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a b s t r a c t

The use of description length principles to select an appropriate number of basis functions
for functional data is investigated. A flexible definition of the dimension of a random
function that is constructed directly from the Karhunen–Loève expansion of the observed
process or data generatingmechanism is provided. The results obtained show that although
the classical, principle component variance decomposition technique will behave in a
coherentmanner, in general, the dimension chosen by this techniquewill not be consistent
in the conventional sense. Two description length criteria are described. Both of these
criteria are proved to be consistent and it is shown that in low noise settings they will
identify the true finite dimension of a signal that is embedded in noise. Two examples, one
from mass spectroscopy and the other from climatology, are used to illustrate the basic
ideas. The application of different forms of the bootstrap for functional data is also explored
and used to demonstrate the workings of the theoretical results.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the analysis of functional data, wherein each observation is a curve or image, it is commonly supposed that random
curves or functions are sampled from a stochastic process X in L2

[0,τ ]. Here, L
2
[0,τ ] is the Hilbert space of square integrable

functions on the interval [0, τ ], with inner product ⟨f , g⟩ =
 τ
0 f (t)g(t)dt for any two functions f , g ∈ L2

[0,τ ] and induced
squared norm ∥ · ∥

2
= ⟨·, ·⟩. A Karhunen–Loève expansion of X is also assumed to exist such that

X(t) = µ(t)+

∞
j=1

ξj ρj(t), (1)

where themean functionµ(t) = E[X(t)] and the basis functions ρj(t) are the orthonormal eigenfunctions of the covariance
kernel Γ (s, t) = Cov[X(s), X(t)]. The eigenvalues corresponding to ρj(t) are listed in decreasing order, so that, without loss
of generality, λ1 > λ2 > · · · , where

 τ
0 Γ (s, t)ρj(t)dt = λjρj(s) and

Γ (t, s) =

∞
j=1

λjρj(t)ρj(s). (2)

The coefficients ξj are given by the projection of X − µ in the direction of the jth eigenfunction ρj, i.e. ξj = ⟨X − µ, ρj⟩.
ξj constitute an uncorrelated sequence of random variables with zero mean and variance λj, and since the process X lies
in L2

[0,τ ] we have


∞

j=1 λj < ∞. The monographs by Ramsay and Silverman (2002, 2005) present original expositions of
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various aspects of functional data analysis; see also Ferraty and Vieu (2006). Several more recent developments appear in
the Statistics for Functional Data special issue of Computational Statistics and Data Analysis (2007, Volume 51, Issue 10), edited
by González Manteiga and Vieu.

Although the series expansions in Eqs. (1) and (2) are infinite dimensional, it is often found that a given functional data
set can effectively be spanned by k ≪ ∞ basis functions. Truncating the expansions after k terms and expressing the
functions in terms of a low dimensional, finite basis offers considerable practical advantages, not least because it allows
various techniques of multivariate statistical analysis to be applied with little or no adaptation. Asymptotic analyses of
random samples of X are commonly predicated on the assumption that the truncation point k → ∞ as the number of
sampled curves, n, increases; see, inter alia, Yao et al. (2005) and Hall et al. (2006). In practical applications, however, k is
always finite and must be chosen by reference to the data. The choice of k is the main focus of this paper.

Various approaches for selecting k can be contemplated (Ramsay and Silverman, 2005, Section 4.5), but it is an open
question as to how conventional dimension reduction methods can be adapted to the infinite dimensional setting of
functional data (Ferraty and Vieu, 2006, Section 6.4). To the current authors’ knowledge there is little in the current literature
that explicitly investigates the theoretical properties of dimension reduction techniques within a functional framework.
A notable exception is the work by Hall and Vial (2006), that builds upon the theoretical results presented in Hall and
Hosseini-Nasab (2006). Hall and Vial assume a signal-plus-noise model for the observed process and consider determining
k by examining the null hypothesis that the signal has fewer than k dimensions. They show that for such a model the noise
will be confounded with the signal, and suggest that the intrinsic impossibility of estimating the full extent of the noise that
results from this confounding means that conventional hypothesis testing techniques will not be effective. They therefore
use the bootstrap to construct a lower bound for the un-confoundedpart of the noise variance and conclude that the assumed
number of dimensions, k, is too small if the lower bound seems to be too large.

More direct methods are analyzed here, namely, the classical variance decomposition technique and choosing k using
selection criteria. Yao et al. (2005, Section 2.5) proposed using a functional version of Akaike’s information criterion to select
k, justified via an appeal to a pseudo-Gaussian likelihood argument and the results of Shibata (1981). Here we consider the
criteria constructed using optimal encoding, description length principles. This conceptual framework, which is reviewed
in Hansen and Yu (2001), see also Rissanen (2007) and Grünwald (2007), provides awell established rationale that is directly
applicable to the current functional data setting. We show below that it leads to techniques that circumvent confounding
issues, and we develop the theoretical properties of the techniques within a functional data framework.

The paper proceeds as follows. The next section considers aspects of the basic structure of functional data, and introduces
two examples that are used to illustrate basic ideas, the first taken frommass spectroscopy and the second from climatology.
Section 3 develops some preliminary limit results under relativelyweak regularity conditions. As part of the overall analysis,
Section 4 provides a flexible definition of the dimension of X that depends on a signal-plus-noise decomposition derived
from the Karhunen–Loève expansion of the function. By couching the concept of dimensionality directly in terms of the
actually observed process the definition obviates the need to explicitly posit the existence of separate signal and noise
processes, although data generating mechanisms that consist of a signal embedded in noise are encompassed as a special
case and the definition coincideswith the finite dimension of the signal in lownoise settings. Section 5 discusses the classical
variance decomposition technique. It is shown that statistics computed using this technique converge to their population
counterparts, but, nevertheless, the dimension chosen by this method will not be consistent in the conventional sense.
Section 6 examines two description length criteria for determining the dimension of functional data and proves that the
criteria behave in a coherent manner asymptotically and that in low noise settings they will produce consistent estimates of
the true finite dimension of the underlying signal. In Section 7, the data sets presented in Section 2 are used to illustrate the
practical impact of the different methods considered. Section 8 examines the application and efficacy of different varieties
of non-parametric and semi-parametric bootstrap, and using various versions of these demonstrate the working of the
theoretical results. The proofs are assembled in the Appendix.

2. Basic data structures

Although the function X is defined on the interval [0, τ ] it is seldom observed there, instead it is observed on a
discrete subset of points. Here we will presume that each curve is observed on a grid of T points tu, u = 1, . . . , T , with
0 ≤ t1 < t2 < · · · < tT ≤ τ . Thus the raw data in a set X = {X1, . . . , Xn} of n observations on X will consist of an n × T
data matrix X = [Xsu] where

Xsu = µ(tu)+

∞
j=1

υs,j ωj ρj(tu), (3)

for s = 1, . . . , n and u = 1, . . . , T . In the expansion in (3), the υs,j, s = 1, 2, . . . , n, denote n realizations of υj = ξj/ωj

where ωj =

λj, j = 1, 2, . . . , and ξj and λj are the random coefficients and variances that appear in Eqs. (1) and (2),

respectively. In order to avoid excessively cumbersome notation, however, in what follows we will adopt the commonly
employed convention of using the same symbolism for realizations of a stochastic process as for the process itself, and we
will not distinguish between randomvariables and values of the variable. The requiredmeaning to be attached to expressions
that use this notational convention should be apparent from the context.
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(a) Average proteomic spectrum of n1 = 100 ovarian cancer
patients.

(b) Average proteomic spectrum of n2 = 116 healthy controls.

Fig. 1. Mass chromatograms from ovarian cancer data.

Fig. 2. Annual repeated measures on southern oscillation index: observed annual cycles in the period 1900–2004.

Example 1. The plots in Fig. 1 presentmass chromatograms averaged across n1 = 100 ovarian cancer patients, and n2 = 116
healthy controls (including 16 individuals with benign tumors). Themeasurements were collected from a surface-enhanced
laser desorption–ionization system (see Thiele, 2003; Banks, 2003). Each spectrum gives the relative amplitude measured
at 15,154 mass–charge (µz) values on the interval [0, 18000]. Thus we have an overall sample of n1 + n2 = n = 216 curves,
where each curve is the proteomic spectrum of an individual patient observed on a grid of T = 15,154 points. The ovarian
cancer (OC) data was downloaded from http://clinicalproteomics.steem.com.

Despite being similar in appearance overall, the spectral profiles in Fig. 1(a) and (b) exhibit different features, witness
the peaks at about 4000µz and 7000µz for example. The question of scientific interest here is whether or not differences
in individual mass chromatograms can be reliably used to discriminate cancer patients from healthy controls and thereby
construct a simple screening device.
Example 2. Fig. 2 presentsmonthly observations on the Southern Oscillation Index (SOI) for the period 1900–2004 inclusive,
plotted as a sequence of repeated measures on the annual cycles. The data, constructed by the Australian Meteorological
Office, can be downloaded from http://www.environment.gov.au. Treating each year as a single observation on a random
function representing the annual cycle gives us a sample of n = 105 data points where each function is observed on a grid
of T = 12 regularly spaced intervals. The division into yearly observations on annual cycles is natural because year-to-year
variations in the SOI are thought to be very influential in determining annual weather patterns in the southern hemisphere
— El Niño (drought) years and La Niña (precipitate) years. The idea of forming a functional time series from a univariate
time series has been considered by several authors, including Besse et al. (2000), Ramsay and Ramsey (2002) and Ferraty
and Vieu (2006, Chapter 12), where the merits of such an approach are discussed.

No obvious patterns emerge from simple visual inspection of the observed annual cycles. The values appear to fluctuate
more or less randomly around zero, although there is evidence of some extreme negative values in the summer and
autumn months, and extreme positive values in the winter and spring months. We would like to be able to determine if
the apparently erratic behavior seen in Fig. 2 disguises more systematic patterns.

http://clinicalproteomics.steem.com
http://www.environment.gov.au


D.S. Poskitt, A. Sengarapillai / Computational Statistics and Data Analysis 58 (2013) 98–113 101

Let the observed mean of the data in X be X̄ = s′X/n where s = (1, . . . , 1)′ and set C = (In − ss′/n), the centering
matrix. Then the mean centered data matrix is given by (X − sX̄) = CX = X, say. A standard approach for estimating the
covariance kernel is to take

Γ̄ (tu, tv) =
1
n

n
s=1

{Xs(tu)− X̄(tu)}{Xs(tv)− X̄(tv)}

as an estimator of Γ (tu, tv) where X̄(tu) = n−1n
s=1 Xs(tu). Setting G = (X − sX̄)′(X − sX̄)/n = (X′X)/n we have

G = [Γ̄ (tu, tv)] for u, v = 1, . . . , T .
Now let the singular value decomposition of X be denoted by

X = n1/2ULR′ (4)

where U′U = R′R = Im, m = rank(X) = min{n − 1, T }, and the diagonal matrix L = diag(
√
l1,

√
l2, . . . ,

√
lm)

where l1, . . . , lm lists the positive eigenvalues of G in descending order. The columns u·1, . . . ,u·m of U are the normalized
eigenvectors of XX′/n and the columns r·1, . . . , r·m of R are the normalized eigenvectors of G. The expansion in (4) provides
an empirical counterpart to the Karhunen–Loève expansion in (3) in that a curve in X can be written as

Xs(tu) = X̄(tu)+
√
n

m
j=1

usj wj rj(tu), (5)

where wj =

τ lj/T and (

√
τ/T )rj(tu) = ruj, the uth element of r·j = (r1j, . . . , rTj)′. In addition, we have Γ̄ (tu, tv) =

(τ/T )
m

j=1 ljrj(tu)rj(tv), which in turn mimics the spectral decomposition of the covariance in (2). The pairs (τ lj/T , rj(tu)),
which are of course the basic statistics of functional principle component analysis (Ramsay and Silverman, 2005; Ferraty
and Vieu, 2006), will be used to estimate the eigenvalue, eigenfunction pairs (λj, ρj(tu)), j = 1, . . . ,m, and will form the
fundamental building blocks of our subsequent practical methodology.

3. Some preliminary results

As we do not want to explicitly postulate the existence of separate signal and noise components that make up the data
generating mechanism, our basic assumptions are presented in terms of the observed process X itself.

Assumption 1. The observed process X ∈ L2
[0,τ ], has a Karhunen–Loève expansion as in (1), and covariance kernel Γ (t, s)

with spectral decomposition as in (2), where the eigenvalues λj > 0, j = 1, . . . are distinct.

Assumption 1 recognizes that functional data is obtained by observing realizations of a stochastic process that is inherently
infinite dimensional. It is, in some ways, the functional analogue of the Wold representation employed in classical time
series analysis.

Assumption 2. Let X = {X1, . . . , Xn} denote a sample of n observations on a process X where each curve is observed on a
grid of T points tu with 0 ≤ t1 < t2 < · · · < tT ≤ τ . Then for all s = 1, . . . , n

E[Xs(tu)] = µ(tu) (6)

and

E[{Xs(tu)− µ(tu)}{Xs(tv)− µ(tv)}] = Γ (tu, tv). (7)

Furthermore, for all u = 1, . . . , T ,

lim sup
n→∞


max

s=1,...,n

n−s
r=0

Cov[Xs(tu)Xs+r(tu)]


< C1 < ∞, (8)

and settingΞs(uv) = {Xs(tu)− µ(tu)}{Xs(tv)− µ(tv)}, then for all u, v = 1, . . . , T ,

lim sup
n→∞


max

s=1,...,n

n−s
r=0

Cov[Ξs(uv)Ξs+r(uv)]


< C2 < ∞. (9)

The first part of Assumption 2 amounts to supposing that the observations behave like the realization of a weakly stationary
functional process with a common mean function and covariance kernel. The second part places bounds on the auto-
covariance of function values observed at different points along the abscissa, and provides sufficient conditions to ensure
that X̄ and G, the sample mean and covariance, will converge to their population counterparts µ = (µ(t1), . . . , µ(tT )) and
Γ = [Γ (tu, tv)], u, v = 1, . . . , T , respectively.
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Lemma 1. Let d = X̄ − µ and set D = [Duv] where

Duv =
1
n

n
s=1

[{Xs(tu)− µ(tu)}{Xs(tv)− µ(tv)}] − Γ (tu, tv) u, v = 1, . . . , T .

Then under Assumptions 1 and 2, the inequalities lim supn→∞ nE[∥d∥
2
] < 2C1T and lim supn→∞ nE[∥D∥

2
] < 2C2T 2 obtain

for all T .

It follows directly from Lemma 1, via Markov’s inequality, that ∥d∥
2

= op(T/n1−β) and ∥D∥
2

= op(T 2/n1−β) for any
β , 0 < β ≤ 1. From the expression G − Γ = D − d′d we can also deduce that ∥G − Γ ∥

2
≤ (∥D∥ + ∥d∥

2)2, and hence
we can conclude that ∥G − Γ ∥

2
= op(T 2/n1−β) and plim(∥T−1(G − Γ )∥2) = 0. These properties lead us to the following

result.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then for any β ∈ (0, 1]

m
j=1

(lj − ℓj)
2

= op(T 2/n1−β) (10)

as n → ∞ where ℓj, j = 1, . . . , T , denote the eigenvalues of Γ . Moreover, if T → ∞ then

max
1≤j≤m

 ljT −
λj

τ

 = op(1/n(1−β)/2)+ o(1) (11)

and  m
j=1

lj
T

−

∞
j=1

λj

τ

 = op(m/n(1−β)/2)+ o(m). (12)

Interestingly enough, although our assumptions are sufficiently general to apply to time series type data, as in Example 2,
the convergence rate for the eigenvalues of op(n−(1−β)/2) given in Lemma 2 compares favorably with the Op(n−1/2) rate
obtained by Hall and Hosseini-Nasab (2006) under simple random sampling.

By Lemma 1, X̄(tu) is a consistent estimate of µ and by Lemma 2 the lj/T provide consistent estimates of λj/τ . From the
following lemma, we also know that the rj(t) estimate the basis functions ρj(t) consistently.

Lemma 3. Assume that Assumptions 1 and 2 hold and that (n, T ) → (∞,∞). Let rj(t) be interpolating cubic smoothing splines
that pass through the knots (tu,

√
Truj/

√
τ), u = 1, . . . , T , respectively, where r·j = (r1j, . . . , rTj)′ is the jth eigenvector of G,

j = 1, . . . ,m. Then for anyβ ∈ (0, 1]we have ∥rj−ρj∥2
= op(1/n(1−β)/2)+o(1) and consequently rj(t) converges in probability

to ρj(t) in L2
[0,τ ].

It is not essential to assume uniform or balanced sampling. Alternative sampling schemes can be accommodated by
considering kernel, or local smoothing, type estimates of Γ (t, s) as described, for example, in Diggle and Verbyla (1998)
and Yao et al. (2005). Similar consistency properties to those presented in Lemmas 1–3 will still hold, although the
convergence rates may be different from those seen here, depending on the smoothing technique adopted. For some
indication of the type of derivations and theoretical arguments that might need to be applied in such cases, see Boente
and Fraiman (2000) and Yao et al. (2005, Section 3).

4. Signal +noise representations and dimension

Suppose that the Karhunen–Loève expansion of X is truncated after k terms. Then the finite expansion Sk(t) =

µ(t) +
k

j=1 ξjρj(t) can be used to approximate X . We can think of Sk(t) as the signal component and the remainder,
Nk(t) =


∞

j=k+1 ξjρj(t), can be thought of as noise. Thus,

X(t) = Sk(t)+ Nk(t) (13)

yields an orthogonal decomposition of X in L2
[0,τ ] that is optimal for a given k, in the sense that Sk(t) provides the minimum

mean squared error approximation to X . Moreover, Nk(t) converges to zero as k increases. The decomposition in (13) holds
true for all k ∈ N = {1, 2, 3, . . .}, however, and it follows that this decomposition cannot be used by and of itself to define
the dimensionality of the process.

A solution of this problem is to introduce ameasure of the relativemagnitude of Sk(t) andNk(t). Recall that the expression
in (2) gives the spectral decomposition of Γ (t, s), and the equality

 τ
0 Γ (t, t)dt =


∞

j=1 λj is interpreted statistically as
indicating the contribution of each term in (1) to the overall variance of X in [0, τ ]. If we set
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πk =

k
j=1
λj

∞
j=1
λj

, (14)

then SNR(k) = πk/(1 − πk) is therefore the natural measure of the signal-to-noise ratio of the decomposition in Eq. (13).
Given α, where 0 ≤ α < 1, let SNRα = {k ∈ N : SNR(k) ≥ α/(1 − α)}.

Definition 1. Let kα ∈ SNRα be such that k ≥ kα for all k ∈ SNRα . Then X is said to be a process of dimension kα at signal-
to-noise ratio (SNR) level α/(1 − α).

It is important to recognize that in Definition 1 the dimension of X is determined after the signal-to-noise ratio has been
assigned, the designated dimension being the smallest value of k such that SNR equals or exceeds the specified lower bound.

Suppose, following Hall and Vial (2006), that the observations are made up of realizations on an actual process of
interest, Y (t), that is in truth finite dimensional, to which a zero mean noise process, δZ(t), representing experimental
error, measurement error and so on, has been added. Thus

X(t) = Y (t)+ δZ(t) (15)

where Y (t) = µ(t) +
κ

j=1 νjϕj(t), Z(t) =


∞

j=1 ζj ψj(t), and δ is a positive constant. The difficulty here is that (15) is
observationally equivalent to

X(t) = µ(t)+

κ
j=1


νj + δ

∞
i=1

ζiβij


ϕj(t)+ δ

∞
j=κ+1


∞
i=1

ζiβij


ϕj(t)

= Y ′(t)+ δZ ′(t) say, (16)

where the sequence ϕ1(t), ϕ2(t), . . . , ϕκ(t), . . . is a complete orthonormal extension of ϕj(t), j = 1, . . . , κ , and βij =

⟨ψi, ϕj⟩ for i, j = 1, 2, . . . , (see Hall and Vial, 2006, Section 2.1 and 2.2). It can be seen from (16) that the lower dimensional
components of the noise δZ(t) are confounded with those of the signal Y (t), and that Y ′(t) and δZ ′(t) are orthogonal, so the
original noise or error component cannot be identified.

In their analysis, Hall and Vial (2006) argue for a consideration of the low noise case, wherein the scale parameter δ → 0.
They show that in this case δ2


∞

j=κ+1 E[ζ 2
j ] – ‘‘the greatest knowable lower bound to all possible values of noise variance’’ –

is identifiable and they use this as the benchmark for assessing noise levels. In empirical situations, however, the amount of
noise need not be small and the representations in (15) and (16) are equivalent for all values of δ. Indeed, adopting a parallel
development to that leading to (16), we also have

X(t) = µ(t)+

κ
j=1

cj ψj(t)+

∞
j=κ+1

cj ψj(t)

= S ′

κ(t)+ N ′

κ(t), (17)

wherein cj =
κ

l=1 βjlνl + δζj for j = 1, 2, . . . . In (17) the signal Y (t) has been confounded with the noise δZ(t) and
the resulting decomposition is clearly observationally equivalent to (13) with k = κ . For moderate to large values of
δ the question of what constitutes the dimension of the realized process X therefore remains moot without recourse to
Definition 1.

From Definition 1 it is clear that kα will depend on both the assigned level of resolution, as determined by α, and the
structure of X . For the process in (15), for example, SNR(k) can exceed α/(1 − α) for k < κ if α is small, but need not do so
if α is large. As δ → 0, however, SNR(k) will exceed any value α/(1 − α) < ∞ for all k ≥ κ , and X will be deemed to be a
process of dimension κ at SNR level α/(1 − α) for all α > πκ−1. To verify this let ηj, j = 1, . . . , κ and θj, j = 1, 2, . . . , equal
the eigenvalues of ΓY (t, s) = Cov[Y (t), Y (s)] and ΓZ (t, s) = Cov[Z(t), Z(s)], respectively. Clearly X(t) converges to Y (t) in
L2

[0,τ ] as δ → 0 and since Y (t) lies in the space spanned by ϕj(1), . . . , ϕj(κ),

λj =

 τ

0

 τ

0
ρj(t)Γ (t, s)ρj(s)dtds

=

 τ

0

 τ

0
ϕj(t)(ΓY (t, s)+ δ2ΓZ (t, s))ϕj(s)dtds + Rδ,j

=


ηj + δ2

∞
i=1

θiβ
2
ij + Rδ,j, j ≤ κ;

δ2
∞
i=1

θiβ
2
ij + Rδ,j, j > κ

(18)
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where Rδ,j =
 τ
0

 τ
0 Γ (t, s)(ρj(t)ρj(s)− ϕj(t)ϕj(s))dtds. Now

|Rδ,j| ≤

λj +
 τ

0

 τ

0
ϕj(t)Γ (t, s)dt

2
ds

1/2
 ∥ρj − ϕj∥

≤


λj + ηj + 2δ2

∞
i=1

θi


∥ρj − ϕj∥

and it can be shown, see the approximation lemmas in Hall et al. (2006, Lemma 1& 2, p. 1508), that ∥ρj −

ϕj∥
2

= O(δ4). Note in addition that


∞

j=1 Rδ,j is identically zero because


∞

j=1

 τ
0

 τ
0 Γ (t, s)ϕj(t)ϕj(s)dtds equals


∞

j=1 τ
0

 τ
0 Γ (t, s)ρj(t)ρj(s)dtds =


∞

j=1 λj, the trace of the covariance kernel. Thus we find that

SNR(k) =
πk

1 − πk
=

κ
j=1
ηj + O(δ2)

O(δ2)
for any k ≥ κ and hence SNR(k)will exceed α/(1 − α) for any α ≥ πκ−1 as δ → 0.

If X(t) = Y (t) = µ(t) +
κ

j=1 νjϕj(t) then it is straightforward to show that k ∈ SNRα for all k ≥ κ , and hence that
kα = κ , for all α ∈ (πκ−1, 1), as it should.

5. Variance decomposition

A commonly employed, classical approach for determining the number of sample principle components to retain in a
description of an observed variance–covariance matrix is that based upon an examination of the proportion of variance
explained. Thus, suppose that we are interested in accounting for α100% of the total variation in X where 0 < α ≤ 1. Then
the variance decomposition method selects k̂α principle components where k̂α is the smallest value of k such that

πk =

k
j=1

lj

m
j=1

lj
(19)

equals or exceeds α. For the null modelπ0 ≡ 0 and for the saturated modelπm = 1. For a detailed description of this and
other methods see (Jolliffe, 2002, Chapter 6).

This approach is frequently adopted in the analysis of functional data (see, inter alia, Chiou and Li, 2007, Section 2.2.1)
and in practice the value of k̂α is often chosen by reference to a graph ofπk against k, similar to a ‘scree plot’. Such a graph
is monotonically non-decreasing in kwithπk < α for k < k̂α andπk ≥ α for k ≥ k̂α , and a popular rule-of-thumb is to look
for the value of k that accounts for at least 75%–80% of the total variation.

Noting thatπk equals the proportion of variation inX attributable to the signal Sk(t), and that 1−πk equals that associated
with the noise Nk(t), we can see that the variance decomposition method is closely aligned with Definition 1. In particular,πk can obviously serve as an estimator of πk.

Lemma 4. Let πk be defined as in (14) andπk as in (19), and suppose that Assumptions 1 and 2 hold. Thenmax1≤k≤m |πk−πk| =

op(1/n(1−β)/2)+ o(1).

Similarly, the ratio SNR(k) = πk/(1 −πk) is the empirical counterpart to SNR(k), and the above rule-of-thumb amounts to
selecting k so as to obtain an observed signal-to-noise ratio SNR(k) ≥ α/(1 − α) with the value of α pre-assigned by the
practitioner to a value in excess of 0.75.

Theorem 1. Assume that the conditions of Lemma 4 hold. Then SNR(k) converges in probability to SNR(k) for k = 1, . . . ,m as
(n, T ) → (∞,∞). Furthermore, if X is a process of dimension kα at SNR level α/(1 − α) then |k̂α − kα| = op(1).

Theorem 1 indicates that the variance decompositionmethod behaves in a coherent way, in that the underlying statistics
converge to their population counterparts. Implementing this technique as a means of selecting a dimension suitable for
practical application requires the user to specify a value for α, however, and such a choice is ad hoc. Consider the signal-
plus-noise process in (15). If k < κ then, by Lemma 4,SNR(k) =

πk

1 − πk
+ op(1/n(1−β)/2)+ o(1)

=

k
j=1
ηj + O(δ2)

κ
j=k+1

ηj + O(δ2)
+ op(1/n(1−β)/2)+ o(1).
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HenceSNR(k) converges to a value that will exceed α/(1− α) if α < πk, but will remain bounded as δ → 0. It follows from
Theorem 1 that plim(k̂α) = kα < κ for any α ≤ πκ−1. When k ≥ κ , however, Lemma 4 indicates that

SNR(k) =

κ
j=1
ηj + O(δ2)

O(δ2)
+ op(1/n(1−β)/2)+ o(1),

implying that k ∈ SNRα as δ → 0 and hence that k̂α = κ for all α ∈ (πκ−1, 1) as n → ∞. This indicates that the variance
decomposition method does not yield a consistent estimate of κ in the conventional sense. We might attempt to retrieve
the situation by setting α = α(n)where α(n) → 1 as n → ∞, but our current results provide no guide to a suitable choice.

6. Description length

Optimal encoding, description length principles lead to data generated rules for selecting k that will produce a finite
dimensional representation of X that is as close an approximation as is possible, and uses the smallest number of parameters
necessary, whilst adequately representing the structure and information contained in the data. Competing specifications are
compared on the basis of their complexity, which is measured by reference to a criterion function. In the notation of this
paper, one such criterion function is

CL2(k) =
n
2
log(V (k))+

k
2
log(n), (20)

where the mean squared difference

V (k) =
1
nT

n
i=1

T
u=1


Xi(tu)− X̄(tu)−

√
n

k
j=1

uijwj rj(tu)

2

. (21)

The function CL2(k)may be viewed as a two stage coding scheme, or code length, in which the first part represents the cost
of the data compression and the secondmeasures the code length used to encode the data when using k basis functions. The
criterion CL2(k) achieves the stated goals since: (i) TV (k) = ∥G−Gk∥

2 whereGk =
k

j=1 ljr·jr
′

·j and if Gk is a matrix of rank k
used to approximate G, then ∥G − Gk∥

2 is minimized at Gk =Gk, and (ii) CL2(k)will exhibit a preference for smaller values
of k, other things being equal. Note that if V (k) in (21) is thought of as being the residual mean square from a multivariate
regression, then CL2(k) can be seen to be analogous to BIC, after Schwarz (1978); but as pointed out in Grünwald (2007,
Section 17.3) the connections between description length and information criteria are in general rather more subtle, and so
we will continue to use CL2(k) to denote this criterion function.

To relate CL2(k) to the signal-plus-noise decomposition of X in (13), we can expand (21) and substitute into (20) to give
CL2(k) = nDL2(k)/2 + Cn where

DL2(k) = log(1 −πk)+ k
log(n)

n
(22)

and Cn = log( 1
nT

n
i=1
T

u=1(Xi(tu) − X̄(tu))2) is a constant independent of k. The function DL2(k) gives us a description
length per data point. The selected dimension, the minimum description length, is then given byk2 = argmin0≤k<m DL2(k).

Description length criteria are not unique and an alternative criterion proposed by Rissanen (2000) for signal denoising
is the, so-called, normalized minimum description length. In the current context this criterion gives rise to a consideration
of

DLN(k) = log(1 −πk)+
k
n
log

 πk

1 −πk


nT − ν(k)
ν(k)


+

1
n
log(ν(k)(nT − ν(k))), (23)

wherein ν(k) = k(m + 1) −
1
2k(k + 1) denotes the degrees of freedom in the kth singular value representation of

the nT effective observations in X. As above, the associated minimum description length,kN , is given by the value of
k ∈ {0, . . . ,m − 1} that minimizes DLN(k). For a discussion of other encoding, description length schemes, see Hansen
and Yu (2001), Rissanen (2007) and Grünwald (2007).

It is known that Schwarz criterion will produce consistent order selection under appropriate regularity conditions,
including the assumption that the true data generating mechanism belongs to a finite union of parametric models. This
raises the question of how, in the guise ofDL2(k), it will behave under the current scenario.We therefore seek to characterize
the properties of DL2(k), and DLN(k), when in truth X admits a Karhunen–Loève expansion as in (1) that cannot be a finitely
parameterized, and the true structure of the process is unknown.

Towards this end, let us suppose that an oracle has told us the values of λj j = 1, 2, . . . . Set DL2(k) = log(1 − πk) +

k log(n)/n and let k2 denote the value of k ∈ {0, . . . ,m − 1} that minimizes DL2(k). Similarly, let DLN(k) denote the value
obtained by replacingπk by πk in DLN(k) and set kN = argmin0≤k<m DLN(k). Then for a ∈ {2,N}, the oracle will proclaim X
to be a process of dimension ka at SNR level α/(1 − α)where α = πka .
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Fig. 3. Plots of DLN (k) (blue dotted line) and DL2(k) (red solid line) when computed from the OC data.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then for both a ∈ {2,N}wehave |DLa(k)−DLa(k)| = op(1/n(1−β)/2)+o(1)
as (n, T ) → ∞. Furthermore, lim(n,T )→(∞,∞) Prob[ka = ka] = 1.

Theorem 2 indicates that for large values of n and T both DL2(k) and DLN(k) are likely to be close to the values that would
be obtained by the oracle. In particular, a corollary of Theorems 1 and 2 is that for both a ∈ {2,N} plim|SNR(ka)−SNR(ka)| =

0. Thus the criterion functions behave in a coherent manner and for (n, T ) sufficiently large the practitioner will know the
dimension of X that the oracle would have proclaimed and the value of SNR at which that proclamation would have been
made.

We have already seen that the signal-plus-noise process X in (15) has dimension κ at SNR levelα/(1−α) for allα > πκ−1
as δ → 0. In order to relate this to the values of k selected by the description length criteria let us introduce an additional
assumption.

Assumption 3. There exist constants C , 0 < C < ∞, and d, 0 < d < 2, such that infi β2
ij ≥ Cg j, for all j = 1, . . . , where

g2
= 1 − δ2−d.

The generalized Fourier coefficients βij lie in the unit interval [0, 1] because


∞

j=1 β
2
ij = 1 and Assumption 3 bounds the

coefficients away from zero. This ensures that the contribution of the noise to the overall variation of X on [0, τ ] cannot be
null, and that the components of Z(t) that are orthogonal to Y (t) cannot be identically zero.

Theorem 3. Suppose that X(t) = Y (t) + δZ(t), as in (15). Suppose also that Y (t) and Z(s) are uncorrelated for all t and s,
and that Assumptions 1 and 2 hold. Then the probability that the eventka ≥ κ obtains converges to 1 as (n, T ) → ∞ for both
a ∈ {2,N}. Furthermore, if Assumption 3 holds and δ → 0 such that δ2−dnT/(n+T ) → 0, then lim(n,T )→(∞,∞) Prob[|ka−κ| >
δ] = 0 and X will be deemed to be a process of dimension κ at level SNRα for all α > πκ−1.

In functional data analysis it is usually preferable to use as small a number of components as possible (k ≪ ∞) and,
consequently, in practice an upper bound for k is often chosen that is much smaller than both n and T . In the previous
analysis it has been assumed that the upper bound, kmax say, coincides with m, the rank of the centered data matrix, but
other choices of kmax based on n and T with kmax < m are compatible with the results presented here provided kmax → ∞

as m → ∞.

7. Illustrations

The asymptotic results presented above require that (n, T ) → (∞,∞), but they do not impose any further restrictions
on the orders of magnitude of n and T . Thus they can be thought of as being applicable to both of the examples presented
previously even though the relative sizes of n and T in the two cases are very different.
Example 1. Fig. 3 plots the values of DL2(k) and DLN(k) for k in the range 0 ≤ k < mwhen computed from the OC data. The
figure clearly illustrates that the components of DLN(k) can counter-balance each other in such a way that the criterion has
a well defined minimum at a relatively small value of k. Thus we find thatkN = 25.

The behavior of DL2(k) merits elaboration. Starting at the origin, as k increases DL2(k) exhibits two turning points, a
local minimum at k = 57 and a local maximum at k = 147, before finally reaching a global minimum at the saturation
boundary. Thus, as k → m and πk → 1 the increase in k log(n)/n is no longer large enough to counteract the decrease
in log(1 − πk). This presents a problem if we continue to search for the global minimum since πk ≥ 0.995 for k ≥ 135,
suggesting that any variation due to bases with an index greater than 135 is very small and should be attributed to the noise
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Table 1
Selected dimensions for OC data.

Criterion k πk SNR(k)
k̂0.75 6 0.7697 3.3424
k̂0.99 103 0.9901 100.0672k2 57 0.9722 34.9152kN 25 0.9235 12.0746

Table 2
Classification results for OC data.

Criterion k Overall error (%) Sensitivity (%) Specificity (%)

k̂0.75 6 19.44 83 74.85
k̂0.99 103 14.81 73 95.69k2 57 10.65 83 94.83kN 25 14.81 79 90.52

Fig. 4. Jackknife classification errors for OC data.

rather than the signal component. In this case, a straightforward solution is to restrict the search to k ∈ {0, . . . , k̂α − 1} for
some α > 0.99, say. Since, by Theorem 1, k̂α converges to kα use of this rule implies that the smallest (1 − α)100% of the
variation in X is being assigned to the noise component. Note that the common practice, mentioned at the end of Section 6,
of choosing kmax on the basis of the sample size and the grid points such that kmax < m is equivalent to restricting the search
to k ∈ {0, . . . , kαmax − 1} where kαmax = kmax for some αmax < 1, and where αmax → 1 as kmax increases. Using this device
results in the criterion selectingk2 = 57.

We also evaluated k̂α using values of α that bound those recommended in Chiou and Li (2007, Section 2.2.1), namely
k̂0.75 = 6 and k̂0.99 = 103. These values clearly indicate the sensitivity of k̂α to the assigned level of resolution. A range of
98 possible values for k is too broad to be of any help in deciding what dimension to actually use in practice, but k̂0.75 and
k̂0.99 do provide useful points of comparison.

The selected dimensions are reproduced in Table 1, together with their associated estimates πk and SNR(k). Table 2
presents the results obtained when different dimensions are used in conjunction with the non-parametric functional
classification procedure introduced in Hall et al. (2001) to discriminate cancer patients from healthy controls; the Hall et al.
(2001) method projects the data into the space of the first k components and discrimination then takes place in this space
usingnon-parametric density estimates to evaluate the likelihoodof different types. The overall error rate, and the sensitivity
and specificity, were calculated using the jackknife or the leave-one-out method. The relative merits of the different values
of k seen in Table 1 are not directly mirrored in themeasures given in Table 2; in particular, the miss-allocation rates are not
monotonic in k. The contrast between Tables 1 and 2 reflects that changes inmean squared approximation error are indexed
by changes in k, but changes in k are neither explicitly linked to, nor necessarily indicative of, changes in classification rates.
This later feature is clearly seen in Fig. 4. Fig. 4 plots the total number of jackknife classification errors as a function of k
(OCE(k)) and demonstrates that the lack of monotonicity in k seen in Table 2 is both a local and a global phenomenon.

The use of jackknife cross-validation to determine the number of components thatminimizes the number of classification
errors leads to the selection of k = kCV = 45. (See Grünwald, 2007, Section 17.6 for a discussion of the links between cross-
validation and description length criteria.) This gives an overall error rate of 9.26%, a sensitivity of 83% and a specificity
of 97.4%. By construction AIC will select a value of k ≥ k2 = 57 > kCV = 45 > kN = 25, indicating that description
length criteria can select dimensions much smaller than any of those chosen by popular benchmark criteria. Such outcomes
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Fig. 5. Dominant basis functions for SOI data.

Fig. 6. Plots of DLN (k) (blue dotted line) and DL2(k) (red solid line) when computed from the SOI data.

intimate that for the OC data the best choice of k (and basis functions) for reliable discrimination remains uncertain.
Nevertheless, it is apparent that even functional data that is observed on a grid of several thousands of points can be reduced
to as few as fifty, or even twenty, or so dimensions whilst maintaining very creditable performance.

Example 2. Upon examination of πk for the SOI data we find that the first four basis functions account for 79.61% of the
observed annual variation, suggesting that the variance decomposition method used in conjunction with the commonly
employed rule-of-thumb would select k = 4. The first four basis functions are plotted in Fig. 5. Although it is not difficult to
imagine different combinations of these basis functions giving rise to the different curves seen in Fig. 2; from Fig. 6, which
plots the values of DL2(k) and DLN(k) for k in the range 0 ≤ k < m, we can see that both criteria will select the most
profligate model available.

These outcomes suggest that the behavior of SOI observed in Fig. 2 cannot be attributed to variation about more
dominant, common annual cycles. Rather, the oscillations and extremes are due to aberrant values of the SOI being generated
throughout particular years, suggesting that predicting the so-called ‘‘g-phases’’, as discussed in Stone et al. (2000), could
be a useful tool in forecasting future El Niño/La Niña effects and their associated weather patterns.

It should be emphasized that the investigations presented in Examples 1 and 2 are illustrative, they are conducted in
the spirit of exploratory data analysis and are not meant to be definitive. Clearly, if classification is the ultimate objective
with the OC data then a more classification orientated functional approach may be more appropriate, c.f. Ferraty and Vieu
(2003), Chiou and Li (2007) and Li and Yu (2008). If the aim of the analysis of the SOI data is the prediction of future
weather patterns, considerations of functional linear regression, à la Hall and Hosseini-Nasab (2006) and Ferraty and Vieu
(2009),will be relevant. For both functional discrimination and functional regression the choice of basis functions (functional
principal components) can be critical and a more goal orientated approach to criterion construction and evaluation than
that considered here is likely to be necessary. One such criterion can be obtained by replacing πk in (22) and (23) by the
coefficient of determination from a functional regression, or equivalently a logit/probit functional regression in the case of
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functional discrimination, along the lines of the description length regression criteria discussed in Rissanen (2007, Section
9.3) and Grünwald (2007, Section 14.5). A thorough examination of such possibilities would take us too far afield here
however and must be left for future research.

In both examples, the observations are made on a uniform grid. For the OC data this does not present a problem since
the mass-spectrometry readings are taken at T = 15154 points on the µz axis. For the SOI data, however, the number of
grid points is only 12. Such a small number obviously flies in the face of the asymptotic requirement that T → ∞. More
significantly, when T is small (τ lj/T , rj(tu))may not yield a reliable estimate of (λj, ρj(tu)) and it may be preferable to use
an estimation method designed for sparse functional data such as the one proposed by Yao et al. (2005).

In spite of such qualifications, the examples amply demonstrate the potential usefulness of the application of description
length principles in the context of functional data analysis.

8. The bootstrap

Given the raw data X = {X1, . . . , Xn} of n observations on X , an obvious way to get some idea of the sampling variability
of a statistic of interest is to re-sample from X and construct a bootstrap replication X∗

= {X∗

1 , . . . , X
∗
n }. By repeatedly gen-

erating different bootstrap replications an approximation to the statistic’s distribution can be constructed. This is precisely
the technique employed in Hall and Vial (2006). Here we wish to investigate the application and efficacy of different forms
of the bootstrap.

To begin, observe that the bootstrap replications are obtained by re-sampling from the rows of

X = sX̄ + n1/2ULR′, (24)

wherein the right-hand side is the matrix-vector equivalent of (5). Writing X∗ for a bootstrap data matrix, we have

X∗
= SX = SsX̄ + n1/2SULR′

= sX̄ + n1/2U∗LR′, say, (25)

where S represents a randomly chosen n × n selection matrix. From (25) we can see that the bootstrap replications of the
process can be generated in the following manner: Bootstrap Step

B1. Hold the mean X̄(tu), the eigenvalues lj, j = 1, . . . ,m, and the basis functions rj(tu), j = 1, . . . ,m, fixed at their realized
values.

B2. For i = 1, . . . , n generate bootstrap replications u∗

sj, j = 1, . . . ,m, by taking independent and identically distributed
(i.i.d.) random draws from usj, j = 1, . . . ,m.

B3. Construct the functional data re-sample X∗
= {X∗

1 , . . . , X
∗
n } where, for s = 1, . . . , n, the realization Xs(tu)∗, u = 1, . . . ,

T , is constructed as in (5) by replacing usj, j = 1, . . . ,m by u∗

sj, j = 1, . . . ,m.

The consistency properties presented in Lemmas 1–3 indicate that for (n, T ) reasonably large the empirical expansion
in (5) will provide a close approximation to the theoretical expansion in (1), with the construction of X∗ via (25) mimicking
the decomposition of X in (24). An advantage of the representation in (25) is that it suggests how the raw bootstrap can be
readily adapted and modified in order to meet different purposes and allow for different scenarios.

The following adaptation, for example, indicates howwe can simulate different realizations of a processwhose stochastic
structure approximates that of the process giving rise to the original data in X. First recall that the columns of U are the
normalized eigenvectors of (X − sX̄)(X − sX̄)′/n, so U′U = Im and U is a point on the Stiefel manifold Vm,n, the space of m
orthonormal vectors in Rn. Simulated replications of the process are now generated as follow: Simulation Step

S1. As in B1. above;
S2. Generate new realizations u∗

sj, s = 1, . . . , n, j = 1, . . . ,m, by taking i.i.d. random draws from a distribution supported
on the Stiefel manifold Vm,n;

S3. As in B3. above.

The Karhunen–Loève expansion tells us that the random variation observed inX emanates from fluctuations in the prin-
ciple component scores, or equivalently, the random coefficients υj, j = 1, 2, . . .. These coefficients constitute an uncorre-
lated sequence of random variables, each with zero mean and unit variance, and the usj, j = 1, 2, . . . ,m, may be viewed as
representing a realization of n values of the υj. Hence the assignment made in step one, the random sampling to produce
u∗

sj, s = 1, . . . , n, j = 1, 2, . . . ,m, in the second step, and the reconstruction used in the third step.
In order to illustrate these ideas, Fig. 7 plots the values of lk, k = 1, . . . ,m, evaluated from the SOI data, together with the

2.5%, 50.0% and 97.5% percentile values of l∗k computed from 25,000 bootstrap replications B1–B3. The fact that the median
values of the l∗k are virtually indistinguishable from the lk clearly reflects the operation of Lemma 2.

The distribution of l∗k , k = 1, . . . ,m, was also calculated from 25,000 simulated replications S1–S3 wherein step S2
new realizations u∗

sj, s = 1, . . . , n, j = 1, . . . ,m, were generated by taking i.i.d. random draws from the Bingham–von
Mises–Fisher family of distributions (Hoff, 2009). Of particular interest from our current perspective is the fact that when
the concentration parameter is zero the von Mises–Fisher distribution collapses to the uniform distribution and as the
concentration parameter increases the distribution can be well approximated by a standard normal distribution. When
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Fig. 7. Median value, and 2.5% and 97.5% percentiles, of l∗k computed from 25,000 bootstrap replications derived from the SOI data.

Fig. 8. Plots of DLN (k) computed from 25,000 bootstrap replications of X∗
g derived from the OC data.

u∗

sj, s = 1, . . . , n, j = 1, . . . ,m, were generated as independent standard normal variables any differences in the bootstrap
and simulated distributions were not statistically significant, according to a Kolmogorov–Smirnov test, at any conventional
significance level. This result lends incidental support to out previous findings concerning the erratic behavior of the SOI.

Now consider replacing X∗ in (25) by the modified version sX̄ + n1/2U∗L∗R′ where L∗
= diag(

√
l1, . . . ,

√
lκ ,

l∗κ+1, . . . ,

l∗m) and l∗j = (δ∗)2lj, j = κ + 1, . . . ,m, δ∗ small. This simple modification is designed to mirror the signal-plus-noise
structure in (15), when expressed as in (17). Fig. 8 presents plots of the average value of DLN(k) evaluated from tenmodified
data sets X∗

g based upon the OC data. For g = 1, . . . , 10 each X∗
g was obtained by replacing L by L∗

g = diag(
√
l1, . . . ,

√
l25, δ∗

g
√
l26, . . . , δ∗

g
√
l216)where δ∗

g = (0.8)g−1. The behavior predicted in Theorem 3 is clearly apparent in the appearance
of the sharply defined minimum in DLN(k) at k = κ = 25 as δ∗

g decreases.
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Appendix A. Proofs

Proof of Lemma 1. First observe that E[∥d∥
2
] =

T
u=1 E[d2u] where, by definition, du = n−1n

s=1{Xs(tu)−µ(tu)}. Now, by
(6) and (7) of Assumption 2, E[d2u] = n−2Var[

n
s=1{Xs(tu)− µ(tu)}], which is bounded above by

2n−2
n

s=1

n−s
r=0

Cov[Xs(tu)Xs+r(tu)] ≤ 2n−1 max
s=1,...,n

n−s
r=0

Cov[Xs(tu)Xs+r(tu)].

It follows directly from (8) of Assumption 2 that lim supn→∞ n
T

u=1 E[d2u] < 2C1T .
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Similarly, to establish the second part of the lemma, we have E[∥D∥
2
] =

T
u=1

T
v=1 E[D2

uv] where, by (6) and (7) of
Assumption 2,

E[D2
uv] = E

1
n

n
s=1

[{Xs(tu)− µ(tu)}{Xs(tv)− µ(tv)}] − Γ (tu, tv)

2


=
1
n2

Var


n

s=1

{Xs(tu)− µ(tu)}{Xs(tv)− µ(tv)}


. (26)

Proceeding as previously, the right-hand side of Eq. (26) can be bounded by 2n−1 maxs=1,...,n
n−s

r=0 Cov[Ξs(uv)Ξs+r(uv)],
and from (9) of Assumption 2 it can be deduced that lim supn→∞ n

T
u=1

T
v=1 E[D2

uv] < 2C2T 2, giving the desired
result. �

Proof of Lemma 2. Using the inequality
m

j=1 ljℓj ≥ tr(GΓ ′) (Anderson and Das-Gupta, 1963) we find that
m

j=1(lj −ℓj)
2

≤

∥G − Γ ∥
2, and ∥G − Γ ∥

2 is op(T 2/n(1−β)) as n → ∞ by Lemma 1, establishing (10).
From (10) we can readily deduce that max1≤j≤m(lj − ℓj)

2
= op(T 2/n(1−β)), which implies that the first term on the

right-hand side of the inequality

max
1≤j≤m

 ljT −
λj

τ

 ≤ max
1≤j≤m

 ljT −
ℓj

T

+ max
1≤j≤m

ℓjT −
λj

τ

 (27)

is op(1/n(1−β)/2). Using arguments that parallel those employed in Hall and Hosseini-Nasab (2006, Theorem 1) it can also
be shown that the second term on the right-hand side of (27) is o(1). This then establishes (11).

In order to verify (12) of Lemma 2 first observe that |
m

j=1 lj/T −


∞

j=1 λj/τ | is bounded above by
m

j=1 |lj/T −

λj/τ | +


∞

j=m+1 λj/τ . Now, from (11) we have max1≤j≤m |lj/T − λj/τ | = op(1/n(1−β)/2) + o(1), and since


∞

j=1 λj is a
convergent series


∞

j=m+1 λj → 0 as m → ∞. It follows therefore that
m

j=1 |lj/T − λj/τ | ≤ mmax1≤j≤m |lj/T − λj/τ | =

op(m/n(1−β)/2)+ o(m) and the proof of the lemma is complete. �

Proof of Lemma 4. Using (11) and (12) of Lemma 2, we obtain for each k, 1 ≤ k ≤ m,

πk =

(mT )−1
k

j=1
lj

(mT )−1
m
j=1

lj

=

(mτ)−1
k

j=1
λj + op(k/mn(1−β)/2)+ o(k/m)

(mτ)−1
∞
j=1
λj + op(1/n(1−β)/2)+ o(1)

=

k
j=1
λj

∞
j=1
λj

+


∞

j=k+1
λj

∞
j=1
λj

+ 1

 (op(1/n(1−β)/2)+ o(1)). (28)

From (28) we can conclude that |πk − πk| ≤ 2(op(1/n(1−β)/2) + o(1)), and hence that |πk − πk| = op(1/n(1−β)/2) + o(1),
as required. �

Proof of Theorem 1. That SNR(k) converges to SNR(k) follows from Lemma 4 by Slutsky’s Theorem. Now presume, for a
given α ∈ [0, 1), that k̂α > kα for all n > n′ and T > T ′. This implies that SNR(kα) ≤ SNR(k̂α) + ϵ, ϵ > 0, as (n, T ) →

(∞,∞). Similarly, presuming that k̂α < kα for all n and T sufficiently large implies that SNR(kα) ≥ SNR(k̂α) − ϵ. Thus
|SNR(kα)− SNR(k̂α)| → 0 as (n, T ) → (∞,∞) and hence k̂α = kα for n and T sufficiently large. �

Proof of Theorem 2. Weknow from Lemma4 that |πk−πk| = op(1/n(1−β)/2)+o(1). From the expression log((1−πk)/(1−

πk)) = log(1 + (πk − πk)/(1 − πk)) and the McLaurin expansion log(1 + x) =


r≥1(−)
r−1xr/r it now follows that

|DL2(k)− DL2(k)| = op(1/n(1−β)/2)+ o(1), as stated. Similarly,

log

1 −πk

1 − πk


πkπk


= log


1 +

πk −πk

1 − πk


− log


1 +

πk − πk

πk


and using theMcLaurin expansion of log(1+x) once again we can conclude that |DLN(k)−DLN(k)| = op(1/n(1−β)/2)+o(1).
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Now presume thatka ≠ ka for a ∈ {2,N}. Then we have

DLa(ka)− DLa(ka) = (DLa(ka)− DLa(ka))+ (DLa(ka)− DLa(ka)). (29)

By definition ofka and ka as the minimizing values of DLa(k) and DLa(k), respectively, the limit-supremum of the left-hand
side of (29) is zero and, given that the first termon the right-hand side converges to zero, the limit-infimumof the right-hand
side is positive. Thus we have the desired result reductio ad absurdum. �

Proof of Theorem 3. First considerDLN(k). Straightforward if somewhat tediousmanipulations indicate thatwe can expand
DLN(k)− DLN(k + 1) and express it as the product of (n + T )/nT times

nT
(n + T )

log

1 +
λk+1
∞

j=k+2
λj

− log

nT − (k + 1)(n + T )

n + T


(30)

− log

1 +
λk+1
k

j=1
λj

+ (k + 1) log


nT − k(n + T )
nT − (k + 1)(n + T )


(31)

− log

1 +

k+1
j=1
λj

∞
j=k+2

λj

+ k log

k + 1
k


+ log(k). (32)

When k < κ we find from (18) that log(1 + λk+1/


∞

j=k+2 λj) equals

log

1 +

ηk+1 + δ2
∞
i=1
θiβ

2
i(k+1)

κ
j=k+2

ηj + δ2
∞

j=k+2

∞
i=1
θiβ

2
ij

+ O(δ2)

 , when k ≤ κ − 2;

log

1 +

ηκ + δ2
∞
i=1
θiβ

2
iκ

δ2
∞

j=κ+1

∞
i=1
θiβ

2
ij

+ O(δ2)

 , when k = κ − 1.

Both of these expressions are positive as δ → 0, implying that the first term in (30) will dominate all others in the expansion
of DLN(k)− DLN(k + 1) and thus that DLN(k)− DLN(k + 1)will be positive as (n, T ) → (∞,∞).

Now suppose that k ≥ κ and that Assumption 3 obtains. Expression (18) implies that

log

1 +
λk+1
∞

j=k+2
λj

 = log

1 +

∞
i=1
θiβ

2
i(k+1)

∞
j=k+2

∞
i=1
θiβ

2
ij

+ O(δ2)

 .
By Assumption 3


∞

j=k+2


∞

i=1 θiβ
2
ij > δd−2(C


∞

i=1 θi − δ2−dk+1
j=1


∞

i=1 θiβ
2
ij ) > δd−2(C − δ2−d)


∞

i=1 θi = δd−2C ′, say.
We can therefore conclude that the limit-supremum of the two terms in (30) will not exceed a figure that is of magnitude
(nT/(n + T ))O(δ2−d)− log(nT/(n + T )).We also find that

log

1 +
λk+1
k

j=1
λj

 = log

1 +

δ2
∞
i=1
θiβ

2
i(k+1)

κ
j=1
ηj + δ2

k
j=1

∞
i=1
θiβ

2
ij

+ O(δ2)

 ,
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and the two terms in (31) will be of order −O(δ2)+ (k + 1)o(1), and that

log

1 +

k+1
j=1
λj

∞
j=k+2

λj

 = log

1 +

κ
j=1
ηj + δ2

k+1
j=1

∞
i=1
θiβ

2
ij

δ2
∞

j=k+2

∞
i=1
θiβ

2
ij

+ O(δ2)

 ,
and the two terms in (32) will be of order −O(δ−2) + O(k). Adding the six terms in (30)–(32) together now leads to the
conclusion that when k ≥ κ , DLN(k) − DLN(k + 1) will be negative as δ → 0, provided that δ2−dnT/(n + T ) → 0 as
(n, T ) → (∞,∞).

Parallel but less complicated arguments also show that: (i) DL2(k) is monotonically decreasing in k for k < κ , and (ii)
DL2(k) is monotonically increasing in k for k ≥ κ when Assumption 3 holds and δ2−dnT/(n + T ) → 0.

Thus, for both a ∈ {2,N}we can conclude that ka ≥ κ , and that ka = κ when Assumption 3 holds and δ2−dnT/(n+T ) →

0. The properties stated in the theorem now follow directly from Theorem 2. �

Proof of Lemma 3. Set Γ̄ (t, s) = (τ/T )
m

j=1 ljrj(t)rj(s). Using Lemma 4.3 of Bosq (2000) we can deduce, as in the proof
of their Theorem 1 by Hall and Hosseini-Nasab (2006), that ∥rj − ρj∥

2
≤ 31/d2 where d = min1≤j≤m(λj − λj+1) and

1 =
 τ
0

 τ
0 |Γ̄ (t, s) − Γ (t, s)|2dtds. Replacing the integrals by their approximating sums we have 1 ≤ (τ 2/T 2)

T
u=1T

v=1 |Γ̄ (tu, tv) − Γ (tu, tv)|2 + o(1) = (τ 2/T 2)∥G − Γ ∥
2
+ o(1). By Lemma 1 ∥G − Γ ∥

2
= op(T 2/n1−β), and the proof is

thereby completed. �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at doi:10.1016/j.csda.2011.03.018.
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