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ABSTRACT: 

 

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. 

These factors have been examined separately, with limited success, and still require clarification. The present study aimed to 

investigate the spatial and temporal relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. 

Remote sensing (RS) data gathered from a plurality of satellites: TRMM TMI, Aqua AMSR-E, GCOM-W AMSR2, DMSP SSM/I, 

DMSP SSMIS, NOAA-19 AMSU, MetOp-A AMSU and GEO IR were used to develop an index comprising rainfall. Humidity 

(total precipitable water, or vertically integrated water vapor amount) and temperature (surface temperature) data were acquired from 

the JAXA Satellite Monitoring for Environmental Studies (JASMES) portal which were retrieved and processed from the 

Aqua/MODIS and Terra/MODIS data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land 

cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through 

institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling 

both spatial association analysis and spatial statistical analysis. Our findings show that the combination of ecological factors derived 

from RS data and socio-economic and demographic factors is suitable for predicting spatial and temporal patterns of dengue 

outbreaks.  

 

 

1. INTRODUCTION 

Dengue is the most important vector-borne viral disease 

worldwide and a major cause of childhood fever burden in Sri 

Lanka, which has experienced a number of large epidemics in 

the past decade (Tam et al., 2013). Dengue is now considered to 

be hyperendemic in Sri Lanka, with detected co-circulation of 

multiple serotypes (Kanakaratne, 2009; WHO, 2011).  

 

Dengue outbreaks are affected by biological, ecological, socio-

economic and demographic factors that vary over time and 

space. Disease-promoting factors include 1) climate, such as 

rainfall, humidity and temperature (Canyon, 1999); 2) changes 

in land cover, particularly rapid unplanned expansion of 

urbanization with inadequate housing and infrastructure (Gubler, 

1997; Rodhain and Rosen, 1997; Lian, et al., 2006; Ooi and 

Gubler, 2008; Tran, et al. 2010; Gubler, 2011; WHO, 2012); 

and 3) high population density (Gubler, 1998).  

 

Previous studies have identified a large number of biological, 

ecological and socio-economic and demographic factors that are 

considered to impact both susceptibility and exposure to spatial 

and temporal outbreaks of dengue in Sri Lanka. However, these 

factors have mainly been examined separately, with limited 

success. Further clarification is required. The present study 

aimed to investigate the spatial and temporal relationships 

between these factors and outbreaks of dengue associated with 

mosquito breeding sites and habitats in northern Sri Lanka.  

 

2. MATERIAL AND METHODS 

2.1 Study Area 

Our study area was the northern region of Sri Lanka, consisting 

of twelve Medical Officer of Health (MOH) divisions which are 

the health administrative divisions in Sri Lanka. Each MOH 

division has different geographic features—including 

agricultural fields, forested areas, wetlands, grassland, urban 

areas, etc.—as well as different social backgrounds. The climate 

in the region is tropical, with two monsoon seasons: namely 

north east monsoon from November to April, and south west 

monsoon from May to October.  

 

2.2 Dengue Data 

From the MOH divisions in Sri Lanka, we obtained the monthly 

numbers of clinically confirmed dengue cases from January 

2010 through December 2013 in the twelve MOH divisions, 

and the annual numbers of clinically confirmed dengue cases 

from 2007 through 2013 in the same MOH divisions. 

 

2.3 Rainfall, Humidity and Temperature 

Rainfall data were obtained using the Global Satellite Mapping 

of Precipitation (GSMaP) product, based on the combined MW-

IR algorithm with a plurality of satellites: TRMM TMI, Aqua 

AMSR-E, GCOM-W AMSR2, DMSP SSM/I, DMSP SSMIS, 

NOAA-19 AMSU, MetOp-A AMSU and GEO IR. The GSMap 
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is drawn to the highest levels of precision and resolution in the 

world (Temporal resolution: 1 hour, Spatial resolution: Grid 

latitude-longitude of 0.1 degrees) (JAXA, 2014a; RESTEC, 

2014). The near-real-time version (GSMaP_NRT) is published 

with an approximately 4-hour time-lag from the time of satellite 

observation, and the reanalysis version (GSMaP_MVK) is 

available after the reprocessing is completed. The monthly 

average rainfall from January 2010 to December 2013 and the 

annual average rainfall from 2007 to 2013 were obtained by 

processing the GSMaP_MVK and GSMaP_NRT data 

depending on the period, and converting this processed data 

into TIFF image data for spatial analysis in geographic 

information systems (GIS).  

 

Humidity (total precipitable water, or vertically integrated water 

vapor amount) and temperature (surface temperature) data were 

acquired from the JAXA Satellite Monitoring for 

Environmental Studies (JASMES) portal (JAXA, 2014b). These 

geophysical parameters were retrieved and processed from the 

Aqua/MODIS and Terra/MODIS data. The MODIS instrument 

is operating on both the Terra and Aqua spacecraft.  It has a 

viewing swath width of 2,330 km, and views the entire Earth’s 

surface every one to two days. Its detectors measure 36 spectral 

bands between 0.405 and 14.385 µm, and it acquires data at 

three spatial resolutions: 250 m, 500 m and 1,000 m (NASA, 

2014). We obtained the monthly averages from January 2010 to 

December 2013, and the annual averages from 2007 to 2013 by 

processing the RS data, and converting these processed data 

into TIFF image data for spatial analysis in GIS.  

 

2.4 Land Cover, Including Urbanization 

A paper survey map was digitized to generate detailed land 

cover data, and the digital land cover map of this study area was 

used for spatial analysis in GIS.  

 

The ALOS/AVNIR-2 data set was used to detect urbanization 

by conducting unmixing, which isolates the contribution of a 

specific material within the mixed pixel. This method identifies 

the locations of pixels that contain a given material, and reports 

the material pixel fraction, i.e., how much of the material is in 

each pixel. We selected eight material pixel fraction classes that 

report subpixel detections in material pixel fraction increments 

of 0.20. Pixels determined to have material pixel fractions of 

20–29% belong to class 0.20–0.29 and pixels with material 

pixel fractions of 90–100% belong to class 0.90–1.00. 

 

2.5 Population Density 

We obtained annual population data for the respective MOH 

division from 2007 to 2013 from the Regional Epidemiological 

Unit, Jaffna. With this information combined with the area data 

by MOH division obtained from spatial analysis in GIS, we 

calculated the population density as a socio-economic and 

demographic factor. We also calculated the average value from 

a set of annual population density at the MOH division level to 

investigate the comprehensive trend of annual population 

density. This was used for both spatial association analysis and 

spatial statistical analysis.  

 

2.6 Incidence Rates 

To examine the spatial patterns of dengue disease, epidemic 

curves were produced by calculating the annual dengue 

incidence rate during the period 2007–2013. Annual incidence 

rates for each MOH division were calculated from the number 

of annual confirmed dengue cases, divided by the total 

population-years and then multiplied by 10,000. These rates 

were expressed as annual confirmed dengue cases divided by 

total population*10,000 people. The average annual incidence 

at the MOH division level was also calculated to determine the 

comprehensive trend of annual incidence. This was used for 

both spatial association analysis and spatial statistical analysis.  

 

2.7 Spatial Analysis in GIS 

A polygon layer that generates the twelve MOH divisions in the 

northern region of Sri Lanka was used for spatial analysis in 

GIS. TIFF image data on rainfall, humidity and temperature 

were integrated into GIS, and the pixel (i.e., raster) size was 

changed from 0.05 to 0.01. The polygon layer and the processed 

raster layer were overlaid. The values of a raster within the 

polygons were summarized, and the results were reported to 

excel tables.  

 

The digital land cover map was integrated into GIS. The 

polygon layer and the digital land cover map layer were 

overlaid. The land cover data within the polygons were 

summarized and the results were reported to excel tables. The 

raster data on urbanization were integrated into GIS.  The 

polygon layer and the raster layer were overlaid. Again, the 

values of a raster within the polygons were summarized, and the 

results were reported to excel tables.  

 

The table of polygon layer attributes was joined with the excel 

tables containing data on ecological, socio-economic and 

demographic factors. This information was used for spatial 

association analysis and spatial statistical analysis.  

 

We additionally calculated the average values from data on 

annual rainfall, humidity and temperature at MOH division 

level. This information was used to investigate the 

comprehensive trend of annual rainfall, humidity and 

temperature, and was used for both spatial association analysis 

and spatial statistical analysis.  

 

2.8 Temporal Analysis 

To examine temporal patterns, we used data on monthly dengue 

cases, rainfall, humidity and temperature during the period from 

January 2010 through December 2013. The moving average 

(MA) was calculated and visualized to examine the temporal 

climate trend associated with outbreak of dengue. We also 

calculated the average monthly values from data on monthly 

rainfall, humidity and temperature within the period to 

investigate the comprehensive trend and to be used for the chi-

square test. The chi-square test was used to test monthly 

differences in dengue cases, rainfall, humidity and temperature 

across the study period. The statistical significance was set at 

0.05.  

 

2.9 Spatial Association Analysis 

Univariate Local Indicators of Spatial Association (LISA) was 

applied to measure the local spatial autocorrelation of dengue 

outbreak using GeoDa (Anselin, 1995; Anselin et al., 2006). 

LISA are statistics that measure spatial dependence and evaluate 

the existence of local clusters within the spatial arrangement of 

a given variable. They are based on a statistical index I 

developed by Moran to measure the global spatial 

autocorrelation of the overall data clustering in the area under 

investigation (Moran, 1950). Moran’s I ranges from −1 
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(negative spatial autocorrelation) to 1 (complete spatial 

dependence), with 0 indicating an absence of spatial 

dependence (i.e., random distribution) (Guessous et al., 2014).  

Local spatial autocorrelation analysis was performed based on 

the Local Moran LISA statistics, which yields a measure of 

spatial autocorrelation for each individual location. The LISA 

statistic reveals five categories of spatial autocorrelation that 

appear on the cluster map legend: 1) not significant (i.e., areas 

that are not significant at the default pseudo-significance level 

of 0.05), 2) high-high (high values surrounded by high values), 

3) low-low (low values surrounded by low values), 4) low-high 

(low values surrounded by high values) and 5) high-low (high 

values surrounded by low values) (Anselin, 2003; Singh et al., 

2011). High-high and low-low represent positive spatial 

autocorrelation (i.e., association between areas of similar 

values), and high-low and low-high represent negative spatial 

correlation (i.e., association between areas of dissimilar values) 

(Anselin, 2003; Martinez et al., 2014). A finding of significant 

clustering at p < 0.05 suggests that dengue incidence values are 

too similar across these neighboring provinces to have occurred 

by chance, providing significant evidence for rejecting the null 

hypothesis of spatial randomness (Martinez et al., 2014).  

 

2.10 Spatial Statistical Analysis 

The chi-square test was used to test the spatial association 

between ecological, socio-economic and demographic factors 

and dengue outbreak. The statistical significance was set at 0.05. 

As a second exploratory analysis, using the results from the chi-

square test, we compared the differences in ecological, socio-

economic and demographic factors between the areas of 

significant high-high clustering (i.e., endemic areas) and the 

areas of significant low-high clustering (i.e., non-endemic areas 

estimated to be controlled by some factors) as identified in the 

univariate LISA analysis.  

 

3. RESULTS 

3.1 Results of Temporal Analysis 

Humidity tends to rise in early January, remaining high during 

the dry season, and then declining with the increase in rainfall 

in early September. These changes are accelerated at lower 

temperature. The distribution of monthly dengue cases indicated 

a strong seasonal pattern. Dengue case tended to increase after 

exponential increases or decreases in rainfall. The chi-square 

test results supported these tendencies. We observed significant 

monthly differences in dengue cases and rainfall (p < 0.01), 

while humidity and temperature were not significant.  

 

3.2 Results of Spatial Association Analysis 

The LISA cluster map shows two types of geographical 

clustering (high-high and low-high). The area of significant 

high-high clustering of the average values from a set of annual 

dengue incidences accounted for 8.3% and occurred in Nallur 

MOH division. The area of significant low-high clustering of 

the average values from a set of annual dengue incidences 

accounted for 16.7% and occurred in Kopay and Tellipallai 

MOH divisions. The Moran’s I statistic was −0.08, suggesting a 

random spatial pattern.  

 

3.3 Results of Spatial Statistical Analysis 

The spatial statistical analysis revealed the dengue outbreak was 

significantly associated with ecological, socio-economic and 

demographic factors. Significantly more dengue cases were 

observed in MOH divisions (66.7%) with average annual 

rainfall of >1353 mm compared to in those with average annual 

rainfall of <1353 mm (χ2 = 112.8; p < 0.01). Correspondingly, 

we also observed significantly more dengue cases in MOH 

divisions (66.7%) with average annual humidity of >39.62 mm 

compared to in those with average annual humidity of <39.62 

mm (χ2 = 55.6; p < 0.01). Moreover, significantly more dengue 

cases occurred in MOH divisions (58.3%) with an average 

annual temperature of >31.2°C compared to in those with an 

average annual temperature of <31.2°C (χ2 = 104.7; p < 0.01).  

 

Dengue occurrence was also significantly associated with the 

presence or absence of built-up area considered to represent 

urbanization (χ2 = 264.7; p < 0.01). The presence of built-up 

area in MOH divisions (33.3%) significantly influenced dengue 

occurrence, with significantly more dengue cases observed in 

MOH divisions (50.0%) that had a >18% ratio of urbanization 

to MOH division area compared to in those with a <18% ratio 

of urbanization to MOH division area (χ2 = 40.7; p < 0.01). We 

also found significantly more dengue cases in MOH divisions 

(33.3%) with a population density of >1150 compared to those 

with a population density of <1150 (χ2 = 347.2; p < 0.01).  

 

The chi-square test results showed Nallur MOH division to be a 

high-high clustering area, with built-up land area and a higher 

population density, while Kopay and Tellipallai MOH divisions 

were low-high clustering areas lacking built-up land area and 

having lower population densities. These results suggest 

significant differences in the presence or absence of built-up 

area and higher population density between high-high clustering 

areas and low-high clustering areas. Presence of built-up area 

and higher population density could influence the dengue 

occurrence.  

 

4. CONCLUSION 

Our results showed that dengue outbreak was associated with 

rainfall, humidity, temperature, built-up area considered to 

represent urbanization, urbanization and higher population 

density. Furthermore, our analyses quantitatively indicated to 

what degree these factors influenced dengue occurrence. Our 

findings indicate that these factors impact vulnerability to 

dengue by creating conditions of either susceptibility within 

human communities or of exposure to the vector and proximity 

to breeding habitats.  

 

The spatial and temporal association found in our study 

highlights the fact that rainfall, humidity, temperature, built-up 

area, urbanization and higher population density can strengthen 

forecasting models. Spatial-temporal models must be developed 

and strengthened by incorporating ecological and socio-

economic and demographic factors for further analysis.  

 

Dengue transmission within Sri Lanka is spatially 

heterogeneous. Further research must focus on the whole island 

to improve the accuracy of spatial and temporal models. An 

integrated spatial-temporal prediction model using ecological 

and socio-economic and demographic factors could lead to 

substantial improvements in the control and prevention of 

dengue by allocating the right resources to the appropriate 

places at the right time.  
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