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Abstract—Predicting Antimicrobial Resistance (AMR) from genomic data has important implications for human and animal healthcare,

and especially given its potential for more rapid diagnostics and informed treatment choices. With the recent advances in sequencing

technologies, applying machine learning techniques for AMR prediction have indicated promising results. Despite this, there are

shortcomings in the literature concerning methodologies suitable for multi-drug AMR prediction and especially where samples with

missing labels exist. To address this shortcoming, we introduce a Rectified Classifier Chain (RCC) method for predicting multi-drug

resistance. This RCC method was tested using annotated features of genomics sequences and compared with similar multi-label

classification methodologies. We found that applying the eXtreme Gradient Boosting (XGBoost) base model to our RCC model

outperformed the second-best model, XGBoost based binary relevance model, by 3.3% in Hamming accuracy and 7.8% in F1-score.

Additionally, we note that in the literature machine learning models applied to AMR prediction typically are unsuitable for identifying

biomarkers informative of their decisions; in this study, we show that biomarkers contributing to AMR prediction can also be identified

using the proposed RCC method. We expect this can facilitate genome annotation and pave the path towards identifying new

biomarkers indicative of AMR.

Index Terms—Multi-label classification, Classifier Chain, Multi-drug AMR, Missing labels, Semi-supervised model, Feature selection

Ç

1 INTRODUCTION

ANTIBIOTIC Resistance is an Antimicrobial Resistance
(AMR) in bacteria and a growing public and veterinary

health concern due to the increasing spread of resistant bac-
teria. Some intensive farming practices have led to the inap-
propriate use of antibiotics to prevent bacterial diseases,
and this has intensified the issue. The World Health Organi-
zation (WHO) has listed AMR as one of the three most criti-
cal health issues of the 21st century [1]. Currently, 700000
people die every year worldwide due to AMR, and it is pre-
dicted to be five million death by 2050 unless urgent actions
are taken [2]. Despite efforts to identify AMR and prevent

its spread, significant issues still exist in terms of establish-
ing its genetic factors.

Promising solutions to address these concerns include
developing novel strategies to identify AMR presence in
bacteria, for example via antibiotic susceptibility testing in-
vitro [3]. Advantageously, this approach facilitates a person-
alised treatment plan, thus avoiding unnecessary antibiotic
use that would otherwise exert selective pressure for resis-
tance emergence. The standard method for identifying
AMR consists of exposing bacterial isolates to different con-
centrations of antibiotics and measuring their growth under
laboratory environments. However, this approach is time-
consuming and expensive [4].

Alternative approaches include detecting the presence of
AMR through analysing genomic sequences of the patho-
gens of interest. The development of Next-Generation
Sequencing (NGS) technologies have enabled rapid and
more cost-friendly profiling of whole genomes [5]. Coupling
NGS data with machine learning for the accurate prediction
of AMR from bacterial genome sequences shows strong
promise and may encourage better use of antimicrobial
agents [6].

Since one bacterium can be resistant to multiple antibiot-
ics at the same time, there is a need to predict multi-drug
resistance simultaneously associated with a single sequence.
This multi-drug resistance for a single genomic sequence
makes a genomic sequence a multi-label dataset. Even
though increasing genomic data availability opens the path
for machine learning-based prediction, many AMR pheno-
types are missing in multi-labelled datasets due to the com-
plex and time-consuming process involved in identifying
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different types of resistance. As samples were collected at
different times and laboratory-based experiments were
done only for the susceptibility of selected antibiotics, the
susceptibilities of all antibiotics are not known. Therefore,
the unknown labels are treated as missing labels in this
paper. This causes difficulty in training the multi-label
model as current multi-label identification methods rely on
fully labelled data for input classification. Other issues with
the current multi-label classification methods are results
dependence on the label order and lack of interpretability of
the results derived from classification models. In this paper,
we propose a Rectified Classifier Chain (RCC) method to
overcome the issues arising from missing labels, label order
ambiguity and model interpretability.

This paper is structured as follows. Section 2 covers the
background of this study, Section 3 describes the proposed
RCC, Section 4 describes the methodology and the metrics
used to measure the performance, Section 5 reports the test
results, Section 6 discusses the results and Section 7 finishes
with concluding remarks.

2 BACKGROUND

2.1 AMR Prediction

Genes are segments of genome sequences that contribute to
an organism’s phenotypic traits. Therefore, identifying
genes from genomes that are associated with AMR helps to
predict the phenotype of pathogens. To this end, annotated
genome sequences available from public databases1, 2 are
used to annotate genes in a new sequence [7]. Basic Local
Alignment Search Tool (BLAST) [8] is an application used
to compare biological sequences, identify similar sequences
from the database and annotate. Specifically, BLAST calcu-
lates the statistical significance of these compared sequences
to decide if they match one another [7]. Accordingly, BLAST
is used to compare an examined genomic sequence against
existing ones in the gene database, and AMR genes in this
sequence are annotated based on identified matches [9].
Once genes are identified using the BLAST, machine learn-
ing plays a role in phenotypic prediction [10]; several stud-
ies have applied machine learning algorithms with the
extracted gene data to predict AMR from annotated genes
as discussed above [11], [12], [13], [14], [15].

A pan genome-based machine learning method was pro-
posed to predict Antimicrobial Resistance (AMR) in E. coli
strains [12]. Machine-learning algorithms were developed
to predict the antimicrobial resistivity and susceptibility in
specific strains, and the E. coli dataset was used to validate
them. Four types of machine learning algorithms, namely
Support Vector Machine (SVM), Naı̈ve Bayes (NB), Random
Forest (RF), and AdaBoost, were used to predict 39 different
antibiotic resistance types from genomic data collected from
PAThosystems Resource Integration Centre (PATRIC) data-
base [6]. BLAST algorithm [8] was used to annotate the
sequences for these algorithms. Aside from these machine
learning methods, a genetic algorithm (GA) was applied to
identify the best set of genes using Comprehensive Antibi-
otic Resistance Database (CARD) annotations to predict

antimicrobial resistivity and susceptibility of the strains
[12]. In this work, the Area Under the Receiver Operating
Characteristic (AUROC) curve metric was used to validate
the models. The models were built separately for each AMR
type and features significantly contributing to classification
decisions were not reported. With the identifications of new
types of AMR, it is essential to build a single model to pre-
dict different types of AMR and to identify the genes con-
tributing to those decisions.

A deep learning system to predict genes related to AMR
has been proposed with two different implementations as
applied to processing short-read sequences and long-read
sequences, each of which was tested using data from the
Comprehensive Antibiotic Resistance Database (CARD),
Antibiotic Resistance Genes Database (ARDB), and UNIver-
sal PROTein Resource (UNIPROT) database [16]. A high
precision and recall of 97% and 91%, respectively, were
achieved using this system. BLAST was used to annotate
the sequences to identify AMR genes. This method identi-
fied different genes from genome reads yet failed to identify
different AMR types as gene presence does not directly
imply resistance for any specific type of antibiotic.

A custom-built AdaBoost machine learning classifier was
proposed in another study for identifying different antimi-
crobial resistance genes from various species and predicting
AMR phenotype using the PATRIC database [13]. This
study also developed separate models for distinct AMR
types.

Multi-drug resistance is becoming a critical issue in
human and animal health systems [14]. It is therefore
important to consider multi-label classification models
which can predict whether genome sequences are suscepti-
ble or resistant to many types of antibiotics. To our best
knowledge, there has been little effort in applying multi-
label classification models to predict multi-AMR types
using a single model.

2.2 Multi-Label Classification

Most traditional machine learning algorithms are developed
for single-label classification problems; hence, datasets need
to be transformed, or learning models adapted in order to
be compatible with multi-label datasets. Multi-label classifi-
cation models can be grouped into two categories: problem
transformation, which transforms the multi-label dataset
into several single label datasets, and algorithm adaptation
method which modifies the conventional algorithms to deal
with multi-labelled datasets [17], [18], [19], [20]. Binary Rele-
vance (BR) [21], Label Powerset (LP), Classifier Chain (CC),
and pair-wise approach are a few examples of a problem
transformation approach, and decision trees, SVM kernel-
based approaches, and lazy learning, including ML-kNN,
are some examples of an algorithm-based adaptation
approach [19]. Algorithm adaption approaches are often
better suited to specific domains due to less flexibility and
high computational complexity [20].

In the context of the AMR multi-label dataset, each label is
treated as a binary classification since it is represented as one
of two values: ‘Resistance’ or ‘Susceptible.’ Other values such
as ‘Intermediate’ and ‘Susceptible-dose dependent’ are nor-
mally converted to ‘Resistant’ and ‘Susceptible’ respectively.

1. ftp://ftp.patricbrc.org/
2. https://ftp.ncbi.nih.gov/genomes/
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The standard approach in the literature trains a separate
binary classifier for each AMR label, by splitting the origi-
nal multi-label problem into many single-label problems.
However, these approaches have several drawbacks. First,
it is not straightforward to feed the data into multiple
trained models and predict each AMR type separately, as
well as identify biomarkers contributing to them, as there
are more than 30 types of AMR to classify. Second, these
approaches do not consider the possible dependencies
between the different AMR labels; these labels have
dependencies between each other due to shared predictive
genes and AMR generating mechanisms. Therefore, pre-
dicting all AMR labels using the same model should
perform.

The Label Powerset method is another multi-label classi-
fication approach that considers each member of the power
set of labels in the training set as a single label and trains
them with traditional models [18]. However, the Label
Powerset approach is computationally expensive for larger
label datasets and results in diminished performance for
imbalanced datasets. As AMR labels are correlated and
depend on each other, there is a low chance of obtaining a
balanced dataset after the multi-label to single label trans-
formation using a Label power set.

Algorithm 1. The Algorithm for Training a Rectified
Chain Classifier. It Returns a Vector of Trained Models
to be Used for Prediction

Require:
X! L x d matrix of input instances, where L is the number of
samples and d is the number of features for one instance.
Y! L x m matrix of outputs, where L is the number of sam-
ples and m is the number of labels for one instance.
ModelList! 1xm vector of models

Ensure:
for i 0! m-1 do
NanId,NonNanId  extractEmptydata(Y, i) {extractEmpty-
data method returns Nan and NonNan indexes for ith

labels of Y}
Xtrain  X[NonNanId] {Get NonNan indexes as train
feature}
Ytrain  Y,i [NonNanId] {Get NonNan indexes of ith label
from Y}
modeli!train(Xtrain, Ytrain) {Train Classifier for ith label}
Xempty X[NanId] {Get Nan indexes as test feature}
Yempty  (modeli!predict(Xempty)) {Predict missing labels
using trained model}
Y , i [NanId] Yempty { Assign the model to model chain to
use the same model in the prediction stage}
X addColumn(X,Y,i) {Add current labels as feature to next
model}

end for
returnModelList

Binary relevance is an ensemble of single-label binary
classifiers that are trained independently on the original
dataset to predict sample membership for each class, and
the results are combined at the end to give the multi-label
output [19]. Even though it has linear complexity with the
number of labels, this model does not consider label correla-
tion. ML-kNN is a lazy learning approach that determines

the label set of the test instance, based on prior and posterior
probabilities for the frequency of each label within the k
nearest neighbours in the training set [20]. This method is
computationally expensive, and label correlations are not
considered as well.

Classifier chains [22] method is an improved binary rele-
vance method by linking each binary classifier as a chain to
capture the dependencies between labels. Each linked
binary relevance model makes a prediction in the order
specified by the chain using all the available features plus
the predictions of previous classifiers in the chain, where
the number of classifiers is set equal to the number of labels.
Classifier (Cj) relevance to the jth label (yj) will take the set of
features, X, and labels from y1 to y(j-1) as input to predict tar-
get yj. Therefore, label prediction accuracy will depend on
the label order, and the optimal label order is difficult to
predict. Therefore, an Ensemble of Classifier Chains (ECC)
was proposed combining the predictions of different label
orders with different samples of the training data to train
each member of the ensemble [22]. A few studies were pub-
lished on optimising Ensemble of Classifier Chains (ECC)
efficiency and accuracy [23]. It has been found that the ECC
method needs a larger number of data samples as they split
the data and train each split data in a different label order to
get better accuracy, however, ECC based approaches are
slow to train due to their ensemble-based training setup.
This poses practical challenges to applying ECC for predict-
ing multilabel datasets containing limited samples with
insufficient computational resources.

Algorithm 2. The Algorithm for Predicting Labels for
Given Input X Using Rectified Chain Classifier

Require:
X! L x d matrix of input instances, where L is the number of
samples and d is the number of features for one instance.
ModelList! 1xm vector of models
Y! L x m matrix of outputs, where L is the number of sam-
ples and m is the number of labels for one instance.

Ensure:
for i 0! m-1 do
modeli ModelList[i]
Yi  (modeli ! predict(X)) {Predicting ith label with ith

classifier}
X addColumn(X,Y, i) {Add current labels as feature to next
classifier}

end for
return Y

Comparatively few studies have been published on
applying multi-label classification methods to genomics
data for predicting multiple types of AMR [15], [20], [21],
[22], [27], [28]. DeepGo [28] and DeepGoplus [27] are two
such popular methods, as applied to predicting multi-label
protein classes from genomic sequences using deep learning
methodologies; however, they do not predict AMR specifi-
cally nor handle missing labels as part of their operation.
Although there are a few multi-label classification methods
proposed in the literature in related areas, there is little
effort in comparing the different multi-label methods for
predicting multi-drug resistance. Normally, AMR labels
have strong interdependencies due to common genes
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shared. As per our knowledge, this nature of the data is not
reflected in any literature on predicting multi-AMR phe-
notypes. Even though there are several AMR prediction
methodologies available to choose from for a genomic
dataset, none of these utilizes the label interdependencies
for multi-label data based on our knowledge, handles the
missing labels scenarios, and explains the results derived
from the model. Despite this, a few studies have been pub-
lished on missing labels in multi-label classification meth-
ods in other research areas [29], [30], [31]. In these studies,
different methodological approaches have been applied
such as nested stacking and subset correction to overcome
attribute noise that is caused due to erroneous prediction
of labels in the previous classifiers [31]. Even though the
use of predicted values as a substitute for the actual labels
addresses the issue of missing values to some extent, miss-
ing labels at the first classifier in a chain should be
imputed and that may result in a wrong model for the first
classifier. The error in predicted values due to the wrong
first model may cause to build wrong model for other clas-
sifiers due to the chaining effect. Therefore, these models
are not suitable for the data with a higher amount of miss-
ing label.

Aside from this, machine learning algorithms are appeal-
ing tools in this context to identify AMR, since they facilitate
identifying a distinct feature set that can be further inter-
preted by domain experts. Therefore, identifying bio-
markers from genomic sequences, contributing to the
decision, and applying dimensional reduction techniques
for this data is crucial for achieving higher accuracy in pre-
dicting AMR from genome sequence data [7]. Existing
multi-label classification models are deficient in returning
the feature set and weights contributing to arriving at the
classification decision, thereby making these models non-
interpretable.

Hence, there is a need for a comprehensive overview
of current multi-label methods, how to handle missing
labels, identifying biomarkers contributing to the multi-
AMR prediction model, and metrics that are used to
measure performance on an imbalanced dataset. There-
fore, we propose a Rectified Classifier Chain (RCC)
method to predict multi-drug resistance with missing
labels and to identify biomarkers contributing to decision
on RAST [33], [34] based annotated Escherichia coli
(E. coli) genomic data to improve classifier accuracy and
interpretability.

3 PROPOSED METHODOLOGIES

As discussed in Section 2, Classifier Chains (CC) capture the
dependencies between labels on multi-label prediction. The
potential pitfall of the CC approach is that classifier accu-
racy heavily depends on the label order and accuracy of the
label values. One way to handle this pitfall is dropping data
with missing labels before applying the CC method and
that option is not feasible for a dataset that has a high level
of missing labels. This limitation prevents applying CC to
multi-label genomic data for AMR prediction as these data-
sets tend to have a lot of missing labels.

To overcome these challenges, we propose a semi-super-
vised based RCC which has an inbuilt mechanism to predict
missing labels and impute with the predicted value in the
training process of other label predictions. One of the chal-
lenges of this approach is the effect of attribute noise which is
in direct correspondence with the accuracy of the binary clas-
sifiers along the chain in RCC. Therefore, identifying optimal
label order plays a key role in obtaining better performance.
This study also proposes a few approaches to optimize the
label in order to avoid the effect of attribute noise and improve
the classifier performance alongwith the capability to identify
biomarkers contributing to those predictions.

3.1 Multi-Label Classification

The Proposed RCC consists of binary classifiers equal to the
number of labels in the dataset. The feature space for each
binary model is extended with the predicted labels of all pre-
vious classifiers; thus, forming a chain similar to the conven-
tional classifier chain as shown in Fig. 1A [22], [35]. Each
classifier Ci in the chain is learning and predicting label Ci
given the set of input features, X, and extended by all the pre-
dictions from prior classifiers in the chain: {y1,. . ., y(i�1)}. The
features of each classifier in the chain are extended with
binary-valued labels (y_j¼ {0, 1}) corresponding to each prior
classifier, {C_j} for j < i. Conventionally, classifier chains take
this type of input and are trained assuming that all the train-
ing labels are available. By contrast, and as a novel aspect of
RCCs, RCCs will predict the missing labels as shown in
Fig. 1B, which in turn are used to inform part of the input for
the next classifier in the chain. By this approach, multi-labels
withmissing labels can be used to train themodel.

3.2 Training Phase

Eachmodel in RCC is trained individually in order fromC1 to
Cm, as shown in Fig. 1. The first Classifier (C1) takes the

Fig. 1. (A) The overall structure of proposedRectifiedChainClassifier withm labels. (B)Matching label handling process algorithmoverview in each classifier.
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features as its input, drops samples that miss the first label
(label_1) and is trained with the remaining data which have
the first label. Once the classifier is trained, it is then used to
predict the missing label (label_1) and impute the missing
labels with the predicted labels in order to train the second
classifier. The second classifier takes features and the first
label which is updated by the as its inputs. The second classi-
fier drops the samples that miss the second label (label_2) and
is trained with the remaining data. Once the second classifier
is trained, it is then used to predict the missing second labels
and impute the missing second labels. Those imputed labels
will be used to train the third classifier as described above.
These steps continue till training the final classifier as shown
in Algorithm 1. Once all the classifiers are trained, they are
then kept in the List structure as different models built for
each label and they need to be used in the prediction step.

3.3 Prediction

The proposed RCC uses classifiers in the previously
described List structure to predict labels as shown in Algo-
rithm 2. Each classifier receives input features and the pre-
dicted values of all previous classifiers as inputs to predict
the current labels.

3.4 Optimised Label Order

The order in which classifiers are chained together is impor-
tant in predicting multi-labelled data with more accuracy as
labels may be conditional upon one another, and there may
be errors in the prediction of labels throughout the chains as
predicted values are used for the missing labels. For exam-
ple, if an erroneous label is imputed by a classifier near the
beginning of the chain, it will act as noise to other classifiers
along the chain and the accuracy of the prediction will be
reduced [31]. To help mitigate this ordering of labels issue,
using the Conditional Entropy (CE), Conditional Probability
(CP) and Missing Ratio (MR) of labels are proposed as part
of this paper to decide the order of labels for our proposed
model. Conditional entropy (HðY jXÞ) is calculated accord-
ing to Equation (1), where the conditional entropy of a vari-
able Y given another variable X provides how much
uncertainty remains in Y after using the information that X
gave it [36]. Conditional entropy value for a label is calcu-
lated by calculating the average of conditional entropy val-
ues for the particular label given each label as shown in
Equation (2). This conditional entropy value for each label
pair is calculated only if there are more than 50 samples for
those label pairs to get a less biased estimate. The label with
the lowest value will be assigned for prediction to the first
classifier in the chain as it has the least uncertainty with
respect to the other labels. An example for the calculation
can be viewed in Supplementary File 1, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2022.3148577.

HðYjXÞ ¼
X
x;y

p x; yð Þlog 1

p yjxð Þ
� �

(1Þ

CECE Labelið Þ ¼
P

j !¼ i CE LabelijLabelj
� �

Number of pairs with more than 50 samples

(2)

As shown in Equation (3), the conditional probability for
each label is calculated. Then, conditional probability value
for a particular label is calculated by calculating the average
of conditional probability values for the particular label
given each label as shown in Equation (4). This calculation
only considers the label pair with more than 50 samples
similar to conditional entropy. The influence of the label on
other labels is decided based on the calculated conditional
probability value for each label. An example for the calcula-
tion can be viewed in Supplementary File 1, available
online.

P Y jXð Þ ¼ P X ¼ Sð Þ � P Y ¼ SjX ¼ Sð Þ
þP X ¼ Rð Þ � P Y ¼ RjX ¼ Rð Þ (3Þ

CPCP Labelið Þ ¼
P

j !¼ i CP LabelijLabelj
� �

Number of pairs with more than 50 samples

(4)

Since a large number of labels are missing in the multi-
label AMR dataset, using labels with a higher number of
missing labels in the initial classifier will cause to build the
less accurate model as missing labels are dropped in the
training process of RCC and then, those missing values are
predicted using the trained model. These imputed labels
will act as noise to other models in the chain and cause
reduced accuracy of the prediction [31]. Therefore, the miss-
ing label ratio for each label can be also used to determine a
more optimal label order. These three label order optimiza-
tion techniques are validated in our experiment.

3.5 Significant Features

It is challenging to identify features and their contributions
informative of the classification decisions since many classi-
fiers are applied in the chain. As part of this RCC, significant
features are calculated in two approaches. In one approach,
the top contributing features for the classification and their
contributions are calculated for each model in the RCC. The
absolute values of these contributions are added together
for each model, and the overall top feature contributions are
calculated. This approach helps to identify the most indica-
tive features of multi-drug resistance prediction and
reduces the effort needed to annotate key features for pre-
diction purposes. In the other approach, SHapley Additive
exPlanations (SHAP) [37] values are calculated and their
mean values are used to identify significant features. SHAP
is a unified way to interpret the predicted values using the
Shapley value as the sum of the attribution value of each
input feature. SHAP values can be used as the global
interpretability since SHAP captures how much each pre-
dictor contributes, either positively or negatively, to the tar-
get variable [37], [38]. Each model in the RCC is integrated
with the SHAP approach to identify the significant features.
SHAP values calculated for each model is added to identify
the significant features of the RCC.

3.6 Complexity Analysis

The computational complexity of the proposed RCC is very
close to that of a CC, depending on the total number of labels,
the individual complexity of the underlying learner, the ratio
of missing labels and the complexity of missing label
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prediction. CC’s complexity is O( jL j � f( jX j þ jL j , jD j )),
where f( jX j þ jL j , jD j ) is the complexity of the underlying
learner having jL j labels as additional attributes with jX j
features for jD j number of training samples [22]. Using the
same notation, RCC’s complexity can be represented as O
( jL j � (f( jX j þ jL j , jD1 j )þ g( jX j þ jL j , jD2 j )), where
D1 is an average number of samples with labels present and
D2 is an average number of samples with label missing. As
the complexity of the underlying learner is usually higher
than the complexity of prediction using the underlying
learner, the Complexity of the RCC is less than the complex-
ity of CC as shown in Equations (5), (6), (7), and (8).

g Xj j þ Lj j; D2j jð Þ fð Xj j þ Lj j; jD2h jÞ (5)

Therefore,

O ð Lj j � f Xj j þ Lj j; D1j jð Þ þ g Xj j þ Lj j; D2j jð Þð Þ
< O ð Lj j � f Xj j þ Lj j; D1j jð Þ þ f Xj j þ Lj j; D2j jð Þð Þ

(6)

For instance, assuming a linear base learner and jD1 j þ
jD2 j ¼ jD

O ð Lj j � f Xj j þ Lj j; D1j jð Þ þ g Xj j þ Lj j; D2j jð Þð Þ
< O ð Lj j � f Xj j þ Lj j; Dj jð Þð Þ (7)

Therefore,

RCC0s complexity < CC0s Complexity (8)

As RCC uses a training subset with a correct label in each
label model training phase and use those correct label and
predicted labels for the missing labels, the complexity of
RCC will be slightly lower than that of CC. However, with

respect to non-linear models which may have a similar pre-
diction time compared to training, RCC complexity can be a
little more. Even though jL j/2 features are added to each
instance on average in addition to the jXjfeatures, RCC has
a negligible impact on complexity as jL j is invariably lim-
ited in practice compared to the features.

4 EXPERIMENTATIONS WITH THE PROPOSED

METHODOLOGY

This section describes our experiment setup and results for
Escherichia coli (E. coli) and Salmonella annotated genomic
datasets that are publicly available on PATRIC. The pro-
posed algorithm was implemented in Python using the Sci-
kit-learn [39] library; our source code, the genome IDs we
used for these experiments, and the pre-processed datasets
are made available on GitHub3.

As shown in Fig. 2, we applied a multi-label classification
model for the pre-processed dataset using our proposed
method with different base classifiers. The results we
obtained from applying different base classifiers on the
benchmark PATRIC dataset were compared with the follow-
ing, traditional, multi-label learning models: Binary Rele-
vance (BR), Label Powerset (LP), and Classifier Chains (CC).
Then, the bestmodel based on the above result was compared
against similar works in multi-label classification and multi-
label AMR prediction from conserved genes in the literature
[15], [30], [33]. Following these steps, our model with the best
performing base classifier was further analysed according to
the classifier order optimisation techniques as discussed in
Optimised label order (Section 3.4). The key biomarkers

Fig. 2. Visualization of the data analysis study done for this research.

3. https://github.com/mukunthan/Rectified-Classifier-Chain
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contributing to the decision were also reported using the pro-
posed feature selectionmethod (Section 3.5) for thismodel.

4.1 Dataset

The PATRIC database is one of the most comprehensive
antibiotic resistance databases that collect genes, proteins,
and genomic information relating to the resistance or sus-
ceptibility of pathogens to various antibiotic drugs [40]. All
genomes in PATRIC were annotated using RAST [34], the
Rapid Annotations using Subsystems Technology. As AMR
genes may not be suitable for use when genomes are incom-
plete [15], Protein genus-specific families are identified
using the RAST annotations for each genome sequence
which were used in our experiments.

With respect to data preparation, all the E. coli sample
genome ids and their associated laboratory experiment
results were extracted, and their relevant 2775 genomic fea-
ture files marked against 32 AMR types as mentioned in
Supplementary Table 1, available online, were downloaded
from the PATRIC FTP site4. Relevant genome ids used for
this experiment can be found in the GitHub5 data folder.

Since our experimentation is for binary classification,
strains labelled with intermediate levels of resistance and
Susceptible-dose dependent labels were converted as resis-
tance and susceptible labels respectively. AMR types that
had less than 200 laboratory experiment results were
dropped from our experiment as there were no sufficient
data points to build a model for those types. Feature files
downloaded from PATRIC were pre-processed to obtain
protein genus-specific families and 16345 Protein genus-
specific families (PLfams) were extracted as input features.
After these pre-processing steps, these features were used
to set up a binary-valued matrix that indicated the pres-
ence/absence of Protein genus-specific families for each
genome sequence. Label distribution and missing label per-
centage label can be viewed in Supplementary Table 1,
available online. As indicated in the supplementary table,
available online, some labels had nearly more than 50% of
missing labels (NaN) while some had few missing labels.

4.2 Dimension Reduction and Model Selection

It is important to select the most informative features con-
tributing to a classifier’s decision to reduce the input
dimensionality and avoid overfitting issues. Filters, wrap-
pers, and embedded methods are three types of feature
selection processes [41]; filter methods measure the intrinsic
properties of features based on univariate statistics metrics
such as variance, mutual information, Chi-square(x2), infor-
mation gain, correlation, etc. Wrapper methods, such as
sequential feature selection and heuristic search algorithms,
select a subset of features by applying an evaluation func-
tion that is optimised using a machine learning technique:
forward selection, backward elimination and recursive fea-
ture elimination are a few examples of sequential feature
selection methods [42], [43], [44]. Wrapper methods select
the features by measuring their contribution to classifier
performance in an iterative manner; therefore, wrapper

methods are more computationally complex as compared to
filter methods since they require repeated steps and cross-
validation. The third type of feature selection, embedded
methods, works similarly to wrapper methods, however,
they utilize an intrinsic model for building metrics during
the learning process to reduce its computational complexity.
In our case, considering the complexity and size of the stud-
ied datasets, we selected a filter-based approach for feature
selection.

The variance-based statistical method measures variabil-
ity in each feature while the mutual information-based
approach measures mutual dependence between label and
feature [45]. As our data have a high number of missing
labels, a variance-based method was applied for the
extracted PLfams matrix to reduce the features from the
input PLfams matrix. we used a variance of less than 0.01 as
a threshold, which resulted in selecting 8763 as the most sig-
nificant features from 16345 PLfams extracted in data pre-
processing. Concerning the model setup, SVM, logistic
regression, Gaussian Naive Bayes, XGBoost, AdaBoost and
Stochastic gradient descent (SGD) were each, separately,
used to define the set of base classifiers constituting our pro-
posed RCC model which was tasked with predicting the 32
AMR phenotypes from the selected features. A five-fold
cross-validation step with a total of 2775 genome data sam-
ples was performed on the data to evaluate each of these
models.

4.3 Hyper-Parameter Configuration

For each of the tested models, parameters were optimised
from preliminary experiments and according to those
reported in the literature [15], [32]. The linear, kernel-
based SVM was implemented using the Scikit-learn
library with the regularization parameter set to 0.01.
XGBoost (XGB) was implemented with the GB-Tree [46]
type booster, with 0.0625 as the learning rate, an ensemble
of trees as the model, and 16 as the maximum depth. BR,
LP, and CC do not depend on any hyper-parameters. Our
RCC model uses conditional entropy, conditional proba-
bility, and missing ratio as three different approaches to
find optimal label order and all these three approaches
were used for the experiment separately to find the best
approach.

4.4 Evaluation Metrics

Label-based micro-averaging, macro averaging, Hamming-
based accuracy, subset accuracy, and label-based micro-
averaged F-measure are the most used evaluation metrics
in multi-label classification. The Hamming distance- com-
pares the actual labels with the predicted labels and count
how many labels are incorrectly predicted. Therefore, the
Hamming distance-based accuracy defined in Equation (9)
evaluates how many labels are correctly classified in the
total set of labels; however, this measure is not suitable for
predicting the performance for an imbalanced dataset
which have higher samples for particular label class and
fewer samples for another label class. Since AMR data is
imbalanced, it is vital to measure the recall and precis-
ion metrics to determine the performance of a predic-
tive algorithm. Micro averaged F1-score aggregates the

4. ftp://ftp.patricbrc.org/
5. https://github.com/mukunthan/Rectified-Classifier-Chain
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contributions of all classes to compute the average F1-score
based on recall and precision. F1-score can be used as a
score that can be used as an average of both precision and
recall scores [47].

We used micro-averaged Hamming distance-based accu-
racy metrics and micro averaged F1-score for our experi-
ments. The Hamming accuracy (HA) is calculated as shown
in Equation (9), where N refers to the total number of sam-
ples and M the total number of available labels as it avoids
comparing the missing labels with the predicted values in
measuring the performance.

HA ¼ 1

N

X
i2sample

1

M

X
j2label

ðXTrue
i;j ¼¼ Xpredict

i;j Þ (9)

The True Positive (TP) is the number of correctly pre-
dicted positive classes as defined in Equation (10) and, the
True Negative (TN) is the number of correctly predicted
negative classes as defined in Equation (11). The False Posi-
tive (FP) is the number of incorrectly predicted positive clas-
ses as defined in Equation (12) and the False Negative (FN)
is the number of incorrectly predicted negative classes as
defined in Equation (13). Precision is the proportion of posi-
tive class predictions that are correct as defined in Equation
(14) and recall is the proportion of actual positive classes
that are predicted correctly as defined in Equation (15). The
F1 score conveys the balance between the precision and the
recall, and the average F1-score is calculated as shown in
Equation (16). All these calculations were done by consider-
ing the labels that were present only; the missing labels
were avoided.

TPi ¼
X

j2labels
ðXTrue

i;j ¼¼ 1 && Xpredict
i;j ¼¼ 1Þ (10Þ

TNi ¼
X

j2labels
ðXTrue

i;j ¼¼ 0 && Xpredict
i;j ¼¼ 0Þ (11Þ

FPi ¼
X

j2labels
ðXTrue

i;j ¼¼ 0 && Xpredict
i;j ¼¼ 1Þ (12Þ

FNi ¼
X

j2labels
ðXTrue

i;j ¼¼ 1 && Xpredict
i;j ¼¼ 0Þ (13Þ

Precisioni ¼ TPi

TPi þ FPi
(14Þ

Recalli ¼ TPi

TPi þ FNi
(15Þ

F1 score ¼
X

i2samples

2 � Precisioni �Recalli
Precisioni þRecalli

� �
(16)

5 RESULTS

This section presents the results of the evaluation experi-
ments that were conducted. The Hamming loss-based met-
ric and F1-score accuracies for the different models were
analysed, and the results are summarised in Tables 1 and 2.
The XGBoost (XGB) classifier performed best for most of the
multi-label classification models in terms of both the Ham-
ming loss-based evaluation metric and F1-score. The Classi-
fier chain (CC) performed better compared to the Binary
Relevance (BR), and Label Power (LP) set methods. Our
proposed RCC method outperformed all the other methods
used in these experiments. Moreover, the RCC with XGB as

TABLE 1
Hamming Accuracy for Different Multi-Label Methods With Different Base Models

Method BR CC LP RCC(MR) RCC(CE) RCC(CP)

SVM 84.10� 0.32 84.09� 0.29 74.28� 0.87 86.92� 0.55 86.86� 0.62 86.68� 0.50
Gaussian NB 70.26� 0.56 69.53� 0.50 67.19� 1.85 76.23� 1.08 76.24� 1.03 76.21� 1.03
Logistic Regression 84.04� 0.73 84.19� 0.66 81.98� 0.95 86.91� 0.49 86.86� 0.59 86.86� 0.81
Random Forest 79.75� 0.70 79.96� 0.60 77.91� 0.92 86.22� 0.75 86.08� 0.58 86.45� 0.69
XGB 87.38� 0.67 87.41� 0.60 84.38� 0.56 90.70� 0.70 90.39� 0.71 90.54� 0.65
AdaBoost 85.26� 0.55 85.11� 0.72 68.22� 1.65 89.30� 0.79 88.76� 0.81 89.23� 0.65
SGD 82.12� 0.52 82.56� 0.29 78.14� 1.14 85.87� 0.40 85.89� 0.53 85.80� 0.29

BR-Binary Relevance, CC- Classifier Chain, LP- Label Powerset, RCC (MR) – Rectified Classifier chain with Missing label, RCC (CE) – Rectified Classifier
Chain with Conditional Entropy, RCC (CP) – Rectified Classifier Chain with Conditional probability. Accuracy values are reported by mean of the repeated k-
fold experiment with standard deviation as the error. (I.e., mean� standard deviation).

TABLE 2
F1 Score Accuracy for Different Multi-Label Methods With Different Base Models

Method BR CC LP RCC (MR) RCC (CE) RCC (CP)

SVM 57.83� 1.66 57.88� 1.58 39.31� 1.32 63.89� 0.89 63.92� 1.33 63.86� 1.25
Gaussian NB 45.41� 1.08 43.29� 1.25 23.09� 1.99 50.61� 0.79 50.52� 0.77 50.54� 0.77
Logistic Regression 56.69� 1.80 56.88� 1.73 53.09� 0.46 64.29� 0.14 64.28� 1.30 64.25� 1.51
Random Forest 48.28� 1.51 48.48� 1.40 40.97� 0.94 63.29� 1.61 63.16� 1.30 63.60� 0.79
XGB 62.00� 1.56 61.93� 1.55 55.85� 1.31 69.76� 0.69 69.28� 0.79 69.77� 0.74
AdaBoost 58.40� 1.28 58.20� 1.64 26.17� 1.66 67.71� 0.83 66.92� 0.81 67.69� 0.75
SGD 54.27� 1.44 54.95� 1.18 46.29� 1.40 63.13� 1.31 63.05� 1.31 62.91� 1.15

BR-Binary Relevance, CC- Classifier Chain, LP- Label Powerset, RCC (MR) – Rectified Classifier chain with Missing label, RCC (CE) – Rectified Classifier
Chain with Conditional Entropy, RCC (CP) – Rectified Classifier Chain with Conditional probability. Accuracy values are reported by mean of the repeated k-
fold experiment with standard deviation as the error. (I.e., mean� standard deviation).
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a base classifier outperformed the second-best classifier
chain with XGB as a base model by 3.3% in Hamming accu-
racy and 7.8% in F1-score based accuracy. The conditional
entropy, conditional probability, and missing ratio were
used to find the best label order for the RCC, and the miss-
ing ratio approach slightly outperformed other approaches
for most of the base classifiers in terms of the Hamming
accuracy and F1-score evaluation metrics.

As the algorithm complexity is also a key factor in model
selection, the times taken for training and testing were
recorded for each of the models implemented in our study:
these results are summarized for a Windows 10 machine
with an Intel CoreTM i9-9900 CPU @ 3.10GHz processor in
Table 3. These results indicate that Random Forest is the
fastest base classifier. The binary Relevance method and the
Classifier Chain (CC) took a similar time for the training
and testing. All three variants of the proposed RCC had a
better execution time compared to other approaches for
most of the base classifiers, in addition to their better perfor-
mance measure in terms of Hamming accuracy and F1-score
as shown in Tables 1 and 2. The RCC outperformed the CC
model, which gave a second-best result in terms of Ham-
ming accuracy and F1-score, by reducing the execution time
to half of that of the CC approach.

Even though XGBoost based approaches were given bet-
ter performance in terms of Hamming accuracy and F1-
score, they took longer to train, and test compared to other
base classifier models. This resulted in more time taken to
train XGBoost, although it returned the best performance in
terms of accuracy and F1 score. Overall, our proposed RCC
model performed better than other models with SVM,

Logistic Regression, XGBoost and SGD classifiers, while it
took slightly more time to run than Random Forest, Gauss-
ian NB and AdaBoost classifiers.

As XGBoost based RCC with missing ratio-based label
order selection gave the best result, that model is used to
compare with the models in the results. As shown in Table 4,
the results show that our proposed method outperformed
the XGBoost based AMR prediction from conserved genes
[15], AdaBoost model [33] and the nested stacking with sub-
set correction-based improvement for CC model [30] for the
E. coli dataset. These models were tested with the Salmonella
dataset as well, and the XGB based binary relevance method
outperformed our method as that dataset had many labels
with fewer resistant labels as shown in Supplementary
Table 2, available online.

6 DISCUSSIONS

As reported in the results section, the RCC model outper-
formed the second-best model CC in Hamming accuracy,
F1 score and execution time. RCC only uses fewer data sam-
ples compared to CC as it uses data that have labels in the
training phase of each classifier and uses the trained model
to predict missing values to impute the label in the next clas-
sifier as indicated in the proposed methodologies section
(Section 3). This result indicates the efficiency of the pro-
posed method in terms of algorithmic complexity as well.
Missing Ratio (MR), Conditional Entropy (CE), and Condi-
tional Probability (CP) based approaches on selecting opti-
mal label order had nearly the same time taken to train and
retrieve the results. The experiments with the label order

TABLE 3
Time Taken in Seconds With the Studied AMR Dataset for Different Multi-Label Methods With Different Base Models

Method BR CC LP RCC (MR) RCC (CE) RCC (CP)

SVM 714 690 462 239 240 240
Gaussian NB 13 18 18 27 28 29
Logistic Regression 1385 1342 14102 470 470 475
Random Forest 48 29 3 25 26 27
XGB 5227 4533 13744 2709 2801 2767
AdaBoost 1162 573 40 303 304 305
SGD 277 294 289 162 161 164

BR-Binary Relevance, CC- Classifier Chain, LP- Label Powerset, RCC (MR) – Rectified Classifier chain with Missing label, RCC (CE) – Rectified Classifier
Chain with Conditional Entropy, RCC (CP) – Rectified Classifier Chain with Conditional probability. This time is measured as mean time of training and testing
time in seconds in each fold in 5-fold validation steps.

TABLE 4
Comparison of Hamming Accuracy and F1 Score Accuracy With State of Art Different Multi-Label Method and AMR Prediction

Method in Literature Which Uses Conserved Genes

Method Our Proposed XGB based
RCC (MR)

Nested Stacking and
Subset correction

for CC with XGB [30]

XGBoost based AMR
prediction from

conserved Genes (BR) [15]�

AdaBoost based AMR
prediction [33]�

Hamming
Accuracy

F1 Score Hamming
Accuracy

F1 Score Hamming
Accuracy

F1 Score Hamming
Accuracy

F1 Score

E. coli dataset 90.70�0.70 69.76�0.69 86.36�0.47 62.86�1.41 86.23�0.35 62.27�1.31 84.37�0.81 59.35�0.81
Salmonella
dataset

85.33�0.17 57.78�0.85 85.52�0.49 56.38�0.65 85.82�0.55 57.25�1.00 84.83�0.57 54.39�0.54

BR-Binary Relevance, CC- Classifier Chain, RCC (MR) – Rectified Classifier chain with Missing label. These performances are measured as mean values in each
fold in 5-fold validation steps.
�Changes were done to accommodate given dataset.
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showed that the missing ratio approach is slightly better
compared to others as there is a higher number of missing
labels in predicting labels on this E. coli AMR dataset.

When comparing the base classifier performance,
XGBoost gave the best results. XGBoost took more time to
train the model and predict the test data set while Random
Forest took less time. The XGBoost and Random Forest clas-
sifiers are built based on trees. However, XGBoost is boost-
ing based approach which builds trees sequentially using
information from previous trees. As the Random Forest
classifier builds trees in parallel while XGBoost builds it
sequentially, XGBoost took more time compared to Random
Forest.

In the literature on predicting AMR from the conserved
gene dataset, methodologies have been proposed for pre-
dicting labels using XGBoost but predicting labels sepa-
rately similar to the Binary relevance approach [15]. As our
work is also focused on conserved genes instead of well-
known AMR genes, we used their proposed method [15]
with our data and compared it with our proposed method.
Another work similar to our work is using AdaBoost with
the k-mers to predict AMR [33]. Even though that work was
done based on k-mers, they considered a multi-label sce-
nario. Therefore, we used the same approach with the data-
set we used and compared these previous results with the
results obtained through our methodology. As reported in
Table 4, our RCC model outperformed those models for the
E. coli dataset.

Nested stacking with subset correction [30] is one of the
improvements suggested in the literature to improve the
classifier chain drawbacks. This model stacks the predicted
labels with true labels and do the subset label correction to
overcome issues due to the erroneous prediction of labels in
the previous classifiers [30]. Even though substituting pre-
dicted values for the labels overcomes the issue of missing
values to some extent, the occurrence of missing labels at
the first classifier in the chain tends to result in a less accu-
rate model as the missing values in the first label has to be

imputed with a default value. That erroneous label due to
the default imputation may cause learn a less accurate first
classifier. That less accurate first classifier and its predicted
values will result in a less accurate model. The results in the
Table 4 confirms above as our RCC model performed better
than the nested stacking with a label subset correction
approach to the CC model.

Even though the RCC model performed better for the E.
coli dataset, the performance of RCC is not the best with the
range of the value with the Salmonella dataset, this is not sig-
nificant. As shown in Supplementary Table 2, available
online, the Salmonella dataset has AMR labels where resis-
tance values are very low compared to susceptible values.
This imbalanced data will train classifiers with lower accu-
racy for those labels. As RCC uses the trained classifier to
predict missing labels, classifiers with lower accuracy may
predict wrong values for the imputation, and that will lower
the overall accuracy. F1-score is the best parameter to mea-
sure when there is a data imbalance. Our proposed algo-
rithm slightly outperforms other approaches when we
compare the F1-score. Therefore, our experiments con-
firmed our RCC model with XGBoost as the base classifier
performed better in terms of classification accuracy and F1
score.

Our RCC model with XGBoost base classifier was
selected for further experiments to ascertain the signifi-
cant features contributing to classification by measuring
SHAP values for each feature as shown in Fig. 3. The
Plfams ID identified as significant features in decision
making were checked against known genes, and the
identified genes are reported in Supplementary Table 3,
available online.

Although it identified the well characterised Tet(B), TetR,
OmpD gene as a significant gene, it also identified some
unfamiliar genome subsets reported in supplementary
Table-3, available online, which might have biological rele-
vance in predicting AMR. Here, Protein genus-specific fami-
lies (Plfams) IDs were used as referred to in the PATRIC
database, and details of that Plfams ID can be viewed in
Supplementary Table 3, available online.

7 CONCLUSION

An extensive experimental evaluation of multi-label classifi-
cation methods, including techniques for handling missing
labels, in predicting multidrug AMR was undertaken in this
study. The topic of multidrug AMR has recently received
significant research interest. However, a more comprehen-
sive experimental comparison of different multi-label meth-
ods and missing label handling is still lacking in the
literature. Here, the RCC model is proposed to handle mul-
tilabel classification for genus-specific protein features data
with missing labels and evaluate them with the most appro-
priate methods.

In this study, we demonstrated that the proposed RCC
model can provide high Hamming-loss-based accuracy and
F1 score with low algorithmic complexity, compared with
other models. RCC has a novel mechanism to train the base
classifiers with the labels present and predict the missing
label to impute the missing labels and use the imputed val-
ues in the training stage of the next classifier. Other than

Fig. 3. Significant Features contributing to XGBoost based Rectified
Classifier chain multi-label classification decision.
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that, RCC has a novel approach to decide the best label
order to capture the label dependencies and to reduce the
missing label effect. Furthermore, our proposed model can
identify features contributing to its decisions. To the best of
our knowledge, this study is the first to apply multi-label
classification methods to handling missing labels and
reporting the significant features for protein annotated data-
sets. The identified features will help reduce the complexity
of annotation to identify AMR and provide new knowledge
on biomarkers identifying multi-drug AMR. As there are
thousands of features in the genomic feature dataset, it is
important to identify important features to avoid overfitting
and to improve the AMR prediction results as well. The
comparative analysis conducted on the E. coli dataset illus-
trated that the proposed Rectified Classifier Chains method
is a promising approach for multi-drug resistance predic-
tion. Newly identified features offer pathologists an oppor-
tunity to analyse the contributions of those genome subsets
in AMR.

Our study has a few limitations. As our model used pre-
dicted values to fill missing values, our method does not
work well with an imbalanced dataset which has an imbal-
ance in the number of samples for each class. Future work is
required to address the problem of class imbalanced data
in-depth to improve performance. These experiments were
conducted with binary classification models; however, the
RCC approach we used can be applied to multi-label classi-
fications as well by selecting base classifiers that can sup-
port multi-label classification. Our study focuses on
predicting AMR from simply annotated Protein genus-spe-
cific families (PLfams); however, these annotations require
high computational power and laboratory-based experi-
ments to obtain reference genomes. Therefore, identifying
the genome using the k-mer approach [33] should help miti-
gate these limitations in the future.
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