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The goal is to build up an inverse model capable of finding the release history of atmo-
spheric pollution by using measured gas concentration data at just one location on the ground
and identify the factors which affects the accuracy of the model predictions. The problem
involves a non-steady point source of pollution at a known location in the atmosphere. This
problem of finding the release rate is an ill-posed inverse problem and its solution is extremely
sensitive to errors in the measurement data. Special regularisation methods, which stabilise
the process of the solution, must be used to solve the problem. The method described in this
paper is based on linear least-squares regression and Tikhonov regularisation, coupled with
the solution of an advection-diffusion equation for a non-steady point source. The accuracy of
the method is examined by imposing normally-distributed relative noise into the concentration
data generated by the forward model as well as some real experimental data.

1 Introduction

Post-accident management plans are considered necessary for public protection from potential
accidents resulting from dangerous gas leakages. In the event of accidental gas releases, the deter-
mination of the release rate and location are important since forecasting of the concentration of
gas in the atmosphere is totally dependent on them. Therefore the estimation of release rate and
location is very useful for post-accident management staff to prioritise off-site evacuation actions.

The analysis process for accidental releases of gas from a single point source can be categorised as
follows.

1. Instantaneous release from a known location.

2. Instantaneous release from an unknown location.

3. Extended release over a period of time from a known location.

4. Extended release over a period of time from an unknown location.

Therefore methods for assessing environmental consequences of accidental gas releases must incor-
porate all of the above situations. Case 1 is very simple since only a single parameter is to be
estimated; we don’t consider it further. In our previous paper [Kathirgamanathan et al., 2001],
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Table 3: Source type characteristics
Source Type Location

Known Unknown
Instantaneous i Well-posed i Well-posed
release ii Minimum one location ii Minimum three locations

iii Linear iii Nonlinear
iv Partial plume iv Partial plume

Extended i Ill-posed i Ill-posed
release ii Linear ii Nonlinear

iii Minimum one locations iii Minimum three locations
iv Whole plume has iv Whole plume has

to be captured to be captured

we presented an inverse model for Case 2. The approach taken was to formulate a non-linear least
squares estimation problem associated with an advection-diffusion equation for an instantaneous
point source. We found that reliable estimates of the source location and amount released could
be obtained even with the partial capture of the plume data, provided pollution concentration
measurements were taken at a minimum of 3 non-collinear points on the ground. This is a well-
posed problem and the source location and the amount released can be calculated with reasonable
accuracy.

The novel concept of this paper is to develop an inverse model for case 3 using the methods
available in groundwater modelling literature and identify the factors affect the accuracy of the
inverse model prediction. To do so we consider the problem in which the transport properties of
the medium and source location are known but the source release history is not known. The ac-
curacy of the model is examined by using simulated concentration data (generated by the forward
model) to which normally-distributed relative noise has been added, as well as some real experi-
mental data. We formulate the inverse model as a least squares minimisation problem associated
with the solution of an advection-diffusion equation for a non-steady point source. We show that
this is a linear ill-posed problem and solve it using Tikhonov regularisation and the properties of
L-curve and generalised cross validation. The number of measurement locations for this problem
is not crucial. Even with the concentration measured at one location on the ground, we find that
the source history can be reconstructed with reasonable accuracy provided the whole plume data
sequence is captured.

Case 4 combines both of the difficulties of cases 2 and 3. It is both nonlinear and ill-posed.
We plan to address this case in a forthcoming paper. Table 1 summarises the different situations.

This application in the field of atmospheric pollution has not been widely-studied in the liter-
ature. But in the field of groundwater modelling, many researchers [e.g. Skaggs & Kabala, 1994,
1995, 2000; Liu & Ball, 1999] have explored it. Because of the physical and mathematical simili-
raties between mass transfer in water and air, inverse methods used in groundwater modelling are
equally relevant to problem of air pollution modelling.

2 Problem Description

A Cartesian co-ordinate system (X,Y, Z) is used with the X-axis orientated in the direction of
the mean wind, the Y -axis in the horizontal cross-wind direction, and the Z-axis in the vertical
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upwards direction. A gas leakage with a mass release rate q(t) kg/s is assumed to start at time t = 0
at a point (0, 0,H) which is at a height H above the ground (which is assumed horizontal). The
released particles are subsequently blown by a wind with mean velocity u = (U, 0, 0) and monitored
at a known location (X0, Y0, 0). The gas particles move with the wind in the X direction at the
same time as being dispersed by turbulence in the atmosphere. For a cloud of gas particles, the
mass concentration C(X,Y, Z, t) may be described by the following equation [Kathirgamanathan
et al., 2001, Equation 4]:
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where KX , KY , KZ are eddy diffusivities in the X, Y and Z directions respectively. This equation
is to be solved subject to initial and boundary conditions. The initial conditions are

C(X,Y, Z, 0) = 0 (2.24)
with C(0, 0,H, t) = q(t) for t ≥ 0 (2.25)

while q(t) = 0 for t < 0. The pollutant concentration approaches zero far from the source in the
lateral direction and high above the ground, and there is zero vertical flux through the ground
surface. The boundary conditions may therefore be written in the form

C → 0 as X,Y → ±∞, Z →∞
while on the ground (Z = 0) , ∂C

∂Z = 0
(2.26)

The solution of Equation (1) for constant eddy diffusivity and wind speed can be obtained using
Green’s functions [Kevorkian, 1993] or the method described in [Palazzi, 1982] and is:
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3 Inverse Model

In this inverse modelling, the structure of the equation is known; measurement of the inputs, time
(t), concentration (C) and source location are available. Function q(t) is unknown. The aim of
this section is to develop the model to estimate the function q(t).

The concentration of pollution at a point (X0, Y0, 0) on the ground can be written as

C(X0, Y0, 0, t) =
∫ t

0

K(t, τ)q(τ)dτ (3.28)

where the kernel K(t, τ) is:
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Figure 17: Measurement time and source required time.

3.1 Linear Least-squares Formulation

It is assumed that n + 1 concentration values Ci = C(X0, Y0, 0, ti) are measured at the point
(X0, Y0, 0) at equal time intervals between t0 and tn relative to the release started at time t = 0
as shown in Figure 1. The simplest way to proceed is to numerically solve the Equation (6) on
a mesh with uniform time spacing. We suppose that we wish to determine the source release at
uniformly-spaced times τ0 = 0, . . .,τm = tn, where m < n. Discretizing (6) by the trapezoidal rule
gives a system of linear equations

c = Aq (3.30)

where c = [C(t0) . . . C(tn)]T , Aij = K(ti, τj)βij , q = [q(τ0) . . . q(τm)]T and βij is a quadrature
weight. Now the minimization problem for estimating release rate q is formulated as

min
q
‖Aq− c‖22 (3.31)

When we come across least squares problems a usual recommendation is not to believe the com-
puted solution since we do not know the properties of the coefficient matrix A, which might or
might not be ill conditioned. The first step towards the solution process should be to include
an analysis of the coefficient matrix A. In the following two subsections we shall analysis the
coefficient matrix A using singular value decomposition and the condition number.

3.2 Singular Value Decomposition (SVD) Analysis of A

A very important tool for the analysis of the least squares problem is the singular value decompo-
sition (SVD) of the coefficient matrix. It is defined as:

A = WΣV T =
m+1∑
i=1

wiσivT
i

whereW=(w1, . . . ,wm+1) and V=(v1, . . . ,vm+1) are matrices with orthonormal columns,WTW =
V TV = I and Σ = diag(σ1, . . . , σm+1) with σ1 ≥ σ2 ≥ . . . σm+1 ≥ 0. We will now provide two
examples in order to illustrate the properties of the coefficient matrix A. Example 1 is created
using the forward problem (2.27) for the values n = 600, X0 = 3800, Y0 = 100, H = 20, t0 = 550,
Kx = Ky = 12 and Kz = 0.2. Example 2 is created using the same forward problem for the values
n = 600, X0 = 800, Y0 = 100, H = 20, t0 = 550, Kx = Ky = 12 and Kz = 0.2. In both examples,
source function discretisation size=100 and time between two data points=20 are used.

The singular value decomposition analyses of these two examples are shown in Figures 18, 19.
Some observations from these figures are

(i) the singular values of Example 1 (see Figure 18a) gradually decay to zero with no clear gap
in the spectrum, whereas the singular values of Example 2 (see Figure 19a) decay to zero
with a clear gap in the spectrum,

(ii) the singular vectors have more oscillations as i increases (see Figure 18b, c, 19b and c),
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Figure 18: SVD Analysis of A of example 1 (a)Singular values, (b) Left singular vector Wi for
different i values and (c) Right singular vector Vi for different i values.
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Figure 19: SVD Analysis of A of example 2 (a)Singular values, (b) Left singular vector Wi for
i = 8 and (c) Right singular vector Vi for i = 8

(iii) number of sign changes equals i− 1

Based on the definitions given in [Hansen, 1997], the problem considered in example 1 is a discrete
ill-posed problem and the example 2 is a rank-deficient problem.

The least squares solution of (2.27) using the singular value decomposition is given by

q =
i=m∑
i=1

wT
i c
σi

vi, (3.32)

where wi and vi are the column vectors of W and V respectively, and σi is the i-th singular value.
This solution can be taken as products wT

i c/σi of each of the elements of vector vi. We will now
use one of the considered examples to examine wT

i c/σi for perfect and noisy data. The results are
shown in Figure 20. For perfect data, the factors wT

i c decay as did the singular values (Figure
20 a). When dealing with noisy data, the factors wT

i c do not decay to zero; in fact they stabilise
around the noise level (Figure 20 c). Figure 20 d shows wT

i c/σi ’explodes’ as the singular values
decay. This shows that high frequency components dominate in the solution and therefore the
solution becomes meaningless.

3.3 Tikhonov Regularization

In order to solve an ill-posed problem, well-posedness must be restored by restricting the class of
admissible solutions. This can be achieved using regularization methods. Regularization stabilizes
the solution process by restricting the solution space. The most common and well-known regular-
ization method is Tikhonov regularization [Hansen, 1997]. In Tikhonov regularization, the solution
is restricted by imposing a bound on ‖Lq‖, where L is the regularization operator defined by

‖Lq‖2 ≈
∫ tn

0

(
dNq

dτN

)2

dτ. (3.33)
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For N = 0, the norm of the solution is minimised; for N = 1, the first derivative of the solution is
minimised; and for N = 2, the second derivative of the model is minimised or smoothness of the
model is maximised. Larger values of N penalize high frequency errors more severely than smaller
values of N . For this problem, we found that N = 2 gives the best combination of good fit to the
data and smooth solution. The new function to be minimized is

min
q

[
‖Aq− c‖2 + λ2‖Lq‖2

]
. (3.34)

The solution to the minimisation problem (3.34) can be estimated by differentiating the minimi-
sation function with respect to x and setting it equal to zero. This gives:(

ATA+ λLTL
)
q = AT c. (3.35)

λ is chosen to balance the contributions to the total error. It can be calculated using the MATLAB
toolbox for ill-posed problems developed by Hansen [1993]. Two widely used methods for estimating
regularisation parameters are the L-curve (1) and GCV (20) criteria. The L-curve is simply a
logarithmic plot of residual norm ‖Aq−c‖2 versus the solution norm ‖Lq‖2 for a set of admissible
regularisation parameter, and an optimum value can be found to be the point where this curve
has maximum curvature. The GCV method is based on a graph of a cross-validation function of
λ, and on choosing the minimum GCV value. In general, each method will find different optimal
values of λ.
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4 Modelling Application

In this section, numerical calculations are presented to show the validity of the developed model.
To do so, input of concentration data generated from a point source of q(t) kg s−1 located at
(0, 0, 20 m) in the cartesian co-ordinate system is considered. Then the concentration signal at
the downstream location (3800, 100, 0) is simulated using the forward problem (Equation (5)).
For illustrative purposes, KZ , KX , KY and U are taken as 0.2113, 12, 12 m2s−1and 1.8 ms−1

respectively.

4.1 Evaluation of parameter selection methods and order of regularisa-
tion

First in the process we analyse the sensitivity of the reconstructed solution with the parameter
selection method and the order of regularisation. We consider six examples to compare the recon-
structed solutions. These examples are given in Table 4. In all these cases, two hundred samplings
are used at X0 = 3800, Y0 = 100 between the time interval t = 1600, 7600. The source function
is discretised into 100 uniformly spaced interval between t = 0 and t = 7600. The concentration
signal at P1 = (3800, 100, 0) is simulated using the forward problem (2.27) with actual parameter
values. In order to simulate errors, data are corrupted by adding normally distributed random
noise of 20%. The percentage of error in the reconstructed source values, are tabulated in Tables
5, 6 for cases of perfect and noisy data respectively.

Example Source function Noise in the data
1 Smooth function 0 % 20 %
2 Square function 0 % 20 %
3 Sharp function 0 % 20 %

Table 4: Six different examples

Order (N) Relative error in %
Smooth Square Sharp

L-curve GCV L-curve GCV L-curve GCV
0 45 0.46 46 0.79 57.5 2.9
1 0.7 0.12 10 7.5 36.0 3.3
2 0.5 0.31 8.6 3.9 34.6 8.5
3 0.4 0.35 8.3 4.3 29.2 10.5
4 0.4 0.11 8.2 4.5 24.6 11.4
5 0.4 0.12 8.1 4.7 24.6 11.6

Table 5: Perfect data: relative error in the solution

These results show that in general the error in the reconstructed solution decreases with the
increasing order of regularisation for L-curve method. From further investigation, we found that
the error in the reconstructed solution decreases up to the order 9 and then increases with in-
creasing order. It can be noted from these Tables that the error in the reconstructed solution is
very large when the order of regularisation is zero for the L-curve method. But for the GCV-based
solution we could not identify any correspondence between the order of regularisation and the error
in the solution. In general, the error is minimum when the order of regularisation is two and the
GCV-based method performs a little better in most of the situations than the L-curve method.
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Order (N) Relative error in %
Smooth Square Sharp

L-curve GCV L-curve GCV L-curve GCV
0 44 6.6 45 11 57 24.3
1 3.0 3.0 11.0 10.4 36.1 26.4
2 4.2 2.9 10.3 10.4 34.9 26.3
3 4.8 2.9 10.4 10.4 33.7 27.8
4 5.3 2.9 10.6 10.5 32.1 29.8
5 5.6 3.2 10.8 10.5 32.8 32.4

Table 6: 20% noisy data: relative error in the solution

4.2 Effects due to the inaccuracy of the parameters

We have only considered a problem in which the transport properties of the medium and source
location are known. Sometimes in an actual situation, only the approximate values of the parame-
ters are known. Therefore, it is appropriate to analyse the effects of the inaccuracy of the transport
parameters and location. We considered six different test cases for X0, Y0, H, U , Kx and Kz with
incorrect values. In each case, one of these values is changed by ±20%, while all other parameters
are unchanged. Perfect and complete concentration measurements are used for this purpose.

Figure 21 shows the reconstructed release values along with the true values. Figure 21a is the
simulated release rate when X is overestimated or underestimated by 20%. When X is underesti-
mated, the reconstructed release rate is shifted to a later time and overestimated. This is because
the concentration signal has assumed that the travel time is lower than it actually is. When X
is overestimated, the reconstructed release rate is shifted to an earlier time and underestimated.
This is because, it is assumed that the travel time for the concentration signal is longer than it
actually is.

Figures 21b and c respectively, are the simulated release rates when Y and H are inaccurate by
±20%. When Y and H are underestimated, the reconstructed release rate is more dispersed, and
when Y and H are overestimated the reconstructed release rate is less dispersed. This is because
in the Y and Z directions there is no advection by the wind and only dispersion is taking place.

Figure 21d is the result of the simulation where U is either underestimated or overestimated
by 20%. When U is overestimated, the release rate is shifted to a later time. This is because the
signal is assumed to travel faster than it actually does. The reconstructed release rate is shifted to
an earlier time when U is underestimated. This is because the signal is assumed to travel slower
than it actually does.

Figures 21e and 21f illustrate the simulated release rates when Kx and Kz are inaccurate by
±20%. When Kx and Kz are underestimated, the reconstructed release rate is less dispersed;
when Kx and Kz are overestimated, the reconstructed release rate is more dispersed. But it can
be noted from Figure 21f that the effect due to the inaccuracy in Kz is much higher than the error
due to Kx.

4.3 Condition number

The degree of ill conditioning of the coefficient matrix A of (3.34) and ATA + λLTL of (3.35)
is proportional to the condition number that determines the sensitivity of the solution to small
perturbations in the data. The coefficient matrix A of (3.34) and ATA + λLTL of (3.35) depend
mostly on the values of X, Y , the size of the source discretisation function and the optimal
value of λ. We have already seen that the sensitivity of the regularised solution depends on the
regularisation parameter. In this section sensitivity of the regularised solutions are investigated



Source release-rate estimation - Part 1 79

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

Re
lea

se
 ra

tes

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

Re
lea

se
 ra

tes

−   X= True value
. . X= 0.80X     
− − X=1.20X     

−   Y= True value
. . Y= 0.80Y     
− − Y=1.20Y     

a 

b 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

Re
lea

se
 ra

tes

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

Re
lea

se
 ra

tes

−   H= True value
. . H= 0.80H     
− − H=1.20H     

−   u= True value
. . u= 0.80u     
− − u=1.20u     

c 

d 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

Re
lea

se 
rat

es

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

Time

Re
lea

se 
rat

es

−   K
x
= True value    

. . K
x
= 0.80K

x
     

− − K
x
=1.20K

x
     

−   K
z
= True value    

. . K
z
= 0.80K

z
     

− − K
z
=1.20K

z
     

e 

f 

Figure 21: Effects due to individual factors: (a) error in X, (b) error in Y , (c) error in H, (d) error
in U , (e) error in Kx, (f) error in Kz

numerically by varying the source distance and the discreatisation parameter.

Figures 22-1a and 22-2a respectively show that the condition number of the coefficient ma-
trix ATA + λLTL decreases with the decreasing number of source points (increasing the size of
discreatisation) and increases with the increasing source distance. Therefore the error in the re-
constructed (or regularised) solution should decrease with the decreasing condition number as in
figure 22-2b. But in figure 22-1b, the relative error decreases with the increasing discreatisation
parameter (decreasing condition number) up to a certain level and then increases sharply. We be-
lieve this increase is because of the error due to the discreatisation. In all these cases five hundred
samplings are used between the time interval t = 200 and t = 2700.
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Figure 22: Relationship between the sensitivity of the solution and the condition number (1a)
discreatisation size vs condition number of ATA+λLTL, (1b) discreatisation size vs relative error,
(2a) source distance vs condition number of ATA + λLTL, and (2b) source distance vs relative
error.

4.4 Evaluating the validity of the model
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Figure 23: Recovering pollution history with perfect complete data. (a) Measured pollution con-
centration at X=3800 m, Y=100 m., (b) Recovered source release rate and (c) Reconstructed
pollution concentration history at X=800 m, Y=100 m.

In this section, numerical calculations are presented to demonstrate the validity of the developed
model. Four different situations such as (1) complete sampling (i.e. the sampling would capture
both the trailing and leading edges of the signal) of the signal with no measurement error (Figure
5a), (2) complete sampling with measurement error (Figure 6a), (3) incomplete sampling with
measurement error (Figure 7a), (4) complete sampling with measurement error for a source func-
tion with sharp peaks (Figure 8a), were considered.

For the Tikhonov regularised solution, second-order regularisation was used and the parameter
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Figure 24: Recovering pollution history with complete noisy data with 30 % relative noise. (a)
Measured pollution concentration at X=3800 m, Y=100 m, (b) Recovered source release rate and
(c) Reconstructed pollution concentration history at X=800 m, Y=100 m.
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Figure 25: Recovering pollution history with incomplete (at the beginning ) noisy data with 30
% relative noise. (a) Measured pollution concentration at X=3800 m, Y=100 m, (b) Recovered
source release rate and (c) Reconstructed pollution concentration history at X=800 m, Y=100 m.
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Figure 26: Recovering pollution history with complete noisy data with 15 % relative noise. (a)
Measured pollution concentration at X=3800 m, Y=100 m, (b) Recovered source release rate and
(c) Reconstructed pollution concentration history at X=3800 m, Y=100 m.

was selected using the L-curve method. The release rate estimation results are shown in Figures
7b, 8b, 9b and 10b and the concentration history at the points (800, 100, 0), (3800, 100, 0) are
shown in Figures 7c, 8c, 9c and 10c respectively for each situation.

For the situations (1) and (2), the true solution and the reconstructed solution are very close.
The timing and magnitudes of the peaks are well reproduced. For the situation (3), the results
were well produced only just before the trough. The reconstructed solution at early times indicates
that the data is unable to provide correct information about the source at earlier times. This is
because the plume is more dispersed, and information about the plume released at earlier time is
lost. For the situation (4), the magnitude of the peaks of release rate were not well produced but
the concentration at (3800, 100, 0) were well matched with the true values.
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Table 7: Relative residual norm
Noise in Order of regularisation
the data 0 1 2

0 % 0.465 0.111 0.090
5 % 0.467 0.112 0.092
10 % 0.469 0.115 0.094
20 % 0.473 0.120 0.100
30 % 0.477 0.125 0.107
50 % 0.485 0.138 0.123

The relative residual norms of the solution for the situation (2) with different noise levels in
the data and the order of the regularisation parameter are given in Table 1. This shows that the
residual is minimum when N = 2 and the residual increases with the increasing noise in the data.
But, compared to the increase of noise in the data, increase of the residual is negligible.

4.5 Real data

We now move from a simulated data environment to a field data environment. The objective of
this section is to verify how the developed model works against field data. The data for this study
are taken from a tracer gas experiment carried out by the New Zealand Meteorological Service at
upper Hutt Valley, New Zealand, in 1979 [Wratt et al., 1984]. In the experiment sulphur hexaflu-
oride (SF6), used as an inert-gas tracer, was released at a steady rate of 3.7 gs−1 through a flow
meter and pipe at about two metres above the ground. Concentration samples were collected at
sites down valley from the release point, as nearly as possible on circular arcs of radius 1, 2, 3, 4,
5, 6, 7, 8, 9 and 10 km from the release point. Sampled concentrations are given in [Wratt et al.,
1984]. Listed concentrations are 10-minute averages of measurements. It is still probably the best
set of data available in New Zealand for dispersion from a ground level point source.

Now we assume that the source release rate q(t) at the point (0, 0, 2) is unknown while all other
quantities appearing in Equation (2.27) are known, our goal will be to obtain a function q(t). The
location of the source is known and therefore the release rate can be calculated using the measure-
ment data at one location. But we do not have sufficient measurement data available at any one
location and therefore we use concentrations at more than one locations, along with the Equation
(2.27), to estimate the release function q(t). Figure 27 shows the release rate estimation along with
the true release rate. The inverse model is able to recover the release rates, but is less accurate
than the simulated data with noise. There may be several reasons for this inaccuracy. Some of
these include

(i) input atmospheric parameter values are only an approximation, and the inaccuracies of these
parameters affect the model predictions. The analysis of the effects of the inaccuracies of
these parameters are shown in Figure 21

(ii) measurement locations are not on a plane,

(iii) measured concentrations are only 10-min averages, and only a few sets of data are available,

(iv) distances between the locations are not exact because only approximations.
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Figure 27: Release rate estimation

5 Summary and Discussion

A least-squares solution for linear ill-posed problems based on Tikhonov regularization was de-
veloped. It was applied to the problem of recovering the history of atmospheric pollution from a
single non-steady point source using measured values of the concentration of pollution at just one
location on the ground.

This technique was able to accurately recover the release history and release rate for complete
sampling data, but was less accurate if the sampling was incomplete. A series of examples given in
the last section demonstrates that the factors such as (a) the choice of regularisation method, (b)
the choice of the order of regularisation, (c) inaccuracies in the transport parameters, (d) source
function discreatisation, (e) distance between the source and the receiptor and (f) noise in the data
affect the accuracy of the solution.

Our next paper in this area will involve the source history estimation of atmospheric pollution
originating from a non-steady point source of unknown location.
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