). Compared with previ-
ously reported levels, the lower toxicity observed in xan-
thid crabs collected from Jeju Island may be attributed 
to the lower abundance of TTX-bearing prey in the Jeju 
region. Further research on the dietary sources of Atergatis 

species is required to analyze the causative organisms 
comprehensively.

Another factor to consider when assessing toxicity is the 
variability in toxin content depending on the collection sea-
son. Both Saito et al. (2006) and this study identified high 
concentrations of TTX in the walking leg muscles, suggest-
ing a regulatory mechanism that governs the distribution 
of TTX within tissues. This mechanism may allocate TTX 
according to physiologic or ecological needs, potentially 
contributing to seasonal fluctuations in toxin levels. In Aus-
tralia, the toxicity of A. floridus varies significantly by col-
lection area and season, with the highest levels recorded 
in autumn and the lowest in winter (Llewellyn and Endean 
1991). Integrating toxin analysis with the reproductive cycle 
of xanthid crabs could provide valuable insights into the 
variability of toxin content in these toxic species.

In addition, ELISA analysis cannot provide information 
on TTX analogs, as TTX is found alongside its analogs 
within toxic organisms. Although most TTX analogs gener-
ally show lower toxicity than TTX, oxoTTX exhibits toxic-
ity that is comparable to or even greater than that of TTX 
(Taniyama et al. 2009) and has been detected in A. floridus 
specimens collected from Ishigaki Island, Japan (Arakawa 
et al. 1994). This analogue may be also present in popula-
tions distributed in South Korea, and further instrumental 
analyses are necessary to determine the toxicity of these 
specimens accurately.

In conclusion, we employed cELISA to assess TTX lev-
els in various tissues of the xanthid crabs A. floridus and A. 
integerrimus collected from Jeju Island. The highest TTX 

Table 3   (continued)

Species Toxin type Tissue Maximum 
toxicity 
(MU/g)

Maximum 
total toxicity 
(MU)

Method Locality References

Cephalothorax 3
Viscera 5.2

Xanthias lividus TTX; PSP Whole body 4.5 118 HPLC; LC–MS; 
GC–MS

Taiwan Ho et al. 2006

TTX; PSP Appendages 7 430 MBA; HPLC; 
GC–MS

Taiwan Tsai et al. 2002

Cephalothorax 17
Viscera 17

Zosimus aeneus TTX; 11-norTTX-
6(R)-ol; 
11-deoxyTTX; 
5-deoxyTTX; 
4-epiTTX; 
11-oxoTTX

Whole body 11 390 LC–MS Japan Sagara et al. 2009

TTX; PSP Whole body 24 1,258 HPLC; LC–MS; 
GC–MS

Taiwan Ho et al. 2006

*To compare with the toxicity reported in previous studies, the TTX level in ug/g was converted into mouse unit (MU) according to Biessy et al. 
(2019), in which 1 MU corresponds to 0.2 μg TTX
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concentration found in the whole body of A. floridus was 
60.25 MU/μg, which indicate weak toxicity. Although the 
results show low TTX levels, the potential for seasonal vari-
ability in toxicity underscores the need for further research. 
These findings provide essential data for monitoring the 
toxicity of Atergatis species along the coast of Jeju Island.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12601-​024-​00191-w.
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