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ABSTRACT
In this paper, we propose a new efficient estimator namely Optimal
Generalized Logistic Estimator (OGLE) for estimating the parameter in
a logistic regression model when there exists multicollinearity among
explanatory variables. Asymptotic properties of the proposed estimator
are also derived. The performance of the proposed estimator over the
other existing estimators in respect of Scalar Mean Square Error crite-
rion is examined by conducting a Monte Carlo simulation.

1. Introduction

Logistic regression model is a popular method to model binary data in many application
areas in statistics. However, unstable parameter estimators based on the maximum likelihood
method occur when the covariates are highly correlated. This phenomenon is known as the
multicollinearity among the predictor variables, and the remedial measures for parameter
estimates were discussed in the literature. Some of the proposed estimators to overcome the
multicolinearity are, namely, the Ridge Logistic Estimator (RLE) (Schaefer, Roi, and Wolfe
1984), Liu Logistic Estimator (LLE) (Liu 1993; Urgan and Tez 2008; and Mansson, Kibria,
and Shukur 2012), Almost Unbiased Ridge Logistic Estimator (AURLE) (Wu and Asar 2016),
Almost Unbiased Liu Logistic Estimator (AULLE) (Xinfeng 2015), and Liu type logistic esti-
mator (Inan and Erdogan 2013). Further, Asar (2015) and Asar and Genç (2016) introduced
some new shrinkage parameters for the Liu-type logistic estimator to improve its efficiency.
However, when comparing the efficiency of these estimators, it was noted that none of the
above estimators are always superior over the others. In this paper, we introduce a new esti-
mator called the Optimal Generalized Logistic Estimator (OGLE) based onQuasi-Likelihood
(QL) estimation technique (Wedderburn 1974), which showsmore efficiency than all the esti-
mators proposed in the literature.

The rest of the paper is organized as follows. The model specification and existing estima-
tors are given in Section 2. TheOptimalGeneralized Logistic Estimator (OGLE) has been pro-
posed and its asymptotic properties are derived in Section 3. In Section 4, the performance of
the proposed estimator with respect to Scalar Mean Squared Error (SMSE) is compared with
some existing estimators by performing a Monte Carlo simulation study. A real data example
is analyzed in Section 5. Finally, the conclusion of the study is presented in Section 6.
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2. Model specification and existing estimators

Consider the logistic regression model

yi = πi + εi, i = 1, . . . , n (1)

which follows Bernoulli distribution with parameter πi as

πi = exp
(
x′
iβ

)
1 + exp

(
x′
iβ

) (2)

where xi is the ith row of X , which is an n × (p+ 1) data matrix with p predictor variables
and β is a (p+ 1) × 1 vector of coefficients, εi are independent with mean zero and variance
πi(1 − πi) of the response yi. Themaximum likelihood estimator (MLE) of β can be obtained
as follows:

β̂MLE = C−1X ′ŴZ, (3)

where C = X ′ŴX; Z is the column vector with ith element equals logit(π̂i) + yi−π̂i
π̂i(1−π̂i )

and
Ŵ = diag[π̂i(1 − π̂i)], which is an unbiased estimate of β . The covariance matrix of β̂MLE

is

Cov(β̂MLE ) = {X ′ŴX}−1. (4)

To combat the multicollinearity in logistic regression, several estimators were proposed,
based only on the sample information in the literature. Some of these estimators are Ridge
Logistic Estimator (RLE) (Schaefer, Roi, and Wolfe 1984), Liu Logistic Estimator (LLE) (Liu
1993; Urgan and Tez 2008; and Mansson et al. 2011), Almost Unbiased Ridge Logistic Esti-
mator (AURLE) (Wu and Asar 2016), and Almost Unbiased Liu Logistic Estimator (AULLE)
(Xinfeng 2015). These estimators are defined as

RLE : β̂RLE = Zkβ̂MLE; whereZk = (I + kC−1)−1, K ≥ 0 (5)
LLE : β̂LLE = Zdβ̂MLE; where Zd = (C + I)−1(C + dI), 0 ≤ d ≤ 1 (6)

AURLE : β̂AURLE = Wkβ̂MLE; where Wk = [
I − k2(C + kI)−2]

, k ≥ 0 (7)

AULLE : β̂AULLE = Wdβ̂MLE; whereWd = [
I − (1 − d)

2
(C + I)−2] , 0 ≤ d ≤ 1 (8)

Note that both Zk and Zd are clearly positive definite. Further, bothWk andWd are matri-
ces since Wk = (C + kI)−2C(C + 2kI) > 0, and Wd = (C + I)−2[C2 + 2C + dI(2 − d)] >

0 (since (2 − d) > 0; 0 ≤ d ≤ 1). It can be noticed from the estimators defined in the
Eqs. (5)–(8) that RLE, LLE, AURLE, and AULLE are functions of β̂MLE . Consequently, esti-
mators having this format can be represented as a general form, which is called as Generalized
Logistic Estimator (GLE), and is defined as

β̂GLE = J(i)β̂MLE (9)

where J(i) is a positive definite matrix, and in this paper J(i) stands for Zk, Zd, Wk, andWd .
The asymptotic properties of GLE are

E[β̂GLE] = E[J(i)β̂MLE]
= J(i)β, (10)

and the dispersion matrix;

D[β̂GLE] = Cov[J(i)β̂MLE]
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= J(i)C−1J ′(i). (11)

Then, the Bias vector and Mean square error matrix (MSE) are

B[β̂GLE] = E[J(i)β̂MLE] − β

= (J(i) − I)β, (12)

and

MSE[β̂GLE] = D[β̂GLE] + B[β̂GLE]B′[β̂GLE]
= J(i)C−1J ′(i) + (J(i) − I)ββ ′(J(i) − I)′

= J(i)C−1J ′(i) + J(i)
(
I − J−1

(i)

)
ββ ′(I − J−1

(i)

)′J ′(i). (13)

Consequently, the Scalar mean square error (SMSE) can be obtained as

SMSE[β̂GLE] = tr[MSE(β̂GLE )]
= tr(J(i)C−1J ′(i)) + β ′(I − J−1

(i)

)′J ′(i)J(i)
(
I − J−1

(i)

)
β. (14)

3. The proposed new estimator

Although in the Generalized Logistic Estimator (GLE) in (9), the component J(i) can take dif-
ferent choices corresponding to different type of estimators, finding an optimal choice of J(i) is
moremeaningful. To achieve this, first weminimize the Scalarmean square error of GLEwith
respect to J(i). Then the unknown parameters are estimated by using the Quasi-Likelihood
(QL) estimation technique. The resulting estimator is called as Optimal Generalized Logistic
Estimator (OGLE).

To minimize the SMSE of GLE, first we consider the derivative of Eq. (14) with respect to
J(i) as

∂{SMSE[β̂GLE]}
∂J(i)

= ∂{tr(J(i)C−1J ′(i))}
∂J(i)

+ ∂β ′Lβ
∂J(i)

(15)

where L = (I − J−1
(i) )′J ′(i)J(i)(I − J−1

(i) ) and it can be simplified as

L = (
I − J−1

(i)

)′J ′(i)J(i)
(
I − J−1

(i)

)
= (

I − J−1
(i)

)′ [J ′(i)J(i) − J ′(i)
]

= J ′(i)J(i) − J(i) − J ′(i) + I (16)

Applying (16) in (15), implies

∂{SMSE[β̂GLE]}
∂J(i)

= ∂
{
tr(J(i)C−1J ′(i))

}
∂J(i)

+ ∂
{
β ′J ′(i)J(i)β − 2β ′J(i)β + β ′β

}
∂J(i)

= ∂
{
tr(J(i)C−1J ′(i))

}
∂J(i)

+ ∂
{
β ′J ′(i)J(i)β

}
∂J(i)

− 2
∂

{
β ′J(i)β

}
∂J(i)

(17)

Now, we use the following results (see Rao and Toutenburg 1995, p. 385, 386) in Eq. (17),
R1. Let N andY be any two matrices with proper order, then

∂tr(YNY ′)
∂Y

= Y (N + N ′)
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R2. If x is a vector of order n × 1, y is another vector of order m × 1, and C is an n × m
matrix, then

∂x′Cy
∂C

= xy′

R3. Let x be a n × 1 vector, N a symmetric t × t matrix, andC a t × nmatrix, then

∂x′C′NCx
∂C

= 2NCxx′

By applying R1, R2, and R3 in (17), we obtain

∂
{
tr(J(i)C−1J ′(i))

}
∂J(i)

= 2J(i)C−1, (18)

∂
{
β ′J ′(i)J(i)β

}
∂J(i)

= 2J(i)ββ ′, (19)

and
∂{β ′J(i)β}

∂J(i)
= ββ ′ (20)

respectively.
Substituting (18), (19), and (20) in (17), we get

∂{SMSE[β̂GLE]}
∂J(i)

= 2J(i)C−1 + 2J(i)ββ ′ − 2 ββ ′

= 2J(i)(C−1 + ββ ′) − 2 ββ ′ (21)

The matrix C−1 + ββ ′ is positive definite (see Rao and Toutenburg 1995, p. 366), and
hence, non singular. Equating (21) to a null-matrix, we shall obtain an optimal choice for
J(i) as

J̃(i) = ββ ′(C−1 + ββ ′)−1 (22)

Now, we propose an Optimal Generalized Logistic Estimator (OGLE) as

β̂OGLE = J̃(i)β̂MLE (23)

Since J̃(i) in (23) contains an unknown parameter β , we use Quasi-Likelihood (QL) tech-
nique to estimate β . Application of the QL estimation technique for the logistic regression
model (1) is discussed below.

Quasi-Likelihood (QL) estimation of β

Suppose that a scalar response yi and a p dimensional vector of covariates xi are observed
for individuals i = 1, 2, . . . , n. Further, suppose that the marginal density of the response
yi; i = 1, 2, . . . , n is of the exponential family form

f (yi) = exp
[{
yiθi − a (θi) + b(yi)

}]
(24)

(Liang and Zeger 1986), where θi = h(ηi) with ηi = x′
iβ , a(.), b(.) and h(.) are of known

functional form, and β is the p× 1 vector of parameters of interest. Consequently, the mean
and variance function of the response yi as

E[yi] = a′(θi) and Var[yi] = a′′(θi), (25)
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where a′(θi) and a′′(θi) are first and second order derivatives of a(θi), respectively, with respect
to θi. To estimate the parameter β under this independent setup, Wedderburn (1974) pro-
posed the Quasi-Likelihood estimating equation given by

n∑
i=1

[
∂a′(θi)

∂β

(
yi − a′(θi)

)
a′′(θi)

]
= 0. (26)

In the case of logistic regression,
yi ∼ Bernoulli(πi), where

πi = exp(x′
iβ)

1 + exp(x′
iβ)

f (yi) = πi
yi (1 − πi)

(1−yi )

=
{

πi

1 − πi

}yi
(1 − πi)

= exp
{
yi ln

(
πi

1 − πi

)
+ ln(1 − πi)

}
(27)

= exp {yiθi − a(θi) + b(yi)},
which is in the form of exponential family, where

θi = ln
(

πi

1 − πi

)
= x′

iβ, a(θi) = − ln(1 − πi)

and

b(yi) = 0.

This implies

a′(θi) = exp (θi)

1 + exp (θi)
= πi, (28)

and

a′′(θi) = πi(1 − πi). (29)

Consequently, the QL estimating Eq. (26) becomes
n∑

i=1

[
∂πi

∂β

(yi − πi)

πi(1 − πi)

]
= 0. (30)

where
∂πi

∂β
= πi(1 − πi)xi.

By applying the New-Raphson iterative algorithm, one can obtain the QL estimator which
is the convergent value of the following iterative equation

β̂QL(r + 1) = β̂QL(r) = +
[

n∑
i=1

[
∂πi

∂β
{πi(1 − πi)}−1 ∂πi

∂β ′

]]−1

r

×
[

n∑
i=1

[
∂πi

∂β

(yi − πi)

πi(1 − πi)

]]
r

= 0 (31)
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Where []r denotes the expression within the square bracket is evaluated at β = β̂QL(r), the
estimate obtained for the rth iteration.

Note that QL estimator is also an alternative estimator for β̂MLE in (3). Now in the Optimal
Generalized Logistic Estimator (OGLE) in (23), J̃(i) can be estimated using the QL estimate,
β̂QL, obtained from the Eq. (31) as

̂̃J(i) = J̃(i)|β̂QL

= β̂QLβ̂
′
QL(C

−1 + β̂QLβ̂
′
QL)

−1 (32)

The asymptotic properties of OGLE:

B(β̂OGLE ) = E[β̂OGLE] − β

= (̂J̃(i) − I)β; (33)

D(β̂OGLE ) =̂̃J(i)C−1̂ J̃ ′(i); (34)

MSE(β̂OGLE ) =̂̃J(i)C−1̂ J̃
′
(i) + (̂J̃(i) − I) ββ ′ (̂J̃(i) − I)′

=̂̃J(i)C−1̂ J̃
′
(i) +̂̃J(i) (I −̂̃J−1

(i)

)
ββ ′

(
I −̂̃J−1

(i)

)′̂̃J ′(i); (35)

and

SMSE(β̂OGLE ) = tr(̂J̃(i)C−1̂J̃
′
(i)) + β ′

(
I −̂̃J−1

(i)

)′̂̃J ′(i)̂J̃(i) (I −̂̃J−1

(i)

)
β. (36)

In the next section, by conducting a simulation study, we investigate the relative perfor-
mance of the proposed optimal estimator over the other existing estimators with respect to
the scalar mean square error sense.

4. The performance of the new estimator

AMonte Carlo simulation study is conducted to study the performance of the proposed opti-
mal estimator based on the other existing estimators under different levels of multicollonear-
ity. Following McDonald and Galarneau (1975), Gibbons (1981), Kibria (2003), and Muniz
and Kibria (2009), the predictor variables are generated using the following equation:

xi j = (1 − ρ2)1/2zi j + ρzi,p+1, i = 1, 2, . . . , n, j = 1, 2, . . . , p (37)

where zi j pseudorandom numbers from standardized normal distribution and ρ2 represents
the correlation between any two explanatory variables. Four explanatory variables are gen-
erated using (37) and four different values of ρ corresponding to 0.80, 0.90, 0.95, and 0.99
are considered. Further, to understand the effect of the sample size n, three different values
20, 50, and 100 are taken. The dependent variable yi in (1) is obtained from the binary (πi)
distribution, where πi = exp(x′

iβ)

1+exp(x′
iβ)

. The parameter values of β1, β2, . . . , βp for each vector of

estimator β̂RLE, β̂LLE, β̂AURLE, β̂AULLE, β̂QL, and β̂OGLE considered in this study are chosen
so that

∑p
j=1 β2

j = 1 and β1 = β2 = · · · = βp (Şiray, Toker, and Kaçiranlar 2015). Further,
for the ridge parameter k and the Liu parameter d, some selected values are chosen so that
0 < k < 1 and 0 < d < 1. The simulation is repeated 2000 times by generating new pseudo-
random numbers and the simulated SMSE values of MLE, QL, LRE, LLE, AURLE, AULLE,



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 469

Table . The correlation matrix of the design matrix.

x1 x2 x3 x4

x1 . . . .
x2 . . . .
x3 . . . .
x4 . . . .

and OGLE are obtained using the following equation:

SM̂SE(β̂ )
1

2000

2000∑
r=1

(β̂r − β)′(β̂r − β) (38)

where β̂r is any estimator considered in the rth simulation. The results of the simulation are
reported in Table B1–B12 (Appendix B) and also displayed in Figure A1–A3 (Appendix A). It
can be observed from Figure A1–A3, increase in degree of correlation between two explana-
tory variables ρ inflates the estimated SMSE of all the estimators, and in general, increase in
the sample size n decreases the estimated SMSE of all the estimators. According to Table B1–
B12, the proposed estimator OGLE has smaller scalar mean square values compared to all the
other estimators—MLE, QL, LRE, LLE, AURLE, and AULLE with respect to all ρ = 0.8, 0.9,
0.95, and 0.99, and n = 20, 50, and 100 considered in this study. Moreover, the performance
of the QL estimator is better compared to the MLE for all sample sizes n and ρ values, in the
mean square error sense. It was further noted from the simulation results, when the multi-
collinearity is very high, the LRE performs better compared to MLE, QL, LLE, AURLE, and
AULLE for large k, d values.

5. A real data example

To illustrate the performance of the new estimator OGLE, we consider a real data application,
which is obtained from the Statistics Sweden website (http://www.scb.se/). This example was
used by Mansson et al. (2012), Asar and Genç (2016), Wu and Asar (2016), and Varathan and
Wijekoon (2016) to illustrate the results of their papers. The data describe the information
of 100 municipalities of Sweden. The variables considered in this study are Population (x1),
Number of unemployed people (x2), Number of newly constructed buildings (x3), Number
of bankrupt firms (x4), and Net population change (y). The response variable y is defined as

y =
{
1 if there is an increase in the population;
0 o/w

The correlationmatrix of the designmatrix x = [x1, x2, x3, x4] is given in Table 1. It can
be observed from Table 1 that all the correlations among the explanatory variables are very
high (greater than 0.95). The corresponding VIF values for the data are 488.17, 344.26, 44.99,
and 50.71. VIF measures how much the variance of the estimated regression coefficients is
inflated as compared to when the predictor variables are not linearly related. According to the
literature, multicollinearity is high if VIF > 10. Hence, a clear high multicollinearity exists
in the data set. Further, the condition number, which is used as a measure of the degree of
multicollinearity is obtained as 188. This also indicates the sign of severe multicollinearity in
this data set. The SMSE values of MLE, QL, LRE, LLE, AURLE, AULLE, and OGLE for some
selected values of biasing parameters k, d in the range 0 < k, d < 1 are given in Table B13.
Results in Table B13 clearly show that the new estimator OGLE performs well compared to

http://www.scb.se/
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the estimators ofMLE, QL, LRE, LLE, AURLE, and AULLE in the SMSE sense, with respect to
the selected values of k, d in the range 0 < k, d < 1. Moreover, the estimatorsMLE, AURLE,
and AULLE give a nearly equal performance with respect to the SMSE sense, for the given
values of k, d.

6. Concluding remarks

In this paper, we proposed an Optimal Generalized Logistic Estimator (OGLE) for logistic
regression model when there exists multicollinearity among explanatory variables. The rela-
tive performance of the proposed optimal estimator as compared to some existing estimators
was analyzed by conducting a Monte Carlo simulation study. Further, a real data application
is given to illustrate the behavior of the proposed estimator. The empirical results of this paper
show that, in the scalar mean square error sense, the proposed estimator OGLE is superior
over the estimators; MLE, QL, LRE, LLE, AURLE, and AULLE, which are based only on the
sample information.
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Figure A. Estimated SMSE values for MLE, QL, LRE, LLE, AURLE, AULLE, and OGLE for n= .

Appendix B

Table B. The estimated MSE values for different k, dwhen n=  and ρ = 0.80.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, dwhen n=  and ρ = 0.90.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, dwhen n=  and ρ = 0.95.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .
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Table B. The estimated MSE values for different k, dwhen n=  and ρ = 0.99.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 50 and ρ = 0.80.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 50 and ρ = 0.90.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 50 and ρ = 0.95.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 50 and ρ = 0.99.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .
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Table B. The estimated MSE values for different k, d when n = 100 and ρ = 0.80.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 100 and ρ = 0.90.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 100 and ρ = 0.95.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The estimated MSE values for different k, d when n = 100 and ρ = 0.99.

k/d . . . . . . . . . .

MLE . . . . . . . . . .
QL . . . . . . . . . .
LRE . . . . . . . . . .
LLE . . . . . . . . . .
AURLE . . . . . . . . . .
AULLE . . . . . . . . . .
OGLE . . . . . . . . . .

Table B. The SMSE values of estimators for the real data example.

MLE QL LRE LLE AURLE AULLE OGLE

k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
k;d= . . . . . . . .
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