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ABSTRACT ARTICLE HISTORY

This paper introduces an alternative linear regression model for over-dis- Received 16 March 2021
persed count responses with appropriate covariates. It is an extended work Accepted 12 February 2022
of univariate Poisson-Modification of the Quasi Lindley (PMQL) distribution
via the generalized linear model approach. A re-parametrized PMQL distri-
bution is considered to demonstrate the flexible properties of the distribu- Mi ) ;

. . . . . ixed Poisson regression
tion on its regression model.' Further, the perfqrman;e of its maximum models; Over-dispersed
likelihood estimation method is examined by a simulation study based on count responses; Poisson
the asymptotic theory. The maximum likelihood estimator is used to esti- distribution; Quasi Lindley
mate the parameters of the regression model. Finally, three simulated data distribution

sets and a real-world data set are taken to show the applicability of the

PMQL regression model against the Poisson, Negative binomial (NB),

Poisson-Quasi Lindley (PQL), and Generalized Poisson-Lindley (GPL) regres-

sion models. The results of applications show that the newly introduced

model provides a better fit for over-dispersed count responses with covari-

ates than the Poisson, NB, PQL, GPL regression models.

KEYWORDS
Generalized linear model;

1. Introduction

The Poisson regression model is the standard model for the count responses with appropriate
covariates (Cameron and Trivedi 2013). It has a well-known property that its conditional mean
counts equals to the conditional variance for a given set of covariates, and this property is com-
monly known as equidispersion (Johnson, Kotz, and Kemp 1992; Cameron and Trivedi 2013). In
some real-world applications especially, actuarial, ecology, and genetics, the assumption of equi-
dispersion is violated in such a way that the conditional variance exceeds the theoretical condi-
tional variance. This phenomenon is explained as over-dispersion or variation inflation
(Greenwood and Yule 1920).

To handle the apparent of over-dispersion in a count variable, several univariate mixed
Poisson distributions have been widely introduced with their explicit forms of probability mass
functions (pmf). Their pmfs are computationally flexible and they have successfully applied for
various real-world applications. Some notables are, Poisson-gamma/Negative binomial (NB) dis-
tribution (Hilbe 2011), Poisson-Lindley distribution (Sankaran 1970), Generalized Poisson-Lindley
(GPL) distribution (Mahmoudi and Zakerzadeh 2010), Poisson-Two parameter Lindley distribu-
tion (Bhati, Sastry, and Qadri 2015), Poisson-Quasi Lindley (PQL) distribution (Grine and
Zeghdoudi 2017) and among others. They may have various flexible statistical properties to

CONTACT Ramajeyam Tharshan @ tharshan10684@gmail.com e Department of Mathematics and Statistics, University of
Jaffna, Jaffna 40000, Sri Lanka.

© 2022 Taylor & Francis Group, LLC


http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2022.2044052&domain=pdf&date_stamp=2022-02-26
http://orcid.org/0000-0002-6112-2517
http://orcid.org/0000-0003-4242-1017
https://doi.org/10.1080/03610918.2022.2044052
http://www.tandfonline.com

2 (&) R.THARSHAN AND P. WIJEKOON

accommodate the several horizontal symmetry, right tail heaviness, and variance-to-mean ratios
based on their mixing distributions (Lynch 1988; Tharshan and Wijekoon 2020a, 2020b).

Tharshan and Wijekoon (2021a) introduced a continuous distribution named Modification of
the Quasi Lindley (MQL) distribution bounded to (0,00). By amalgamating the Poisson distribu-
tion with the MQL distribution, Tharshan and Wijekoon (2022) obtained an univariate mixed
Poisson distribution named Poisson-Modification of the Quasi Lindley (PMQL) distribution for
the over-dispersed count data. Authors have shown that its pmf is an explicit form and the per-
formance of the PMQL distribution is better than some of the existing competent mixed Poisson
distributions. It has the flexibility to capture the various ranges of right-tail heaviness measured
by excess kurtosis (EK), horizontal symmetry measured by skewness (SK), and the heterogeneity
measured by index of dispersion (7) for an over-dispersed count data.

To predict the over-dispersed count responses for given covariates, several mixed Poisson
regression models have been introduced, in literature, by using the generalized linear model
(GLM) approach. Examples of such models are NB regression model (Hilbe 2011), Poisson-
Inverse Gaussian regression model (Shoukri et al. 2004), Poisson-Weighted exponential regression
model (Zamani, Ismail, and Faroughi 2014), GPL regression model (Wongrin and Bodhisuwan
2016), and PQL regression model (Altun 2019).

The main contribution of this paper is to introduce the Poisson-Modification of the Quasi
Lindley regression model for over-dispersed count responses with covariates. Then, we compare its
performance with some existing competent predecessors. Here, we re-parametrize the PMQL distri-
bution in terms of its mean and two over-dispersion parameters. Some of the important structural
properties of the re-parametrized PMQL distribution are derived to show its applicability for an
over-dispersed count response on its regression model. Then, we setup the re-parametrized PMQL
distribution to approach the GLM.

The remaining part of the paper is structured as follows: In Sec. 2, we introduce the re-parametrized
PMQL distribution in terms of PMQL distribution’s mean and two over-dispersion parameters with some
of its important structural properties, an algorithm to simulate its random variables, and the maximum
likelihood estimator (MLE) to estimate the unknown parameters of the re-parametrized PMQL distribu-
tion. Section 3 discusses a Monte Carlo simulation study to examine the asymptotic property of the MLE
and the performance of the MLE at different values of mean. In Sec. 4, we introduce the PMQL regression
model via the GLM approach with its MLE part. Finally, three simulated data sets and a real-world example
are taken to show the applicability of the newly introduced regression model by comparing it with some
existing predecessors.

2. Re-parameterization of the PMQL distribution

In this section, we introduce the re-parametrized PMQL distribution with some important struc-
tural properties, an algorithm to simulate its random wvariables, and its unknown param-
eter estimation.

2.1. Probability mass and cumulative distribution functions (pmf and cdf)

Suppose the random variable Y be the total counts of a specific experiment with mean A. Then,
the traditional distribution to find the probabilities of such outcomes is the Poisson distribution,
and its pmf is defined as:

et ,
fr(y) = g ;y=0,1,2,..;4 > 0. (1)

Here, E(Y) = Var(Y) = 4, and then the variance-to-mean ratio called index of dispersion, T = 1.
Then, it is not a suitable distribution to accommodate the over-dispersion problem.
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Tharshan and Wijekoon (2021a) proposed a new Lindley family of distributions, namely the
Modification of Quasi Lindley distribution, MQL (0, &, 6). Its probability density function (pdf) is
defined as:

O(T ()0 4 (04)°")e 0%
(3 4+ 1)I'(9)
where o and ¢ are shape parameters, 0 is the scale parameter A is the respective random variable,

and I'(a) is the gamma function and defined as: I'(a) = ¥ s* ‘e *ds.

Tharshan and Wijekoon (2022) have obtained a mlxed Poisson distribution by amalgamating
the Poisson distribution with the MQL distribution, namely Poisson-MQL distribution, PMQL
(0,0, 9). Its pmf is defined as:

OCOT(y+1DE(1+0)°" +0'T(y+9)
P2+ 1)1+ 07T ()

fa(4;0,0,0) = ;i A>0; 0>0,0°>-1,6>0, (2)

iy =0,1,2,..;0 > 0,07 > —1,8 > 0,

fr(y;0,0,0) =

3)
and the corresponding cdf of equation (3) is given by:

J
Fr) = Y f()

S(1+ 00T (y+ 1)((1+ 0" — 1)+ 0°T(y + 6+ 1),F (1 y+S+1;0+1; Hg)
(03 + T (8)P3(1 4 0) T

(4)
where ,F(c,d;r;w) is the Gaussian hypergeometric function defined as: ,Fi(c, d;r;w) =
Z?Co@(g. LW, which is a special case of the generalized hypergeometric function given by the

expression: ,F,(p1, P2, o Pa; G1> Gas - Gb; W) = Zio%, and (p), = F(‘DM =p(p+1)...p+
i+ 1) is the Pochhammer symbol (Slater 1966).

From its statistical properties, the mean and variance of the PMQL (0, a, 6) are given in equa-
tions 5 and 6, respectively:

34+
E(Y) = 1= 5 g )
C1+0)+0’2+0+(04+6—1))+d(0+1
Var(Y):“( +0) +o’( +(a3++i)2;r2 )) +6(0+1) ©)

To examine the PMQL distribution’s flexible properties in terms of its mean (x) and two over-
dispersion parameters (o, ) for the over-dispersed count responses on its regression model, the
PMQL (0, a, ) is re-parametrized.

Proposition 1: By substituting 0 = +)) in equation (3), the pmf of the re-parametrized PMQL

(4, a1, 0) can be written as:

. (2 + D) (8 + ) (T(O)T(y + D)oPA™ ! + (8 +0)" 'T(y+0))
Jrbran0) = (23 + AT (5) ’

y=0,1,2,..;u>00>—1,0 >0, whereA:(oz3—|— Du+o®+ 0.

(7)

**+9)
oc3+1

Proposition 2: By substituting 0 =
(p, o, 0) can be written as:

in equation (4), the cdf of the re-parametrized PMQL
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Figure 1. The probability mass function of the re-parametrized PMQL distribution at & = 0.50, 6 = 1.50, and different values of .

1) +1.0), F1(1y+6+1 S+ 1; HO)
Vs()’) ’

where A is defined as in proposition 1, 7,(y) = (&’ + 1)udA° ' T(8)o’T'(y + 1)(A*' —((o
DY), 720) = (2 + D)™ (0 +8)°T(y +6 + 1), and 33(y) = (o + DT(S)yloA"
The variance of the re-parametrized PMQL (p, o, 6) can be obtained easily by substituting 0 =

é;‘;—?ﬁl in equation (6) as:

Fy(y; 2, 0) = (8)

>

vty =1 (22 1) +9)

(22 +0)*

and then its Var(Y)/ E(Yg = 7 is obtained as:

_ (3 4+243(0—1))+0y _ .
T=1+ u(w) = term I+ term II, say, respectively.
We can clearly see” that 7 > 1 for the positive value of term II. Then, the re-parametrized

PMQL (g, 2, 0) is an over-dispersed distribution.

Shape properties of the re-paramerized PMQL (g, o, §) can be easily examined by re-parametriz-
ing the shape properties of PMQL (0, o, ) as discussed in Tharshan and Wijekoon (2022). Here, we
display the right-tail behavior of the re-parametrized PMQL (y, o, ) in Figure 1 for different param-
eter values of y while the parameters o and 0 are fixed. We may note that, for fixed parameter values
o and 9, the distribution captures more right-tail when the parameter p increases.

Figure 2 depicts the surface plots of the index of dispersion, t at different parameter values of
W o, and o. It is clear that when the parameter u increases, 7 also increases at various rates based
on the values of parameters o and J. Further, they indicate that the re-parametrized PMQL
(1, 0, 0) has the capability to accommodate various ranges of the index of dispersion for an over-
dispersed count data.

2.2. Simulation of random variables

Here, we provide an algorithm by using the inverse transform method to simulate the random
variables y1,y,, ..., ¥, from the re-parametrized PMQL (u, o, 6) of size n.

Algorithm

i. Simulate random variables, U; ~ Uniform(0,1);i = 1,2, ..., n.
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Figure 2. Surface plots for the index of dispersion, t at different values of y, o, and o.

ii. Solve the non-linear equation for [y,,];
71Vu) + 720, Fr(Lyy, + 0+ 1;0 + 1§a3X1) —uiy3 (Yu) =0,
where A is defined as in proposition 1, y,(y.,),7,(V,) and y5(y,,) are defined as in propos-
ition 2. [.] denotes the integer part. Since it is a non-linear in y,,, the numerical method
called the Newton-Raphson method can be employed to find the roots.

2.3. Parameter estimation of the re-parametrized PMQL distribution

This subsection introduces the method of the unknown parameter estimation of the re-parame-
trized PMQL (u, , 0) based on the maximum likelihood estimation method. Let y1,¥,,...,y, be a
random sample of size n from the re-parametrized PMQL (g, o, 6). Then, the log-likelihood func-
tion of its pmf is given as:

U, 2, 3ly) :nln< ®+9 >+Zln< )Ty + )P A + o +6)° ' T(y; — 1)) 72n:1n )
= = ©)
- Z(yi +0)In (A) +Zyiln((oc3 + 1)u).

i=1

The score functions are:

Ay, x,6|y ¥, i+ 5 @ 4+1) I~ TO)PT( +1)(6 — 1)A2(2 + 1)
,Z; Z * ; T(O)T (i + 1)o3 A1 + (o3 + 8)°'T(y; + )
o (u,x,bbf) :3na2< 1-96 ) i 3y _i3a2(yi+(3)(,u+l)
(

Ou oc3+(3)(o<3+1) <23+ 1 1
Z )L (yi+ 1)(3LA (A + (0 = 1)(u+ 1)) + 30T (i +0)(9 — 1)(e +)"
= L) (yi + 1)a? A + (@ +6)° ' T(y; +9)
00,5 ) A
(uac(c5 by _ "<a3 5@ - (A)) - ;yT

oLy + DB+ Ly +9)C + (2 +0)" T + 0y +9)
P C(8)T (i + DodA 1 + (2 + 6)° ' T(y; + 6)

i=1

>

where A is defined as in proposition 1, and
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Table 1. Performance of the MLE for the re-parametrized PMQL (g, « = 0.25, = 0.20).

n==60 n=100 n=200 n=300
MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE) MLE Bias(MSE)

n=125

u 0.9330 —0.3170(0.5778) 1.1145  —0.1355(0.4615)  1.1462  —0.1038(0.2903) 1.1784  —0.0716(0.1658)
o 0.6388  0.3888(0.2170)  0.5917  0.3417(0.1582)  0.5644  0.3144(0.1183)  0.5331 0.2831(0.1054)
0 0.1120  —0.0880(0.0105) 0.1214 —0.0786(0.0081) 0.1315 —0.0685(0.0074) 0.1408  —0.0592(0.0055)
=225

u 17428  —0.5072(0.6601) 2.0712  —0.1788(0.5638) 2.1091  —0.1409(0.4402) 2.1434 —0.1066(0.2056)
o 0.6891 0.4391(0.2358)  0.6357  0.3857(0.1713)  0.5972  0.3472(0.1396)  0.5706  0.3206(0.1285)
0 0.0946  —0.1054(0.0145) 0.1008  —0.0992(0.0121) 0.1211  —0.0789(0.0100)  0.1251  —0.0749(0.0062)
n=3.25

u 26270  —0.6230(1.0487) 2.8963 —0.3537(0.6180) 2.9958 —0.2542(0.5134) 3.0123  —0.2377(0.2940)
o 0.7221 0.4721(0.2428)  0.6442  0.3942(0.1829)  0.6244  0.3744(0.1532)  0.5902  0.3402(0.1430)
0 0.0855 —0.1145(0.0159) 0.0951 —0.1049(0.0133) 0.1023  —0.0977(0.0110)  0.1118  —0.0882(0.0093)
n=425

u 3.5202  —0.7298(1.5230) 3.7907 —0.4593(1.3024) 3.8423 —0.4077(0.6714) 3.9140 —0.3360(0.4263)
o 07320  0.4820(0.2674)  0.6608  0.4108(0.2180)  0.6465  0.3965(0.1684)  0.6280  0.3780(0.1514)
0 0.0761  —0.1239(0.0172) 0.0847 —0.1153(0.0156) 0.0918  —0.1082(0.0127)  0.1005  —0.0995(0.0110)
n=>525

u 43720 —0.8780(2.1880) 4.5752 —0.6748(1.5614) 4.6259 —0.6241(1.1164) 4.8347 —0.4153(0.6177)
o 0.7674  0.5174(0.2818)  0.7207  0.4707(0.2396)  0.6720  0.4220(0.1911)  0.6351 0.3851(0.1611)
0 0.0644  —0.1356(0.0210) 0.0779  —0.1220(0.0170) 0.0869 —0.1131(0.0136)  0.0920  —0.1080(0.0127)
n==6.25

u 53238 —0.9262(3.2433) 5.5291 —0.7209(2.4180) 55652 —0.6848(1.1522) 57286 —0.5214(0.9079)
o 0.7993  0.5493(0.3181)  0.7425  0.4925(0.2597)  0.6937  0.4437(0.2140)  0.6631 0.4131(0.1871)
0 0.0525 —0.1475(0.0232) 0.0679 —0.1321(0.0199) 0.0768 —0.1232(0.0165) 0.0881  —0.1119(0.0140)

B=T(8)A" 28— 1+A In(A)+A ¥(9)), and C = (> + )" *(6 — 1 + (o> + &) In (o + 3)).

Furher, y(a) is the digamma function and defined as: Y/(a) = Z1n (I'(a)) = %

Now, we can find the MLEs of p,a, and 9, by setting the score functions equal to zero and
solving these systems of non-linear equations simultaneously. Here, we can use the optim func-
tion in the R package stats (R Core Team 2020) in order to solve these non-linear equations by
applying the Newton-Raphson method. For the interval estimations of the corresponding parame-

ters based on the asymptotic theory, we provide the observed information matrix:

Proposition 3: The observed information matrix of the maximum likelihood estimators of y, o,
and 0 is given by:

P, olx)  Pl(pondlx) 0P o dlx)

ou? oudo. Audd
11,0, 8) — Pl dlx) Pl dlx) (o dlx)
o) = Qoo o2 0090
Pl dlx) Pl dlx) P, dlx)
9é0u 060u. 96*

at u=f, o =4, and 6 = 5. The elements of the observed information matrix are given in
Appendix 1. The asymptotic confidence intervals for the parameters y, o, and é can be found by
the asymptotic theory as n — oo.

Note: A

According to the asymptotic theory, the distribution of \/n(jt — p,& — 0,0 —J) as n — oo is a
three-variate normal with zero means and variance covariance matrix I~' (i, &,9).

Therefore, the asymptotic (1 — a)100% confidence interval for the parameters y, o, and J are

given, respectively:

fxza0\/ Var(jt), a*z,n4/Var(a), 3iza/2\/Var(3),
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where the Var(it), Var(&) an nd Var(d) are the variance of ji,8, and 0, respectively. They are
diagonal elements of I (ji, ) and z,, is the a/2 quantile of the standard normal distribution.

3. Simulation study

Here, we do a simulation study to evaluate the performance of the MLEs, fi,4, and 6 for sample
size n. The algorithm given in subsection 2.2, is used to simulate the random variables from the
re-parametrized PMQL (g, o, ). The simulation study was repeated 1000 times. The following
steps are considered:

i. Simulate 1000 samples of size .
ii. Compute MLEs for the 1000 samples, say (gi,&i,fsi), i=1,2,...,1000.
ili. Compute the average MLEs, biases, and mean square errors (MSEs) by using the following
equations:
§(n) = Floozg(io gi’ biass( ) 1000 ZIOOO( - 3) and MSES( ) 1000 21000( - )2’
for s = u, o, 9, and the sample size n.

We have repeated these steps for n = 60, 100,200, and 300 with u = 1.25,2.25,3.25,4.25,5.25,
and 6.25; 2 = 0.25; and § = 0.20.

Table 1 summarizes the average MLEs, biases, and MSEs (in parentheses) of u,o, and ¢ for
different values of u which are 1.25,2.25,3.25,4.25,5.25, and 6.25 by fixing o = 0.25 and 6 =
0.20. We may note that the biases and MSEs decrease as n increases for all parameters. It reveals
that the maximum likelihood estimation method verifies the asymptotic property for all param-
eter estimates. Further, for all given u values; u are under-estimated and estimation of u is good
for small value of 1 and considerably higher sample size based on average biases and MSEs.

4, PMQL regression model

This section discusses the regression model of the PMQL distribution and its parameter estimation.

4.1. Probability mass function

The Poisson regression model is the traditional model to model the count responses with appro-
priate covariates. When the response variable is over-dispersed the NB regression model is com-
monly used to model the over-dispersed count responses.

Here, we introduce the PMQL regression model as an alternative regression model for the
over-dispersed count response variable, ie., we present the generalized linear model (GLM)
approach for the PMQL distribution say PMQLgG7 s

Let y1, 2, ..., yn be the random sample of n observations from the PMQL distribution. The log of
the mean is taken as the link function of the PMQLgry, to confirm positive estimated values of
responses, i.e., the link between p-dimensional covariates and the mean responses, y is given as:

n; = g(u;) = log () Zﬁxq X, =121, (10)

where x; = (1, %1, Xp2, ..., Xjp) is the vector of covariates supplemented with a 1 in front for the
intercept, and B = (By, By» s B,) is a vector of unknown regression coefficients. Then, the mean
and variance of the regression model are given, respectively:

E(Yilx}) = i = exp (xip) (1)
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(P +245(0—1))+9

Var(Yilx) = + 4 ( @ 1o )
— exp (0f) + (exp ()" (I (12

Proposition 4: Suppose Y;|x; be a response variable for a given set of covariates, x;; then by substi-
tuting = p; = exp (x;f) in equation (7), we can write the pmf of Y;|x, ~ PMQLgLum(f, o, 9) as:

(o2 + 1) exp (iB))" (¢ + O)(T(O)T (i + VP A7 + (o + 8)""'T(yi +9))
7@ +1)A7 T (6)
where A; = ((&2 + 1) exp (X)) + (o +9)),i =1,2,...,n

flilx) = . (13)

4.2. Parameter estimation of the PMQLg

This subsection introduces the parameter estimation of the PMQLgm(f, o, 0). The maximum
likelihood estimation method is used to estimate the parameters. The log-likelihood function of
its pmf is given by:

(B, 0, 0|y, x) Zy,ln o + 1) exp (¥/B)) + nln (¢ + 6) — Zln(y, —nln (e +1) — nln (T'(5))
i=1 (14)

+ Z Ny + 1oAY + (&2 +0)° ' T(y; + 0)) — E(y,— +0)In (A
i=1
Then, the score functions of the regression coefficients S, fi, ..., , are:

(B, 2, 0]y, x (i +0)(o® + 1) exp (x)xir
Ty Zylx" Z AI exp X

+Z T(OT (i + 1) (6 — 1)AY (o + 1) exp (i)
= TOT(i+D)@A " + (2 +06) ' T(i+0)

and the score functions of the parameters o, and ¢ can be easily derived by substituting u = u; =
exp (x/f) in the respective score functions of « and ¢ defined in subsection 2.3.

By setting the score functions equal to zero and solving the system of non-linear equations,
the MLEs of f,,a, and J, abbreviated as [3, MLE) %(MLE)> and 5 (MLE) can be derived.

The asymptotic confidence intervals for the regression coefﬁc1ents, Bo B1> > B, can be found
by the asymptotic theory as n — oo.

Note: . A .

Based on the asymptotic theory, /n(f — ) — Np1(0,I7'(f)) as n — oo, where I(f) is the
observed information matrix of § and its elements are given in Appendix 2.

Iteratively weighted least square (IWLS) algorithm

As an alternative to this, the iteratively weighted least square (IWLS) algorithm can be also uti-
lized to estimate the f by maximizing equation (14) with respect to  (Dutang 2017).

Let us define S~ be the estimated value of § with (s — 1) iterations. Then, the Fisher scoring
method may be given as:

r=0,1,...,p,

ﬁ(s) _ ﬁ(sfl) +I—1(ﬁ(sf1))s(ﬁ(sfl)), (15)

where S(8~Y) be the score function of the regression coefficients evaluated at ™) and it is given as:
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(s—1) n n ) X /R(s—=1) ..
S5V = olp 813(’535)1)5\)’%) _ Z)’ixi _ Z (i +9) (& + 1A,e p (xiB°)xi
SO0+ D20~ DA+ Dewp ()
= DT+ 1)w3A + (2 +0)°'T(y; +9)
= XW(E)U(p),

where
X111 X2 .- . . xlp
X211 X220 . . . sz
X = ,
Xnl Xp2 - - - Xpp

W be the weight matrix evaluated at ﬁ(sfl) and it can be obtained by using equations (10) and (12) as:

W= diag(

1
(g’(u,-(ﬁ“”)))zVar(ui)(ﬁ(“)))
y (B (2 +6)°
g = - ,
(03 4+ 0)* + A, (B N (03(e® +2 4 6(5 — 1)) + 0)

U(B“"V) be a vector and its i element is given as:

(B (D) = )
(1= (g () = DB,
and

(-1 _ _ 1B [y, x) )
() E&ﬁfﬁﬁﬁﬂy XWX,

Then, the final part of equation (15) may be written as:
XWX = XW(B)xa(pY),
by defining z(Y) be a vector and its i element is given as:
S5 )) + 1 — (B (B = o s ) + P BB,
1 (BE)
Hence,
BY = W (B )X) X W(B )28 Y). (16)

The root of equation (16) need to be found iteratively since both W(*"V) and z(f*Y) con-
tain ﬁ“*l).AThen, this method is commonly known as IWLS. In the final step of the IWLS algo-
rithm, the f3,, 5 is obtained as:

BMLE = (X'WX)_lX’Wé, (17)

where W and % are the values of the W(S™V) and z(“™") at the final step, respectively.The
covariance matrix of this estimator is given as:

Cov(Byup) = (XWX) L. (18)
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Table 2. Statistical measures for data sets 1 to 3.

VIFs of covariates

Data Min Max T SK EK

1 2 3 4
Data 1 (o = 0.95,6 = 19.50, p = 0.005) 8 88 13.00 2.00 3.50 1.004 1.003 1.003 1.004
Data 2 (o = 0.95,0 = 10.50, p = 0.005) 5 104 20.00 2.50 6.25 1.008 1.003 1.004 1.011
Data 3 (o = 0.45,9 = 15.50, p = 0.005) 0 80 28.00 5.50 33.00 1.015 1.004 1.094 1.087

5. Applications

In this section, we use three simulated data sets and a real-world data set to study the applicabil-
ity of the PMQL regression model over the Poisson regression model (Pgrar), NB regression
model (NBgry), and Poisson-Quasi Lindley regression model (PQLgra), and Generalized
Poisson-Lindley regression model (GPLgry,). The best-fitted regression model will be selected
based on the negative log-likelihood (—2logL) and Akaike Information Criterion (AIC) values.
The unknown parameter of regression coefficients and over-dispersed parameters are estimated
by using the maximum likelihood estimation method. Further, The system of non-linear equa-
tions in the regression coefficients and over-dispersion parameters mentioned in subsection 4.2
were solved by using the optim function in the R package stats.

5.1. Simulated data applications

Here, we simulate three over-dispersed data sets with a number of covariates (p) is equal to 4
and the sample size (n) is equal to 500. To design the simulation for a data set, the following
steps are considered:

i. Simulate the covariates by using the following formula as proposed by McDonald and
Galarneau (1975)

xij = /(1 = p¥)my + pm;s,i =1,2...,500,j = 1,2,3,4, (19)

where p is the correlation among the covariates and m;;’s are independent standard normal
pseudo-random numbers.

ii. Based on the simulated covariates in step (i), simulate the response variable y;(i =
1,2,...,500) from the re-parametrized PMQL (y; = exp (x;$),,0),i = 1,2,...,500 by using
the method discussed in subsection 2.2, where the starting values of the slope parameters are
selected such that Z;; BJZ =land f, =p, =5 =P,

Further, to avoid the multicollinearity issue, we set the p value such that the variation inflation
factor (VIF) of four covariates are less than 5.

Some important statistical measures for simulated data sets 1 to 3 are summarized in Table 2.
We may observe that all simulated data sets have a higher sample index of dispersion (7), skew-
ness (SK), and excess kurtosis (EK) values. Then, it reveals that the data sets’ response variables
are extremely over-dispersed and positively skewed distributions with very long right-tails.
Further, the VIFs of four covariates in each data set are less than 5. Then, we can say there is no
multicollinearity issue in all simulated data sets. Figure 3 shows the distributions of the simulated
response variables for data sets 1 to 3.

The estimated parameters with corresponding standard errors (SEs) reported in parenthesis,
—2logL, and AIC values for different regression models are summarized in Tables 3-5. We may
note that the PMQLg; s is the best model based on the minimum —2logL, and AIC values.
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Figure 3. The distribution of response variables for data sets 1 to 3.

Table 3. Inference of the parameters of the regression models for Data 1.

60

80

NBoiu PQLGiwm GPLgiwm PMQLiu
MLE p-value MLE p-value MLE p-value MLE p-value MLE p-value
(SE) (SE) (SE) (SE) (SE)

Po 2.702 <0.001 2.716 <0.001 2.811 <0.001 2.713 <0.001 4.056 <0.001
(0.011) (0.036) (0.081) (0.037) (0.659)

P —0.230 <0.001 —0.144 <0.001 —0.213 <0.001 —0.194 <0.001 —0.133 <0.001
(0.012) (0.036) (0.022) (0.035) (0.022)

pa —0.201 <0.001 —0.144 <0.001 —0.264 <0.001 —0.137 <0.001 —0.152 <0.001
(0.011) (0.037) (0.024) (0.034) (0.023)

fs —0.152 <0.001 —0.059 0.065 —0.165 <0.001 —0.121 <0.001 —0.081 <0.001
(0.010) (0.032) (0.020) (0.033) (0.020)

Pa —0.217 <0.001 —0.114 <0.001 —0.048 0.016 —0.172 <0.001 —0.100 <0.001
(0.011) (0.032) (0.020) (0.034) (0.010)

DP 1 - - 1.650 <0.001 —0.724 <0.001 0.118 <0.001 —0.987 <0.001
(0.106) (0.032) (0.008) (0.007)

DP 2 - - - - - - - - 1512 <0.001
(0.164)
—2logL 7863.5 3715.9 3512.9 3715.9 2169.1
AlC 7873.5 3727.9 3500.9 3727.9 2183.1

Note: DP, dispersion parameter.

5.2. Real-world application

The data set was obtained from 1495 Arizona Cardiovascular patients medicare files in 1991 and
it is limited to only diagnosis-related group 112 (Hilbe 2011). It represents length of stay (in
days) of patients in the hospital (LOS); patient identifies themselves as primarily Caucasian with
levels 1-White, 0-Nonwhite (W); patient died with levels 1-Died, 0-Alive (D); admission types
with levels 1-Urgent, 2-Emergency, 3-Elective. Wherein, the LOS (response variable) can be
explained by the rest of the variables (explanatory variables). The Elective admission type is con-
sidered as a referent type for the admission types and Urgent and Emergency admission types are
coded U and E, respectively.
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Table 4. Inference of the parameters of the regression models for Data 2.

NBgim PQLsim GPLGim PMQLg 1
MLE p-value MLE p-value MLE p-value MLE p-value MLE p-value
(SE) (SE) (SE) (SE) (SE)
Po 0.284 <0.001 —0.117 0.063 —0.160 0.026 0.516 <0.001 0.632 <0.001
(0.039) (0.063) (0.072) (0.058) (0.038)
b1 0.595 <0.001 0.802 <0.001 0.692 <0.001 0.599 <0.001 0.809 <0.001
(0.023) (0.040) (0.039) (0.034) (0.033)
i 0.781 <0.001 0.979 <0.001 1.068 <0.001 0.641 <0.001 0.859 <0.001
(0.027) (0.040) (0.047) (0.040) (0.036)
b3 0.776 <0.001 0.931 <0.001 1.112 <0.001 0.644 <0.001 0.734 <0.001
(0.021) (0.037) (0.040) (0.032) (0.029)
Pa 0.504 <0.001 0.766 <0.001 0.828 <0.001 0.503 <0.001 0.824 <0.001
(0.020) (0.041) (0.034) (0.030) (0.030)
DP 1 - - 10.681 <0.001 —0.165 <0.001 0.636 <0.001 —0.937 <0.001
(2.834) (0.038) (0.058) (0.019)
DP 2 - - - - - - - - 2.543 <0.001
(0.492)
—2logL 2130.2 1447.1 1210.8 1694.3 976.9
AlIC 2140.2 1459.1 12228 1706.3 990.9
Note: DP, dispersion parameter.
Table 5. Inference of the parameters of the regression models for Data 3.
Peim NBgim PQLsLm GPLGim PMQLgim
MLE p-value MLE p-value MLE p-value MLE p-value MLE p-value
(SE) (SE) (SE) (SE) (SE)
Po 3.000 <0.001 2.932 <0.001 2.852 <0.001 2.760 <0.001 3.216 <0.001
(0.010) (0.098) (0.033) (0.042) (0.028)
b 0.098 <0.001 0.468 <0.001 —0.361 <0.001 0.455 <0.001 —0.083 0.004
(0.010) (0.068) (0.024) (0.031) (0.029)
P2 0.015 0.128 0.826 <0.001 —0.361 <0.001 0.246 <0.001 —0.227 <0.001
(0.010) (0.075) (0.020) (0.034) (0.025)
b3 0.085 <0.001 —0.043 0.380 —0.019 0.205 0.306 <0.001 0.264 <0.001
(0.009) (0.049) (0.015) (0.028) (0.027)
Pa 0.094 <0.001 0.877 <0.001 —0.201 <0.001 0.332 <0.001 0.261 <0.001
(0.009) (0.071) (0.015) (0.028) (0.026)
DP 1 - - 0.331 <0.001 —0.563 <0.001 0.100 <0.001 —0.839 <0.001
(0.035) (0.142) (0.025) (0.006)
DP 2 - - - - - - - - 1.468 <0.001
(0.061)
—2logL 7129.5 5109.6 4814.2 4029.5 3909.4
AIC 7139.5 5121.6 4826.2 4041.5 39234

Note: DP, dispersion parameter.

The index dispersion (t) of the LOS is 7.917 which is greater than one. The skewness and

excess kurtosis of this response variable are 3.648 and 26.163, respectively. These statistics indi-
cate that the distribution of the responses is extremely over-dispersed, highly positive skewed,
and having a very long right-tail. Further, the variation inflation factor (VIF) of variables W, D,
U, and E are 1.012, 1.013, 1.049, and 1.047, respectively. All VIF < 5 and indicate that there is
no multicollinearity for this data set. Figure 4 illustrates the distribution of the response variable.
Table 6 summarizes the estimated regression coefficients and over-dispersed parameters with
corresponding standard errors (SEs) reported in parenthesis, —2logL, and AIC values for the
selected regression models. We can note that PMQLgLp(f, o, 0) provides minimum —2logL and
AIC values to this over-dispersed real-data set by comparing with other models. Further, the
asymptotic confidence interval for the regression coefficients and over-dispersed parameters are:
—0.2848 < ff; < —0.0461, — 0.45272 < f§, < —0.3077,0.0266 < f5; < 0.2042,0.2635 < f3, < 0.4775,
—0.8416 < o0 < —0.8268, and 1.3648 < 6 < 1.4494, respectively. It is clear that all intervals do
not contain the value zero, which means all parameters are statistically significant. Since
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Figure 4. The distribution of length of stay of patients.

Table 6. Inference of the parameters of the regression models for the real-world data.

Pem NBsim PQLg1u GPLgim PMQLgu
MLE p-value MLE p-value MLE p-value MLE p-value MLE p-value
(SE) (SE) (SE) (SE) (SE)
Po 2.380 <0.001 2.289 <0.001 2438 <0.001 2.401 <0.001 2.509 <0.001
(0.027) (0.065) (0.065) (0.058) (0.061)
b1 —0.141 <0.001 —0.032 0.311 —0.190 0.002 —0.097 0.100 —0.166 0.003
(0.027) (0.065) (0.064) (0.059) (0.061)
P —0.245 <0.001 —0.251 <0.001 —0.251 <0.001 —0.310 <0.001 —0.380 <0.001
(0.018) (0.039) (0.037) (0.038) (0.037)
b3 0.244 <0.001 0.302 <0.001 0.263 <0.001 0.181 <0.001 0.115 0.010
(0.021) (0.050) (0.047) (0.044) (0.045)
Pa 0.755 <0.001 0.762 <0.001 0.637 <0.001 0.486 <0.001 0.371 <0.001
(0.026) (0.073) (0.070) (0.062) (0.055)
DP 1 - - 2.466 <0.001 —0.209 <0.001 0.255 <0.001 —0.834 <0.001
(0.115) (0.019) (0.011) (0.004)
DP 2 - - - - - - - - 1.407 <0.001
(0.022)
—2logL 13679 9569.8 9513.9 9623.1 9441.2
AIC 13689 9581.8 9525.9 9635.1 9455.2

Note: DP, dispersion parameter.

regression coefficients of White and Died variables are negative, if they are white as well as have
died, the length of stay of patients in hospital will decrease. Further, LOS for the urgent and
emergency admitted patients are 0.1154 and 0.3705 times higher than the elective admitted
patients in hospital. Then, we may fit this data set by the following regression model:

W; = exp (2.509 — 0.166W; — 0.380D; + 0.115U; + 0.371E;).

6. Conclusion

In this paper we have introduced and studied a re-parametrized Poisson-Modification of the
Quasi Lindley distribution and the Poisson-Modification of the Quasi Lindley (PMQL) regression
model. Structural properties of the re-parametrized PMQL distribution in terms of PMQL distri-
bution’s mean and two over-dispersion parameters show various flexible properties to cover the
over-dispersion on its regression model. The PMQL regression model provides a statistical tool
for the modeling of the over-dispersed count responses with appropriate covariates. The
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maximum likelihood estimation method is utilized to estimate the unknown parameters of the
regression model, and the observed information matrix has also derived. A results of the three
simulated data sets and a real-world data set show that the PMQL regression model exhibits a
better fit than the Poisson, Negative binomial, and Poisson-Quasi Lindley, Generalized Poisson-
Lindley regression models.

1. Appendix 1: The elements of the observed information matrix, /(y, o, 5) defined
in proposition 3

Let us define:
Ty = T(0)*T(y; + 1)(5 — 1)A (o + 1),
T, = T(O)T(y; + )P A" + (o2 + 8)° ' T( + 0),
Ty = T(0)T(y; + 1)(302A% 2(A + (8 — 1) (u + 1)) + 302D (i + 6) (5 — 1) (o> + 8)° 72,
and
Ty = o’ T(y; + 1)B+ T(yi + 8)C + (&2 + 8)° ' T(y; + ) (yi + 9),

where A, B, and C are defined as in Sec. 2. Then, the second order partial derivatives are:

200 o
Pl 0ly) (y,+5(a+) S Cop N R
+ - 5
op? Z ; T3 =
) < n Tza —TT; n i 2043 — 32
U 2,9ly) B Z(yz+5)(3o< (&2 +1)(p+1) — 30°A)
opda L T? — A? ’
aTy
Pllwndy) Tgp T @A )(iro-4)
s 4 2 - A
aTg 2
Pl 2, 9]y) _ 3nu(20 — o)  3na(2 —o?) 2”:3)/;0((2 — o) 2": TZE_ T3
g (@40 (@41 (@) A
oTs
P41, 0ly) ,iTz 95 T 7st+1>( ~ (i +9))
9205 L 13 (oc3 +5 A2 ’
Pl dly) & Lo " A~ (y, +0)
% 0ly) Jol) _ n _ _ A-Uito) n
9 ; 3 (@ + 6)? mh(0) ; A A’
where 1, (s) is the trigamma function and defined as
& < 1
== In(IG) =Y ——,
Yi(s) = 5 In((s)) ;(s+k)z
6T1 3 6-3
o = (o® + 1)’ T(O)C(y; + D)o (6 — 1)(5 — 2)A% 3,
or . )
8; =302T()T(y; + 1) (8 — DA 3 (03 (e® + 1)(0 — 2)( + 1) + (222 + 1)A),

T oo ; NP .
% =@+ DIy + D (T(8) (0 = DA 3((d —2) + A In(4)) +A°2T(6)(1 + (6 — 1)y()),
% =T(O)T(y; + 1)(3(8 — 1)( + 1)o*A°>(30° (5 — 2)(u + 1) + 54)

+30A°2(303 (6 — 1) (u + 1) 4 24)) + 30 (y; + 6) (0 — Da(50° 4 20),
oT
af;—F(y, DTGB (u+ DA (5 - 1)((6 —2) + A In(A)) +A)

362A°72((6— 1)+ A In(A))) + 302A° 2T (8 (0)(a®(6 — 1) (u+ 1) + A))
+ 302 (y; + 0)((8 — 1)(o 4+ ) (y; + ) + (26 + &* — 1)),
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and

Of: _ STy + 1)(T0)((6 — 1)A’3((6—2) + A In(A)) +24°72 4+ In(A)A°2((6 — 1) + A In(A)))

96
+((6—1)+A In(A)A >T()Y(0) + AT (8) (Y, (5) + (¥(5))*)
+T(OW(HA2((0— 1)+ A In(A)))

+ T+ 0)((6 = 1)(o2 +6)" (6 — 2) + (o + &) In («® + 9))

+2(02 +0)° 2+ In(o? +8)(e® +8)°2((6 — 1) + (&2 + &) In (o + 8)))
+ (@ +0)"2((6 — 1) + (o + ) In (o + 8))T(y; + )W (yi + )

+ (@ 4+ 0) T+ ) (W (i + 0) + (Wi +9))°)

+T i+ (i +0) (o +0)"2((6 — 1) + (o« + 8) In (& + 9)).

2. Appendix 2: The elements of the observed information matrix, /() defined in
subsection 4.2

Let us define:

Ts = L(O)T(y; + 1)a* (6 — 1)AI2(0 + 1) exp (¥,8)xirs
Ts = T(O)T(y; + 1P A + (2 4 8)° ' T(y; + 0).

Then,
(P, 0ly) iAi()’i +0)( + ) exp (¥)xirxis — (i + 0) (2 + 1)* (exp (X)) xirxis
pop. A
-‘r;TJES =0,1,...,p,
where A; is defined as proposition 4,
g;s =T (T (y; + 1)o* (6 — 1)(e + 1) exp (¥[B)A] iy (A; + (6 — 2) (o + 1) exp (xif)),
and
9Ts N 3 5-2(,3 /
5 = TOT 01+ (6 = AT + 1) exp (6B
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