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Abstract
It is well known that the use of prior information in the logistic regression improves
the estimates of regression coefficients when multicollinearity presents. This prior
information may be in the form of exact or stochastic linear restrictions. In this article,
in the presence of stochastic linear restrictions, we propose a new efficient estimator,
named Stochastic restricted optimal logistic estimator for the parameters in the logistic
regression models when the multicollinearity presents. Further, conditions for the
superiority of the new optimal estimator over some existing estimators are derivedwith
respect to the mean square error matrix sense. Moreover, a Monte Carlo simulation
study and a real data example are provided to illustrate the performance of the proposed
optimal estimator in the scalar mean square error sense.

Keywords Logistic regression · Multicollinearity · Optimal estimator · Mean square
error · Scalar mean square error

1 Introduction

Logistic regression was developed by Cox (1958), and is used to explain the relation-
ship between one dependent binary variable and one or more nominal, ordinal, interval
or ratio-level independent variables. The applications of logistic regression model are
in various fields, including machine learning, medical fields, and social sciences. The
logistic regression model is defined as

yi = πi + εi , i = 1, . . . , n, (1.1)
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where the response yi follows Binary distribution with parameter πi as

πi = exp(x ′
iβ)

1 + exp(x ′
iβ)

, (1.2)

with xi is the i th row of X , which is an n× p data matrix with p explanatory variables
and β is a p×1 vector of coefficients, εi are independent with mean zero and variance
πi (1 − πi ) of the response yi . The maximum likelihood estimation method is the
commonly used estimation technique to estimate the regression parameter β , and it
depends on the likelihood function of the logistic regression model (1.1),

L(β) =
n∏

i=1

π
yi
i (1 − πi )

(1−yi ). (1.3)

Then the likelihood equation to estimate the parameters becomes

∂�(β)

∂β
=

n∑

i=1

(yi − πi )xi = 0, (1.4)

where

�(β) =
n∑

i=1

yi ln(πi ) +
n∑

i=1

(1 − yi ) ln(1 − πi ), (1.5)

is the log-likelihood function of the logistic regression model. Now, the maximum
likelihood estimator (MLE) of β can be obtained by solving Eq. (1.4). Since Eq. (1.4)
is nonlinear in parameter β, the Iterative weighted least square algorithm can be used
to estimate the parameter β, and the corresponding maximum likelihood estimator
takes the form

β̂MLE = C−1X ′Ŵ Z , (1.6)

whereC = X ′Ŵ X ; Z is the columnvectorwith i th element equals logi t(π̂i )+ yi−π̂i
π̂i (1−π̂i )

and Ŵ = diag[π̂i (1− π̂i )]. Note that β̂MLE is asymptotically unbiased for β and its
asymptotic covariance matrix is given by

Cov(β̂MLE ) = {X ′Ŵ X}−1. (1.7)

Then the mean square error matrix (MSEM) of β̂MLE is given by

MSEM[β̂MLE ] = Cov[β̂MLE ] + B[β̂MLE ]B ′[β̂MLE ]
= {X ′Ŵ X}−1

= C−1. (1.8)
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Since the explanatory variables are multicollinear in many practical situations, the
maximum likelihood estimationmethod produces inefficient estimates. Several studies
have been done to propose alternative estimators to MLE to overcome the multi-
collinearity problem. These estimators can be categorized mainly to two cases: (i)
estimators based on the sample information (1.1), and (ii) estimators based on both
the sample and the prior information. The prior information can be in the form of exact
linear restrictions or stochastic linear restrictions. In practice, the exact or stochastic
restrictions can be chosen based on the past experience related to the study or on the
similar kind of experiments conducted in the past.

According to the literature, the estimators based on the sample information are;
Logistic Ridge Estimator (LRE) (Schaefer et al. 1984), Principal Component Logistic
Estimator (Aguilera et al. 2006), Modified Logistic Ridge Estimator (Nja et al. 2013),
Logistic Liu Estimator (LLE) (Mansson et al. 2012), Liu-Type Logistic Estimator
(Inan and Erdogan 2013), Almost Unbiased Ridge Logistic Estimator (AURLE)
(Wu and Asar 2016), and Almost Unbiased Liu Logistic Estimator (AULLE)
(Xinfeng 2015).

The estimators based on the sample and prior information in the form of exact linear
restrictions are; RestrictedMaximumLikelihood Estimator (Duffy and Santner 1989),
Restricted Logistic Liu Estimator (Şiray et al. 2015), Modified Restricted Liu Esti-
mator (Wu 2016), Restricted Logistic Ridge Estimator (Asar et al. 2017a), Restricted
Liu-Type Logistic Estimator (Asar et al. 2017b), Restricted Almost Unbiased Ridge
logistic Estimator (Varathan and Wijekoon 2016a). The estimators based on the
sample and prior information in the form of stochastic linear restrictions are; Stochas-
tic Restricted Maximum Likelihood Estimator (SRMLE) (Nagarajah and Wijekoon
2015), Stochastic Restricted Ridge Maximum Likelihood Estimator (SRRMLE)
(Varathan andWijekoon 2016b), Stochastic Restricted LiuMaximumLikelihood Esti-
mator (SRLMLE) (Varathan andWijekoon 2016c), and Stochastic Restricted Liu-type
logistic estimator (SRLTLE) (Varathan and Wijekoon 2018b), Stochastic Restricted
Almost Unbiased Ridge Logistic Estimator (SRAURLE) (Varathan and Wijekoon
2017) and Stochastic RestrictedAlmost Unbiased Liu Logistic Estimator (SRAULLE)
(Varathan and Wijekoon 2018c).

Moreover, Varathan andWijekoon (2018a) have introduced anOptimalGeneralized
LogisticEstimator (OGLE) for the logistic regression based on the sample information.
Further, in their study, the performance of the proposed estimator was compared with
some existing logistic estimators such as MLE, LRE, LLE, AURLE, and AULLE in
the scalar mean square error criterion.

In the present study, we introduce a new estimator for the logistic regression based
on the sample information and the prior information in the form of stochastic lin-
ear restrictions. This new estimator is named as stochastic restricted optimal logistic
estimator (SROLE), and the conditions for superiority of the new estimator over the
existing estimators OGLE, SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE,
and SRLTLE are derived by means of the mean square error matrix criterion. Further,
by conducting a simulation study, and analyzing a numerical example, we compare
the performance of the proposed estimator SROLE with the other existing estimators
in the scalar mean square error sense.
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The rest of the article is organized as follows. The construction of the proposed
estimator is given in Sect. 2. In Sect. 3, the conditions for superiority of the proposed
estimator SROLE over the other existing estimators are derived with respect to mean
square error matrix criterion. In Sect. 4, the results of a Monte Carlo simulation study
is presented to understand the performance of the proposed estimator over the other
estimators in the scalar mean square error (SMSE) sense. In Sect. 5, results related
to a numerical example is shown to illustrate the theoretical findings. Finally, some
conclusive remarks are given in Sect. 6.

2 Construction of proposed optimal estimator

Consider the following stochastic linear restriction in addition to the sample logistic
regression model (1.1).

h = Hβ + υ; E(υ) = 0, Cov(υ) = �. (2.1)

where h is an (q × 1) stochastic known vector, H is a (q × p) of full rank q ≤ p
known elements and υ is an (q × 1) random vector of disturbances with mean 0 and
dispersion matrix �, which is assumed to be known (q × q) positive definite matrix.
Further, it is assumed that υ is statistically independent of ε, i.e., E(ευ ′) = 0.

2.1 Existing estimators

Nagarajah and Wijekoon (2015), introduced the stochastic restricted maximum like-
lihood estimator (SRMLE)

β̂SRMLE = β̂MLE + C−1H ′(� + HC−1H ′)−1(h − H β̂MLE ), (2.2)

in the presence of the stochastic linear restrictions defined in (2.1) with the logistic
regression model (1.1), to reduce the effect of multicollinearity problem. The asymp-
totic properties of SRMLE are

E(β̂SRMLE ) = β, (2.3)

and

Cov(β̂SRMLE ) = C−1 − C−1H ′(� + HC−1H ′)−1HC−1

= (C + H ′�−1H)−1

= R. (2.4)

Consequently, the mean square error matrix is obtained as

MSEM(β̂SRMLE ) = (C + H ′�−1H)−1

= R. (2.5)
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Based on the SRMLE, the following estimators have been proposed in the literature.

1. Varathan and Wijekoon (2016b);

β̂SRRMLE = Zk β̂SRMLE , (2.6)

where Zk = (I + kC−1)−1, k ≥ 0.

2. Varathan and Wijekoon (2016c);

β̂SRLMLE = Zd β̂SRMLE , (2.7)

where Zd = (C + I )−1(C + d I ), 0 ≤ d ≤ 1.

3. Varathan and Wijekoon (2017);

β̂SRAU RLE = Wk β̂SRMLE , (2.8)

where Wk = [I − k2(C + k I )−2], k ≥ 0.

4. Varathan and Wijekoon (2018c);

β̂SRAULLE = Wd β̂SRMLE , (2.9)

where Wd = [I − (1 − d)2(C + I )−2], 0 ≤ d ≤ 1.

5. Varathan and Wijekoon (2018b);

β̂SRLT LE = Zk,d β̂SRMLE , (2.10)

where Zk,d = (C + k I )−1(C − d I ), k ≥ 0 ;0 ≤ d ≤ 1.

Since the estimators defined in (2.6)–(2.10) have a common structure, one can write
the general form of the estimators SRRMLE, SRLMLE, SRAURLE, SRAULLE, and
SRLTLE as

β̂SRGLE = F β̂SRMLE , (2.11)

where F is a non negative definite matrix, and note that

β̂SRGLE =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β̂SRMLE if F = I ;
β̂SRRMLE if F = Zk;
β̂SRLMLE if F = Zd ;
β̂SRAU RLE if F = Wk;
β̂SRAULLE if F = Wd ;
β̂SRLT LE if F = Zk,d .

(2.12)

We name the above estimator β̂SRGLE as the stochastic restricted generalized logis-
tic estimator (SRGLE), and the bias vector, dispersion matrix, and mean square error
matrix of β̂SRGLE can be obtained as
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Bias(β̂SRGLE ) = E[β̂SRGLE ] − β

= [F − I ]β, (2.13)

D(β̂SRGLE ) = Cov(β̂SRGLE )

= Cov(F β̂SRMLE )

= FRF ′, (2.14)

and

MSEM(β̂SRGLE ) = D(β̂SRGLE ) + Bias(β̂SRGLE )Bias(β̂SRGLE )′

= FRF ′ + (F − I )ββ ′(F − I )′, (2.15)

where R = (C + H ′�−1H)−1, respectively. Consequently, the scalar mean square
error can be obtained as

SMSE(β̂SRGLE ) = tr [FRF ′] + β ′(F − I )′(F − I )β

= tr [FRF ′] + β ′(I − F−1)′F ′F(I − F−1)β. (2.16)

Note that, using the above general form, we can easily derive the stochastic prop-
erties of the estimators SRMLE, SRRMLE, SRLMLE, SRAURLE, SRAULLE, and
SRLTLE or any other estimator in the form of SRGLE by changing the non negative
definite matrix F .

2.2 Proposed estimator

Note that thematrix F defined in the estimator SRGLE takes different choices depend-
ing on different estimators. Therefore, it is better to find an optimal form for F . To
achieve this, we minimize the scalar mean square error of SRGLE with respect to F .
Consider the derivative of Eq. (2.16) with respect to F

∂{SMSE(β̂SRGLE )}
∂F

= ∂{tr(FRF ′)}
∂F

+ ∂β ′(I − F−1)′F ′F(I − F−1)β

∂F

= ∂{tr(FRF ′)}
∂F

+ ∂{β ′F ′Fβ − 2β ′Fβ + β ′β}
∂F

= ∂{tr(FRF ′)}
∂F

+ ∂{β ′F ′Fβ}
∂F

− 2
∂{β ′Fβ}

∂F
. (2.17)

To simplify the above equation further, we consider the following lemmas (see Rao
and Toutenburg 1995, p. 385, 386).

Lemma 1 Let A and B be any two matrices with proper order, then

∂tr(ABA′)
∂A

= A(B + B ′).
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Lemma 2 If a is a vector of order n × 1, b is another vector of order m × 1, and M
is an n × m matrix, then

∂a′Mb

∂M
= ab′.

Lemma 3 Let a be a n × 1 vector, N a symmetric t × t matrix, and M a t × n matrix,
then

∂a′M ′NMa

∂M
= 2NMaa′.

By applying Lemmas 1, 2, and 3 in (2.17), we obtain

∂{SMSE(β̂SRGLE )}
∂F

= 2FR + 2Fββ ′ − 2ββ ′

= 2F(R + ββ ′) − 2ββ ′. (2.18)

Note that the matrix R + ββ ′ is positive definite (see Rao and Toutenburg 1995,
p. 366), and hence, non-singular.
By equating (2.18) to a null-matrix, we shall obtain an optimal choice of F as,

F̃Opt = ββ ′(R + ββ ′)−1. (2.19)

Now we are ready to propose a new estimator named stochastic restricted optimal
logistic estimator (SROLE) as below:

β̂SROLE = F̃Opt β̂SRMLE . (2.20)

Since the above optimal estimator SROLE contains an unknown parameter β within
the term F̃Opt [see (2.19)], it is necessary to identify a suitable vector having known
values for β. As such, following Newhouse and Oman (1971), in place of β, we use the
normalized eigen vector corresponding to the largest eigen value of the matrix X ′Ŵ X
which satisfies the constraint β ′β = 1. However, a researcher cannot obtain X ′Ŵ X
since Ŵ is a function of β. Therefore, to construct Ŵ , we choose initial values of the
parameters β = (β1, . . . , βp)

′ according to Mansson and Shukur (2011) and Şiray
et al. (2015) such that β1 = · · · = βp and

∑p
j=1 β2

j = 1. Then, by substituting the

normalized eigen vector corresponding to the largest eigen value of the matrix X ′Ŵ X
in place of β, F̃Opt can be estimated.

2.3 Asymptotic properties of optimal estimator

In this subsection, we summarize the asymptotic properties of the proposed optimal
estimator SROLE. Since the present optimal estimator (SROLE) is in the similar form
of the estimator SRGLE, by replacing F by F̃Opt in the Eqs. (2.13)–(2.16), one can
easily obtain the following properties.
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Bias vector

Bias(β̂SROLE ) = [F̃Opt − I ]β, (2.21)

Dispersion matrix

D(β̂SROLE ) = F̃Opt R F̃
′
Opt , (2.22)

Mean square error matrix

MSEM(β̂SROLE ) = F̃Opt R F̃
′
Opt + (F̃Opt − I )ββ ′(F̃Opt − I )′, (2.23)

and Scalar mean square error

SMSE(β̂SROLE ) = tr [F̃Opt R F̃
′
Opt ] + β ′(F̃Opt − I )′(F̃Opt − I )β. (2.24)

Note that when prior information is not available, R = (C + H ′�−1H)−1 is simply
equal to C−1. Then F̃Opt = ββ ′(R + ββ ′)−1 in (2.19) becomes J̃(i) = ββ ′(C−1 +
ββ ′)−1. Also, only when sample information exists, SRMLE is replaced with MLE.
Then the proposed estimator represents the optimal generalized logistic estimator
(OGLE) (Varathan and Wijekoon 2018a).

β̂OGLE = J̃(i)β̂MLE , (2.25)

which is a generalized estimator to represent Logistic Ridge Estimator (LRE) (Schae-
fer et al. 1984), Logistic Liu Estimator (LLE) (Mansson et al. 2012), Almost Unbiased
Ridge Logistic Estimator (AURLE) (Wu andAsar 2016), Almost Unbiased Liu Logis-
tic Estimator (AULLE) (Xinfeng 2015), and other logistic estimators of same type
based only on sample information.
The properties of optimal generalized logistic estimator (OGLE) are

Bias(β̂OGLE ) = E[β̂OGLE ] − β

= ( J̃(i) − I )β, (2.26)

D(β̂OGLE ) = J̃(i)C
−1 J̃ ′

(i), (2.27)

MSEM(β̂OGLE ) = J̃(i)C
−1 J̃ ′

(i) + ( J̃(i) − I )ββ ′( J̃(i) − I )′, (2.28)

and

SMSE(β̂OGLE ) = tr( J̃(i)C
−1 J̃ ′

(i)) + β ′(I − J̃−1
(i) )′ J̃ ′

(i) J̃(i)(I − J̃−1
(i) )β.

(2.29)
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3 Mean square error matrix comparison of estimators

In this section, we examine the performance of the proposed optimal estimator SROLE
with the existing estimators SRGLE and OGLE, by means of mean square error
matrix criterion.

MSEM criteria
For two given estimators β̂1 and β̂2, the estimator β̂2 is said to be superior to β̂1, under
the MSEM criterion, if and only if

M(β̂1, β̂2) = MSEM(β̂1, β) − MSEM(β̂2, β) ≥ 0. (3.1)

To find the superiority condition of the proposed estimator SROLE with the SRGLE,
we use following lemmas.

Lemma 4 (Rao et al. 2008) Let the two n × n matrices M > 0 ,N ≥ 0, then M > N
if and only if λmax(NM−1) < 1.

Lemma 5 (Trenkler and Toutenburg 1990) Let β̃ j = A j y, j = 1, 2 be two competing
homogeneous linear estimators of β. Suppose that D = Cov(β̃1) − Cov(β̃2) > 0,
where Cov(β̃ j ), j = 1, 2 denotes the covariance matrix of β̃ j . Then 
(β̃1, β̃2) =
MSEM(β̃1) − MSEM(β̃2) ≥ 0 if and only if d ′

2(D + d ′
1d1)

−1d2 ≤ 1, where
MSEM(β̃ j ), d j ; j = 1, 2 denote the Mean Square Error Matrix and bias vector
of β̃ j , respectively.

3.1 SROLE versus SRGLE

Consider

MSEM(β̂SRGLE ) − MSEM(β̂SROLE )

= {FRF ′ + (F − I )ββ ′(F − I )′}
− {F̃Opt R F̃

′
Opt + (F̃Opt − I )ββ ′(F̃Opt − I )′}

= {FRF ′ − F̃Opt R F̃
′
Opt }

+ {(F − I )ββ ′(F − I )′ − (F̃Opt − I )ββ ′(F̃Opt − I )′}. (3.2)

Now consider

D(β̂SRGLE ) − D(β̂SROLE ) = FRF ′ − F̃Opt R F̃
′
Opt

= D∗. (3.3)

Note that, since R is positive definite matrix, FRF ′ and F̃Opt R F̃ ′
Opt are positive

definite matrices (see Rao and Toutenburg 1995, p. 366). Consequently, by Lemma 4,
if λmax(F̃Opt R F̃ ′

Opt (FRF ′)−1) < 1 then D∗ is a positive definite matrix, where

λmax[F̃Opt R F̃ ′
Opt (FRF ′)−1] < 1 is the largest eigen value of F̃Opt R F̃ ′

Opt (FRF ′)−1.
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Further, by Lemma 5, MSE(β̂SRGLE ) − MSE(β̂SROLE ) is non-negative definite if
δ′
Opt [D∗ + δ′

GδG]−1δOpt ≤ 1, where δOpt = (F̃Opt − I )β and δG = (F − I )β.
Based on the above arguments, we state the following theorem.

Theorem 1 Whenλmax[F̃Opt R F̃ ′
Opt (FRF ′)−1] < 1, the estimator SROLE is superior

than SRGLE if and only if δ′
Opt [D∗ + δ′

GδG]−1δOpt ≤ 1.

Note that the above Theorem 1 states the necessary and sufficient condition for superi-
ority of the proposed estimator (SROLE) over the general existing estimator (SRGLE).
By replacing F by a suitable matrix, one may obtain the following conditions for
superiority of SROLE over the existing estimators SRMLE, SRRMLE, SRLMLE,
SRAURLE, SRAULLE, and SRLTLE with respect to mean square error.
(i) F = I : SROLE is superior than SRMLE if and only if λmax[F̃Opt R F̃ ′

Opt R
−1] < 1 and δ′

Opt [R−
F̃Opt R F̃ ′

Opt ]−1δOpt ≤ 1.

(ii) F = Zk : SROLE is superior than SRRMLE if and only if λmax[F̃Opt R F̃ ′
Opt (Zk RZ ′

k)
−1] < 1

and δ′
Opt [Zk RZ ′

k − F̃Opt R F̃ ′
Opt + β ′(Zk − I )′(Zk − I )β]−1δOpt ≤ 1.

(iii) F = Zd : SROLE is superior than SRLMLE if and only if λmax[F̃Opt R F̃ ′
Opt (Zd RZ ′

d )
−1] < 1

and δ′
Opt [Zd RZ ′

d − F̃Opt R F̃ ′
Opt + β ′(Zd − I )′(Zd − I )β]−1δOpt ≤ 1.

(iv) F = Wk : SROLE is superior than SRAURLE if and only if λmax[F̃Opt R F̃ ′
Opt (Wk RW ′

k)
−1] < 1

and δ′
Opt [Wk RW ′

k − F̃Opt R F̃ ′
Opt + β ′(Wk − I )′(Wk − I )β]−1δOpt ≤ 1.

(v) F = Wd : SROLE is superior than SRAULLE if and only if λmax[F̃Opt R F̃ ′
Opt (Wd RW ′

d )
−1] < 1

and δ′
Opt [Wd RW ′

d − F̃Opt R F̃ ′
Opt + β ′(Wd − I )′(Wd − I )β]−1δOpt ≤ 1.

(vi) F = Zk,d : SROLE is superior thanSRLTLE if and only ifλmax[F̃Opt R F̃ ′
Opt (Zk,d RZ ′

k,d )
−1] < 1

and δ′
Opt [Zk,d RZ ′

k,d − F̃Opt R F̃ ′
Opt + β ′(Zk,d − I )′(Zk,d − I )β]−1δOpt ≤ 1.

3.2 SROLE versus OGLE

Consider

MSEM(β̂OGLE ) − MSEM(β̂SROLE )

= { J̃(i)C−1 J̃ ′
(i) + ( J̃(i) − I )ββ ′( J̃(i) − I )′}

− {F̃Opt R F̃
′
Opt + (F̃Opt − I )ββ ′(F̃Opt − I )′}

= { J̃(i)C−1 J̃ ′
(i) − F̃Opt R F̃

′
Opt }

+ {( J̃(i) − I )ββ ′( J̃(i) − I )′ − (F̃Opt − I )ββ ′(F̃Opt − I )′}. (3.4)

Now consider

D(β̂OGLE ) − D(β̂SROLE ) = J̃(i)C
−1 J̃ ′

(i) − F̃Opt R F̃
′
Opt

= D∗∗. (3.5)

Note that, sinceC−1 and R are positive definite matrices, J̃(i)C−1 J̃ ′
(i) and F̃Opt R F̃ ′

Opt
are positive definite matrices (see Rao and Toutenburg 1995, p. 366). Consequently,
by Lemma 4, if λmax(F̃Opt R F̃ ′

Opt ( J̃(i)C
−1 J̃ ′

(i))
−1) < 1 then D∗∗ is a positive definite

matrix, where λmax[F̃Opt R F̃ ′
Opt ( J̃(i)C

−1 J̃ ′
(i))

−1] < 1 is the largest eigen value of

123



Optimal stochastic restricted logistic estimator

F̃Opt R F̃ ′
Opt ( J̃(i)C

−1 J̃ ′
(i))

−1. Further, by Lemma 5, MSE(β̂OGLE )−MSE(β̂SROLE )

is non-negative definite if δ′
Opt [D∗∗ + δ′

J δJ ]−1δOpt ≤ 1, where δOpt = (F̃Opt − I )β

and δJ = ( J̃(i) − I )β.
Based on the above arguments, we state the following theorem.

Theorem 2 When λmax[F̃Opt R F̃ ′
Opt ( J̃(i)C

−1 J̃ ′
(i))

−1] < 1, the estimator SROLE is

superior than OGLE if and only if δ′
Opt [D∗∗ + δ′

J δJ ]−1δOpt ≤ 1.

4 Simulation study

A Monte Carlo simulation study is performed to examine the performance of the
proposed optimal estimator SROLE with the existing estimators MLE, SRMLE,
SRRMLE, SRLMLE, SRAURLE, SRAULLE, SRLTLE, and OGLE by considering
different levels of multicollinearity; ρ = 0.95, 0.99, and 0.999. The Scalar Mean
Square Error (SMSE) is considered for the comparison of estimators.
According to McDonald and Galarneau (1975) and Kibria (2003), we generate the
explanatory variables as follows:

xi j = (1 − ρ2)1/2zi j + ρzi,p+1, i = 1, 2, . . . , n, j = 1, 2, . . . , p, (4.1)

where zi j are independent standard normal pseudo- random numbers and ρ is specified
so that the theoretical correlation between any two explanatory variables is given byρ2.
Two sets of explanatory variables having p = 2 and p = 4 are generated using (4.1).
The dependent variable yi in (1.1) is obtained from the Bernoulli(πi ) distribution

where πi = exp(x ′
iβ)

1+exp(x ′
iβ)

, and three different sample sizes; n = 20, 50, and 100 are

considered for the study. Following Mansson and Shukur (2011) and Şiray et al.
(2015), the parameter values of β1, β2, . . . , βp are chosen so that

∑p
j=1 β2

j = 1 and
β1 = β2 = . . . = βp. For the simulation, according to Şiray et al. (2015), we choose
the same restrictions H = [1,− 1], h = 0, � = 1 in the case of p = 2 and

H =
⎛

⎝
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎞

⎠ , h =
⎛

⎝
0
0
0

⎞

⎠ , and � =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ . (4.2)

in the case of p = 4. The selection of the above stochastic restrictions will give
researchers to understand the comparisons of results with other studies which have
already being done using the same restrictions. The simulation is repeated 1000 times
by generating new pseudo-random numbers and the simulated SMSE values of the
estimators are obtained using the following equation.

ˆSMSE(β̂) = 1

1000

1000∑

r=1

(β̂r − β)′(β̂r − β), (4.3)

where β̂r is any estimator considered in the r th. simulation.
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Since the biasing parameters k, d of the estimators SRRMLE, SRLMLE, SRAURLE,
SRAULLE, and SRLTLE varies within the ranges of k ≥ 0 and 0 ≤ d ≤ 1, it is
essential to identify the optimal values of k, and d. As such, following Özkale (2015)
and van Howelingen and Sauerbrei (2013), 5-fold cross validationmethodwas applied
for each set of sample data when ρ = 0.95, 0.99, and 0.999 and n = 20, 50, 100. In
this approach, the total cross validation error, which is the sum of prediction errors of
all possible test data sets, is obtained for the different values of k, and d within the
ranges k ≥ 0 and 0 ≤ d ≤ 1, respectively. The values of k, d that minimizes the total
cross validation error will be the optimal. The optimal values of k, d of the estimators
SRRMLE, SRLMLE, SRAURLE, SRAULLE, and SRLTLE corresponding to each
case of ρ = 0.95, 0.99, and 0.999 and n = 20, 50, 100 are reported in Tables 1, 2, 3,
4, 5 and 6 in Appendix A.

The estimated scalar mean square errors are reported in Tables 7, 8, 9, 10, 11 and
12 in Appendix A and displayed in Figs. 1, 2, 3, 4, 5 and 6 in Appendix B. Note that,
since the SMSE of MLE is very high compared to other estimators, we skip the MLE
in the construction of Figs. 1, 2, 3, 4, 5 and 6. It can be observed from Figs. 1, 2, 3, 4,
5 and 6 and Tables 7, 8, 9, 10, 11 and 12 that the proposed optimal estimator SROLE
outperforms the estimators SRMLE, SRRMLE, SRLMLE, SRAURLE, SRAULLE,
SRLTLE, and OGLE in the scalar mean square error sense with respect to all the
values of ρ = 0.95, 0.99, and 0.999 and n = 20, 50, 100. Since MLE, SRMLE,
OGLE, and SROLE do not depend on the parameters k and d, the SMSE values of
these estimators are constant for different choice of k, d. Further, for all cases, the
performance of MLE is worst since the SMSE values are higher in comparison to
the other estimators, and SRMLE shows the second worst performance compared to
other estimators. In general, the SMSE of all the estimators increases when the degree
of collinearity increases. Moreover, the SRLTLE and OGLE respectively show the
second and third best performances compared to all the other estimators with respect
to all ρ, n, and p values considered in this study. It can be further noted that the SMSE
values of the estimators decreases whenever n increases.

Further, considering two explanatory variables (p = 2), among the estimators
SRRMLE, SRLMLE, SRAURLE, and SRAULLE; SRAURLE performs better when
ρ = 0.95, and for all sample sizes n = 20, 50, 100. However, when ρ = 0.99, and
0.999, SRLMLE performs well compared to SRRMLE, SRAURLE, and SRAULLE,
regardless of the values of n. For four explanatory variables (p = 4), SRLMLE
outperforms the estimators SRRMLE, SRAURLE, and SRAULLE with respect all
the values ρ and n, except the case of ρ = 0.95 and n = 100.

5 A real data example

In this section, we use the data set, which has been previously analyzed by Asar
and Genç (2016), Wu and Asar (2016), Varathan and Wijekoon (2016b) and among
others to show the performance of the proposed estimator with the existing estimators.
The data set consists the information of hundred municipalities of Sweden with four
predictor variables and a response variable. The response variable is theNet population
change (y) which takes the value 1 if there is an increase in the population and 0
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otherwise, and the predictor variables are Population (x1), Number of unemployed
people (x2), Number of newly constructed buildings (x3), and Number of bankrupt
firms (x4). The condition number being a measure of multicollinearity is obtained
as 188, indicates the existence of severe multicollinearity in the data set. Further,
Variance inflation factors (VIF) of the data are 488.17, 344.26, 44.99, and 50.71,
which also confirm the multicollinearity in the data. Further, since we have no prior
information for this numerical example, we use the same prior information as used
in the simulation study. The SMSE values of MLE, SRMLE, SRRMLE, SRLMLE,
SRAURLE, SRAULLE, SRLTLE, OGLE, and SROLE are calculated for the optimal
values of biasing parameters k, d obtained through the cross validation. The optimal
values of k, d are given in the Table 13 and the SMSE values are given in the Table 14
in Appendix A. Results, reveal that the proposed estimator SROLE outperforms all the
other existing estimators considered in this study. Further, aswe noted in the simulation
study, SRLTLE and OGLE respectively give the second and third best performances
with respect to the scalar mean square sense.

6 Concluding remarks

In this article, a new optimal estimator is proposed for logistic regression model when
the prior information is available in the form of stochastic linear restrictions. The
superiority conditions for the proposed estimator with the existing estimators SRMLE,
SRRMLE, SRLMLE, SRAURLE, SRAULLE, SRLTLE, and OGLE are derived with
respect to mean square error matrix criterion. Further, from the simulation study it
was noticed that, in general the proposed optimal estimator SROLE performed well
compared to other existing estimators in the scalar mean square error sense. Finally,
a real data example is examined to verify the theoretical findings.

Appendix A

See Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14.

Table 1 The optimal values of k, d for different ρ values when p = 2 and n = 20

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

ρ = 0.95 k = 0.098 k = 18.745 d = 0.963 d = 0.960 k = 0.060, d = 0.130

ρ = 0.99 k = 1.875 k = 15.316 d = 0.587 d = 0.581 k = 0.081, d = 0.001

ρ = 0.999 k = 4.105 k = 9.803 d = 0.562 d = 0.561 k = 0.009, d = 0.032

Table 2 The optimal values of k, d for different ρ values when p = 2 and n = 50

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

ρ = 0.95 k = 0.108 k = 25.635 d = 0.845 d = 0.834 k = 0.090, d = 0.280

ρ = 0.99 k = 2.345 k = 24.833 d = 0.632 d = 0.603 k = 0.110, d = 0.003

ρ = 0.999 k = 3.654 k = 13.350 d = 0.629 d = 0.620 k = 0.011, d = 0.001
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Table 3 The optimal values of k, d for different ρ values when p = 2 and n = 100

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

ρ = 0.95 k = 0.203 k = 29.980 d = 0.379 d = 0.479 k = 0.320, d = 0.150

ρ = 0.99 k = 4.758 k = 21.746 d = 0.647 d = 0.641 k = 0.140, d = 0.020

ρ = 0.999 k = 5.078 k = 5.447 d = 0.882 d = 0.879 k = 0.020, d = 0.003

Table 4 The optimal values of k, d for different ρ values when p = 4 and n = 20

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

ρ = 0.95 k = 5.735 k = 12.405 d = 0.205 d = 0.197 k = 0.630, d = 0.060

ρ = 0.99 k = 2.340 k = 14.325 d = 0.285 d = 0.265 k = 0.270, d = 0.260

ρ = 0.999 k = 1.530 k = 9.420 d = 0.365 d = 0.352 k = 2.800, d = 0.850

Table 5 The optimal values of k, d for different ρ values when p = 4 and n = 50

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

ρ = 0.95 k = 7.845 k = 17.651 d = 0.275 d = 0.243 k = 1.100, d = 0.090

ρ = 0.99 k = 4.325 k = 19.265 d = 0.361 d = 0.360 k = 0.420, d = 0.540

ρ = 0.999 k = 2.165 k = 11.305 d = 0.472 d = 0.468 k = 2.700, d = 0.920

Table 6 The optimal values of k, d for different ρ values when p = 4 and n = 100

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

ρ = 0.95 k = 11.900 k = 28.367 d = 0.487 d = 0.475 k = 1.800, d = 0.110

ρ = 0.99 k = 10.981 k = 31.112 d = 0.567 d = 0.560 k = 0.560, d = 0.840

ρ = 0.999 k = 4.555 k = 1.616 d = 0.892 d = 0.854 k = 2.100, d = 0.850

Table 7 The estimated SMSE values for different ρ values when p = 2 and n = 20

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

ρ = 0.95 2.5873 0.5317 0.5044 0.5096 0.5311 0.3735 0.2270 0.2273 0.2261

ρ = 0.99 12.1738 0.5944 0.5341 0.2901 0.4664 0.5000 0.2420 0.2636 0.2388

ρ = 0.999 120.0946 0.6124 0.5486 0.2632 0.4420 0.5541 0.2510 0.2602 0.2418

Table 8 The estimated SMSE values for different ρ values when p = 2 and n = 50

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

ρ = 0.95 0.9377 0.3624 0.3429 0.3172 0.3590 0.2278 0.2151 0.2201 0.2026

ρ = 0.99 4.4163 0.4899 0.4354 0.2620 0.4140 0.4267 0.2430 0.2495 0.2334

ρ = 0.999 43.5787 0.5365 0.5202 0.2640 0.4152 0.5203 0.2521 0.2583 0.2413
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Table 9 The estimated SMSE values for different ρ values when p = 2 and n = 100

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

ρ = 0.95 0.4511 0.2518 0.2326 0.1834 0.2359 0.1247 0.1767 0.1786 0.1717

ρ = 0.99 2.1234 0.4238 0.3428 0.2544 0.3792 0.3412 0.2420 0.2485 0.2246

ρ = 0.999 20.9504 0.5090 0.4937 0.4052 0.4967 0.4969 0.2449 0.2542 0.2404

Table 10 The estimated SMSE values for different ρ values when p = 4 and n = 20

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

ρ = 0.95 8.5734 1.7342 1.2126 0.3763 0.8248 1.2177 0.2550 0.2957 0.2536

ρ = 0.99 41.7881 2.3064 2.0725 0.3204 0.7856 2.0638 0.2657 0.2985 0.2593

ρ = 0.999 415.5559 2.5304 2.4918 0.3947 0.9608 2.4868 0.2725 0.3415 0.2606

Table 11 The estimated SMSE values for different ρ values when p = 4 and n = 50

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

ρ = 0.95 2.8555 1.1585 0.6150 0.5037 0.8917 0.6161 0.2600 0.2855 0.2354

ρ = 0.99 13.9155 1.9706 1.5627 0.4718 1.0579 1.5615 0.2820 0.2924 0.2560

ρ = 0.999 138.3692 2.4493 2.3764 0.5910 1.3296 2.3766 0.2958 0.3263 0.2601

Table 12 The estimated SMSE values for different ρ values when p = 4 and n = 100

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

ρ = 0.95 1.3585 0.7743 0.3141 0.5498 0.7349 0.3124 0.2231 0.2675 0.2059

ρ = 0.99 6.6207 1.6256 1.0993 0.8110 1.3536 1.0994 0.2629 0.2879 0.2496

ρ = 0.999 65.8360 2.3684 2.2346 1.9073 2.3186 2.2361 0.3738 0.3951 0.2595

Table 13 The optimal values of k, d for real data example

SRRMLE SRAURLE SRLMLE SRAULLE SRLTLE

k = 1.564 k = 6.632 d = 0.625 d = 0.602 k = 0.150, d = 0.540

Table 14 The SMSE values for real data example

MLE SRMLE SRRMLE SRLMLE SRAULLE SRAURLE SRLTLE OGLE SROLE

0.5661 0.3819 0.2248 0.3009 0.3713 0.2941 0.1958 0.2130 0.1856
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Appendix B

See Figs. 1, 2, 3, 4, 5 and 6.

Fig. 1 Estimated SMSE values for SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE, SRLTLE,
OGLE, and SROLE for p = 2, n = 20

Fig. 2 Estimated SMSE values for SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE, SRLTLE,
OGLE, and SROLE for p = 2, n = 50

Fig. 3 Estimated SMSE values for SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE, SRLTLE,
OGLE, and SROLE for p = 2, n = 100
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Fig. 4 Estimated SMSE values for SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE, SRLTLE,
OGLE, and SROLE for p = 4, n = 20

Fig. 5 Estimated SMSE values for SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE, SRLTLE,
OGLE, and SROLE for p = 4, n = 50

Fig. 6 Estimated SMSE values for SRMLE, SRRMLE, SRLMLE, SRAULLE, SRAURLE, SRLTLE,
OGLE, and SROLE for p = 4, n = 100
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