
 

 

Tool Support for Traceability of Software Artefacts 
 

K. Kamalabalan, T. Uruththirakodeeswaran, 
G. Thiyagalingam, D. B. Wijesinghe, I. Perera,         

D. Meedeniya 
Department of Computer Science and Engineering, 

University of Moratuwa, Sri Lanka 

D. Balasubramaniam 
School of Computer Science,  

University of St Andrews,  
UK 

  
Abstract—Artefact management in a software development 
process is a challenging problem. Often there is a wide variety 
of artefacts, which are maintained separately within a software 
development process, such as requirement specifications, 
architectural concerns, design specifications, source codes and 
test cases, which are essential to software engineering. Artefact 
inconsistency is a major problem since these artefacts evolve at 
different rates. Maintaining traceability links among these 
artefacts and updating those artefacts accordingly can be a 
solution to address artefact inconsistency. There is a need for 
establishing these artefact traceability links in semi-automatic 
way. Proper management and visualization tool is required for 
effective software artefact management in an incremental 
software development. We present a prototype tool to establish 
artefact traceability links and visualization of those. This 
paper describes the research methodology and relevant 
research carried out for semi-automatic traceability link 
establishment and visualization of software artefacts. 

Keywords—Artefacts; Traceability Links; Artefact 
Traceability Visualization; Artefacts Consistency Management 

I. INTRODUCTION 
Software development lifecycle consists of different 

process that result in different artefacts such as 
requirements specification, software architecture, design 
specification, source code, test cases for verification and 
validation of the system, and etc. They are usually 
maintained in isolation and evolve at different rates. Even 
though all of these artefacts are aimed at facilitating 
software products developed with the expected quality 
parameters and fulfilling functional and domain 
requirements, once produced they often are subjected to 
different priority levels for their maintenance; some 
artefacts are hardly maintained and updated as the project 
progresses whereas certain high priority artefacts, such as 
the source code, are regularly updated and maintained.  This 
can lead to artefacts rapidly becoming inconsistent with one 
another and losing their value for development and 
documentation purposes [1]. Because of this artefact 
consistency management is a complex challenge in software 
engineering. 

   Research on artefact consistency management is an 
important area of study in software engineering. It is getting 
popular attracting many researchers who are interested in 
different aspects of the artefact consistency [2]. Research 
studies are currently being carried out to tackle software 
artefact inconsistency problem. A main area of study to 
solve this problem is the establishment of traceability links 
among software artefacts. For example, we may wish to 
indicate that a particular requirement is the reason for the 
existence of certain design elements in the design 
specification and such design element can result in a 

particular type of code snippet thereby creating a faint link 
between the three artefacts. This may be more 
straightforward in cases where a generative approach such 
as Model Driven Development is used to produce one 
artefact from another, since a mapping is likely to be 
created and can be used to establish and maintain links in 
between. However, this single process of generating an 
artefact from another, which allows clear and easily 
manageable traceability links, is not always feasible and 
links may have to be established between existing artefacts 
and between existing and new artefacts. The default way of 
doing this is to define the inter-artefact links manually, 
which is a labour-intensive and potentially error-prone 
process. Therefore, we establish our main objective of this 
research as to explore the semi-automatic identification and 
specification of traceability links among the various 
software artefacts. 

Effective artefact relationship management is a key point 
for the success of the software process being used for the 
development. For modelling and storing these artefact 
relationship links we used graph database approach, which 
has already been identified as a very effective mechanism 
for managing unstructured, dynamic relationships and they 
are especially suited well to store data that already has a 
graph like structure. These databases natively store graphs 
with their nodes and edges and offer querying technologies 
[3]. We use neo4j [4] graph database for relationship 
modelling, which is one of the most widely used graph 
databases written in Java; it supports other languages as 
well. Information on different artefacts, such as 
requirements, design diagrams and source code, is extracted 
and stored in a graph database called Neo4j. Graph 
databases enable data to be stored in a graph structure as 
nodes and edges. Nodes in this database represent artefact 
elements such as requirement descriptions and methods in a 
class. Edges denote relationships among those nodes. This 
data set is used to analyse the impact of changes to artefacts 
and to identify the elements that are affected so that changes 
can be propagated where necessary.  

Having a well-engineered visualization system is 
necessary for a complete toolset of artefact management. 
We designed a visualizer and a graphical editor over the 
graph  database to support the activities involved in artefact 
consistency management, such as viewing artefacts in 
different levels  of  abstractions, exploring  intra and inter 
artefact relationships, allowing users to traverse the graph 
for impact analysis and editing the graph to propagate 
necessary changes to elements and relationships [5], [6]. 

This paper is arranged into following sections: Section II 
describes the related work containing the details about 


