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Abstract: It is anticipated that with the global trend towards 
decarbonizing the transport sector, depletion of fossil fuel 
resource and due to many other technical factors, Electric 
Vehicles (EVs) will increase in the car market in the future. 
The charging of a large number of EVs poses various technical 
challenges and requires special integration measures for power 
system operation. It is anticipated that depending on the charging 
regime EV will increase the operating reserve requirements. 
Quantifying the extent of incremental reserve requirement is vital 
for secure operation of the power system. This paper focuses on 
a methodology to estimate the regulating reserve requirement to 
compensate for the variations in the system load and EVs. Two 
different EV uptakes and two different charging regimes were 
considered. From extensive simulations studies it was found the 
increase in the regulating reserve is minute for the two scenarios 
considered. However, the long term scenario exhibits an increase 
in the regulating reserve thus alarming about a possible future   
issue with more EVs. 

Keywords: Electric Vehicles, Operational flexibility, Regulating 
reserve.

INTRODUCTION

Mainly due to environmental pollution and rising oil prices, 
many governments are encouraging an increase in the share 
of Electric Vehicles (EVs) in their transport sector. Globally, 
a number of EVs exceeded 2 million in 2016. A number 
of newly registered EVs were 750 thousand worldwide. 
In terms of energy efficiency, an Internal Combustion (IC) 
engine based vehicle is estimated to transfer only around 
50% of the input energy to the vehicles driven wheel. An 
EV is estimated to be able to transfer over 90% of the input 
energy to the driven wheel. This is a significant difference 
in efficiency. With the global trend, and due to many 
other technical advances over ICs, EVs will take over the 
market in the future. The number of EVs in Sri Lanka is 
exponentially growing and it is estimated that they may 
reach 2-3% of the vehicle stock by 2030.

The use of EV can bring immediate carbon savings. 
However, the introduction and widespread use of EVs 
could potentially lead to significant impacts on power 
systems (Lopes et al., 2011). Battery charging of electric 
vehicles will generally increase electricity demand. If the 
process of EV battery charging is left uncontrolled, it is 

likely that the time that EV owners will plug their EVs in 
sockets or dedicated charging points to charge them will 
coincide with peak demands (BERR, 2008).

In Qian et al. (2011), the effect of EV battery charging 
on the grid demand of the Great Britain is investigated. 
Three charging regimes are considered: uncontrolled 
regime (charging of EV batteries occurs at the last daily 
trip home arrival time), off-peak charging regime (charging 
of all EV batteries starts between 21:00-22:00 and stops 
at 06:00) and smart charging regime (charging of all EV 
batteries occurs during the cheapest hours of the day in 
terms of electricity prices). Results show that a 10% market 
penetration of EVs in the studied system would result in an 
increase in daily peak demand by up to 17.9%, while a 20% 
level of EV penetration would lead to a 35.8% increase 
in peak load, for the scenario of uncontrolled domestic 
charging.

The European project Mobile Energy Resources in 
Grids of Electricity (MERGE) examine the effect of 
residential EV battery charging on electricity demand of 
six European countries (Downing et. al., 2010). Two EV 
charging regimes are considered: dumb charging (EV 
owners would plug-in their EVs as soon as they return 
home from the last daily trip) and smart charging (a valley 
filling approach is adopted). 

Electrical load demand data of six US regions are used 
by Denholm and Short (2006) to use EV charging for 
valley filling in electricity demand. It is assumed that 40% 
of the average distance travelled in each region would be 
by EVs and that the energy consumption of EVs would be 
0.21 kWh/km. The findings show that EV charging would 
imply an increase in minimum load, of between 18% and 
40% depending on the region under investigation.

Meyer et al. (2007) compare the number of EVs that 
could be charged using a valley filling control, to the 
number of EVs that could be charged only during the 
period 18:00 and 06:00. The results showed that 84% of 
the vehicle fleet could be charged under the valley filling 
control, compared to 43% that could be charged during the 
period 18:00 to 06:00.
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Hadley and Tsvetkova (2008) studied the effect of EV 
battery charging on the generation system of 2020 and 2030 
for 13 US regions. Evening and night charging regimes are 
used. In the evening regime, half of the EV fleet would start 
the charging process at 17:00 and the rest at 18:00 p.m. In 
the night charging regime, half of the EV fleet would start 
charging at 22:00 and the rest at 23:00.

Parks et al. (2007) considered the application of 
multiple charging regimes in order to study the effects of 
EV utilisation on grid demand for the area of Colorado 
in US. The charging of 500,000 EVs with 0.21 kWh/km 
energy consumption and 7.2 kWh battery capacities is 
simulated. Four charging regimes are used: uncontrolled 
regime (charging of EVs starts as soon as they return home), 
delayed regime (charging of EVs starts at 22:00), off-peak 
regime (charging of EVs starts at 23:00 and stops at 07:00), 
and continuous regime (EVs are charged throughout). The 
uncontrolled regime case resulted in an increase of 2.5% in 
peak demand. The continuous regime would increase the 
peak demand by 4.6%.

In Su et al. (2017), an artificial fish swarm algorithm 
(AFSA) is applied to optimize the distribution network load 
curve in the restricted SOC range and charging time scope. 
An algorithm based on a nested optimization approach to 
characterize the optimal offline EV charging schedule to 
valley-filling is proposed in Chen et al. (2013).

As discussed above, many studies were carried out to 
estimate the effect of EV charging on peak demand reduction, 
valley filling and optimizing load curve. However, with the 
increase of EV charging the load curve shows different rate 
of changes during different time intervals depending on the 
charging regime used. This change in the rate of change of 
load curve demands different operational flexibility in the 
network. The operational flexibility is normally enhanced 
by maintaining an operating reserve which compensate for 
the upward and downward variation of the load curve. 

There are two main approaches, namely deterministic 
and probabilistic methods, for estimating the operating 
reserve (Holttinen et al., 2012). In deterministic approach 
which is simple and traditional, derives a fixed percentage 
of reserve based on the largest event in the required time 
frame. However this approach does not consider the 
probability of occurrence of other smaller events, and the 
dependence between events thus can often overestimate 
the reserve requirement. The probabilistic approach can 
be adopted when the time series data is available for load 
and EV. In the probabilistic method, the variability of 
load and EV output is statistically analysed and a reserve 
level is set so that an intended amount of variations are 
covered by reserve. In the standard deviation method 
which is also known as n-sigma method, assuming that 
load and EV variations can be represented by normal 
uncorrelated distributions, a multiple of standard deviation 
is taken as the reserve level. In many integration studies, 
three times the standard deviation (3sigma) is adopted to 
theoretically cover 99.7% of the variations (Holttinen et 
al., 2012; Weber et al., 2009). However that is based on 
the assumption that the variability information follows a 
normal Gaussian distribution. Certain detailed studies have 

also paid attention on estimating correct number of sigma 
in this regard. However, stronger conclusion can be made 
for different systems if such data is analysed in detail to 
determine the reserve level (Wijekoon, 2017). Improving 
from the n-sigma method, exceedance level method first 
defines the expected confidence level at which reserves 
should cover the variations and then determine the exact 
reserve levels. Instead of applying a number of sigmas to a 
data set, the use of exceedance level can yield more accurate 
results since various load and EV variability characteristics 
can represent various probability distributions. 

Even though the operating reserve is categorised into 
many forms (Era et al., 2010; Holttinen et al., 2012), the 
regulating reserve is particularly influenced by the rate at 
which load curve changes. In maintaining the regulating 
reserve, different systems adopt different techniques. 
However with increased penetration level of EV, estimating 
extra regulating reserve required is crucial and requires 
system specific studies in detail. Therefore, in this paper 
exact load distribution was evaluated based on historical 
data and EV penetration studies. Then the regulating 
reserve requirement was estimated using the exceedance 
level of variations. 

MATERIALS AND METHODOLOGY

EV penetration estimation

Three methods were used to predict the EV penetration. 
They are;

a) Double exponential Smoothing Method (Christou, 2012).

This method is based on two smoothed values, one 
is a single exponential, '

tS , and the other is a double 
exponential, "

tS . In this method the forecasted value at year 
t + m was obtained by

t m t tF a mb+ = + 					      (1)

where 
' "2t t ta S S= −

( )' "

(1 )t t tb S Sα
α

= −
−

' '
1(1 )t t tS Y Sα α −= + −  

tY  is the historical data
" ' "

1(1 )t t tS S Sα α −= + −

α  is taken as 0.6 as it the optimum value to give the 
minimum error. The sum of squared error method was used 
to find the appropriate alpha value.

b) Holt’s Double exponential Smoothing Method (Nazim  
and Afthanorhan, 2014). 

This method is based on two smoothed constants, one is a 
process value, tL , and the other is a trend value, tT . The 
forecasted value at year t + m was obtained by

t m t tF L kT+ = + 	  (2)

where 

( )1 1(1 )t t t tL Y L Tα α − −= + − +

( )1 1(1 )t t t tT L L Tβ β− −= + + −
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α  is the process smoothing constant and taken as 0.5

β  is the trend smoothing constant and taken as 0.9

c) Moving Average and Double exponential Smoothing 
Method (Nazim and Afthanorhan, 2014).

Initially the actual data were pre-processed to obtain the 
moving average. For the new set of data double Exponential 
Smoothing Method was applied.

EV load curve estimation

In order to obtain the EV load curve the model shown in 
Figure 1 was considered (Marra et al., 2012). The battery 
was represented by a voltage source behind a resistance and 
the EV battery charger was represented by its efficiency. 
The power on the grid side acP  was kept constant during 
the charging process until the cell voltage threshold is 
reached. This was achieved by regulating i as the grid 
voltage is constant. The current i was calculated as follow:

 . ac

pack

Pi
V

η= 						    
		   (3)

where η is the efficiency of the charger

EV 
battery 
charger

ic

i

VpackVoc SOC

Req

Pac

Battery model

Figure 1: The equivalent circuit of the battery and the charger.

Iterative method was derived to obtain the battery SOC 
level and the terminal voltage, ( 1)packV k −. Initial SOC level, iSOC  
was generated as a random number between 20% and 90% 
to represent the travelling pattern of the population. Then 
SOC at the kth iteration was obtained by:

( ) ( )
1

 
N

i
k norm

i k T
SOC k SOC

Q=

×
= +∑ 				  

		    (4)

where

normQ  is the nominal capacity of the battery, Ah

T   is the reference time step considered as 10 minutes

( )i k  was obtained from equation (3) with ( 1)packV k −

Then the open circuit voltage of the battery ocV  was 
obtained by (Marra et al., 2012),

[ ( ) ]( )( )
1 ( )

normB SOC k Q
oc o

K SOC kV k V Ae
SOC k

− × ××
= + +

−
 		

		    (5)

where

A is the exponential zone amplitude (V)

B is the exponential inverse time constant (Ah-1)

oV  is the battery voltage constant (V)

K is the polarization voltage (V) 

The terminal voltage of the battery cell  
packV  was 

derived by 

( ) ( ) ( )pack oc eqV k V k i k R= + ×  			   (6)

where

Req is the equivalent resistance of the battery pack

It was assumed that the charging pattern is constant 
power charging with a domestic charging unit of 3.7 kW 
until the terminal voltage reach 4 V. Therefore in this phase, 

( ) ( )packV k i k×  was taken as a constant of 3700 W. Then it 
was assumed that the charging pattern is constant voltage 
of 4 V, i.e. ( ) 4packV k = V until the SOC level reach 100%. 

Reserve estimation

Estimating the regulating reserve services due to the 
integration of RES requires the analysis of both load and 
RES characteristics. Initially, it is essential to assess the 
regulating reserve required for load variability alone and 
that establishes the basic regulating reserve levels needed 
for the normal system operation. Further analysis on extra 
regulating reserves for EV penetration was then estimated 
and compared. 

RESULTS 

EV predictions

In order to define the EV predictions, the following two 
scenarios were defined:

1. Business as usual (2019 – 2022)

The historical data of cars imported to the country was 
obtained from the Department of Motor Traffic, Sri Lanka. 
According to the Nationally Determined Contributions 
(NDCs) in accordance with Decision 1/CP.21 of the 21st 
session of the Conference of the Parties to the United 
Nations Framework Convention on Climate Change, the 
readiness phase till 2020 is provided for allowing the 
country to prepare for the full-scale implementation of 
chosen NDCs. However, in this scenario it was assumed 
that the car import will be as usual until 2022 (NDC, 
2016). The car stock in the country was predicted using 
double exponential smoothing method up to 2022. Figure 
2 shows the historical data and predictions obtained. It is 
worth noting that the peak in 2015 is due to the reduction 
of importation tax to 5%.

2. Long-term (2025 – 2030)

Nationally Determined Contributions (NDCs) is reducing 
the GHG emissions against 2010 values by 10% in transport 
sector by 2030. According to car fuel data provided by 
Vehicle Certification Agency of the UK1, CO2 emissions 
from different cars change from 100 – 400 g/km. The total 
car population in Sri Lanka in 2010 was about 400,000 

 http://carfueldata.dft.gov.uk/ 	1
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Figure 2: EV predictions up to 2022.  

Figure 3(a): Car stock prediction.

Figure 3(b): EV predictions from 2025 - 2030.
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(Department of Motor Traffic, 2011). With an average daily 
distance of 50 km and average CO2 emissions of 250 g/km, 
the total emission from cars at 2010 is 5000 tonnes per day. 
In order to achieve our NDC, emissions should be reduced 
by 500 tonnes and that translates into replacing 40,000 
petrol or diesel cars by electric cars by 2030. Therefore 
in this scenario it was assumed that the Government will 
introduce tax reductions to promote EVs. 

In order to predict the EV population from 2025 to 2030, 
first the total car population of the country was predicted 
using double exponential smoothing method, Holt’s double 
exponential smoothing method, and moving average & 
double exponential smoothing method up to 2030. Figure 
3(a) shows the predictions obtained. The average value of 

Figure 4: Terminal voltage and SOC values of one EV.

the results obtained from three models was taken as the 
car stock in the country. Then, it was assumed that 2.24% 
of the car stock is EVs. This percentage was obtained by 
assuming EV stock in the country in 2030 is 40,000. The 
predicted EV population from 2025 to 2030 is shown in 
Figure 3(b).

When one compares Figure 2 and Figure 3(b), it can 
be seen that in order to achieve our NDCs during the 
transitional period (i.e. from 2022 to 2025), 27,500 EVs 
should be added. Therefore, it was assumed that during 
these three years the Government introduces different 
initiatives to promote EVs.

Figure 5: Charging load of 10,000 EVs (a) Dump charging (b) ToU charging

(a)

(b)
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EV load profile

For this study it was assumed that all the vehicles are 
Nissan Leafs. The battery pack composed of 110 series-
connected 3.2 V - 40 Ah LFP cells and has a total battery 
pack nominal voltage of 352 V. The battery pack has the 
following parameters: (Marra et al., 2012)

3.5oV =  V, 0.01eqR = Ω , 0.025K = V, 0.2 V, 
0.375B = (Ah)-1  and  η = 0.88

For each EV, a load profile was generated using a 
randomly generated SOC value. The profile obtained for 
one EV is shown in Figure 4.

The model given in section 2.2 was run for 10,000 EVs 
taking the SOC as a random number between 20% to 90%. 
The charging load was observed for the following two 
scenarios:

•	 Assuming all 10,000 EVs Plug-in between 16:00h to 
20:00h and Normally Distributed – Dump charging

•	 Assuming all 10,000 EVs plug-in between 22:00h to 
23:00h and Normally Distributed (this is based on the 
current Time of Use (ToU) tariff) –ToU based charging

Sri Lankan daily load profile with EV load

For two EV scenarios considered in Section 3.1, the Sri 
Lankan load profiles were generated under Dump charging 
and ToU charging. Demand forecast given in ‘Long term 
generation expansion plan: 2018-2037’ of CEB was used 
as the base load. According to CEB Long Term Generation 
Plan, for the medium term as first four years, time trend 
modelling has been adopted by capturing recent electricity 
sales pattern and the anticipated near term demand growth. 

For the long term, econometric approach has been adopted 
by analysing past electricity sales figures with significant 
independent variables and this exercise produces the long 
term electricity demand forecast considering the driving 
factors at macro level. Sector level behaviour of the GDP 
is considered in this process and the services sector GDP 
reflects the contribution from the overall transport sector 
in a business as usual scenario. However, significant 
changes such as rapid penetration of electric vehicles and 
electrification of other transport modes that affect the sector 
performance and ultimately the electricity demand have to 
be analysed separately. Electric vehicle charging function 
can potentially change the daily electricity demand profile. 
Therefore, the electricity demand profiles developed for 
future years based on the demand forecast of the long-term 
generation expansion plan: 2018-2037 has been used as the 
base demand profile in this work.

The forecasted EV charging loads given in Figures 5 (a) 
and 5(b) were added to obtain the future load. As the Figure 
5 was generated for 10,000 EVs, in order to generate EV 
charging profiles under Business as Usual (BaU) and long 
term scenarios, the curves given in Figures 5(a) and 5(b) 
were multiplied by a factor equal to EV population in the 
year of consideration/10,000. Figures 6(a) and (b) shows 
the load profile of the country for the period 2019-2022 
under BoU, dump charging and ToU charging. Similar 
figures for long term, dump charging and ToU charging for 
the period 2025-2030 is given in Figures 6(c) and (d).

Figure 6: Load curve of Sri Lanka under different EV penetrations and charging profiles. (a) BaU – Dump charging (b) BaU – ToU 
charging (c) Long term – Dump charging (d) Long term – ToU charging.

(a) (b)

(c) (d)
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Regulating reserve requirement for load variation 

The time series data of the total load (as shown in Figure 6) 
is available in 30 minute resolution. Interpolation was used 
to generate time series data in 10 minute resolution based 
on the assumption that the total system is large enough to 
approximate the linearity between smaller time intervals. 
Figure 7 illustrates the duration curves of the 10 minute 
variabilities of the total load for year 2022 under two BaU 
scenarios and for the year 2030 under the two Long Term 
scenarios. Figure also shows the variability of the base case 
load, i.e. assuming that the EV penetration is negligible.

Figure 7: Duration curves of the variability.  

In order to understand the impact on the total load 
variability at the regulating time frame and the resulting 
regulating reserve requirement, the positive end of the 
above duration curves were closely examined. For the BaU 
scenario, Figure 8 shows the largest end of the upward 
variations (largest 1% portion of the duration curve) of 
the demand as it is the most interested portion reflecting 
the impact on regulating reserve requirement. Figure 9 
illustrates the same for the two Long term scenarios. 

Figure 8: The largest 1% of upward variation of load in BAU scenario.
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It is observed that under the BaU scenario, the EV 
charging load does not affect the regulating reserve 
requirement. The charging load is not significant enough 
under both dump and ToU charging regimes to cause major 
changes to the daily electricity demand pattern and the 
resulting load duration curve. However, EV penetration 
levels in the Long term scenario slightly affect the demand 
profile and its duration curve in the future years. 

Figure 9: The largest 1% of upward variation of load in Long term scenario.

Figure 10:  Additional Upward Regulating Reserve  requirement of different scenarios.

After obtaining the variability information from the 
generated demand profiles, the exceedance level method 
was applied to determine the required regulating reserve 
levels. Figures 10 and 11 shows the results obtained 
on the additional regulating reserve requirement for 
different scenarios for upward and downward directions 
respectively. The same results on the additional regulating 
reserve requirement are presented in Table 1.
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According to the Figures 9 and 10, the impact of EV 
charging load on the regulating reserve requirement in the 
BaU scenario is negligible given its low EV penetration 
level in the market. In the Long term scenario with 
higher EV penetration level the EV charging load slightly 
increases the upward regulating reserve requirement by 
about 3 – 8 MW when charging takes place at peak hours 
under the dump charge scenario. An increment of this scale 
under long term scenario will not be a heavy burden on 
power plants which provide regulating reserves for the 
system. However, this implies that further increase in EV 
penetration level with dump charging schemes is more 
likely to have a notable impact on regulating reserves. 
Further according to Figure 5, a steeper rise of the EV 
charging load is present in the ToU charging scheme. 
Even though the impact of ToU charging scheme on total 
regulating reserve is not significant in BaU and Long Term 
scenarios discussed in this paper, it can be envisaged that 
the presences of a steeper ramp during the off peak period 

Figure 11:  Additional Downward Regulating Reserve  requirement of different scenarios. 

Table 1: Incremental Reserve requirement of Different scenarios and charging schemes.

Incremental Upward Reserve requirement (MW)

Scenario 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

BAU
Dump 0 1 1 1 1
ToU 0 0 0 0 0

Long 
Term

Dump 8 6 5 3 3 4
ToU 0 0 0 0 0 0

Incremental Downward Reserve requirement (MW)

BAU
Dump 0 0 0 0 0
ToU 0 0 0 0 0

Long 
Term

Dump 3 1 1 1 4 2
ToU 1 1 0 0 0 1

due to ToU EV charging can potentially raise the ramping 
needs of the future system. 

CONCLUSION AND FUTURE WORK

This paper focuses on estimating the incremental regulating 
reserve requirement in 10 minute time frame considering 
the load variability and different EV uptakes and charging 
regimes. Country’s Load profile has its own characteristics 
driven by consumption patterns and as a reason variation in 
10 minute time scales do not exhibit a complete Gaussian 
characteristics. Therefore, the exceedance level based 
percentiles were used to estimate the regulating reserve 
needs.

Results of the EV integration scenario analysis show 
that the dump charging scheme has a greater impact on 
the regulating reserve requirement than the ToU charging 
scheme as it overlaps with the usual evening peak demand. 
EV penetration level similar to the long term scenario 
with dump charging can be accommodated to the system 
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without additional measures for regulating reserves as the 
increments in reserves due to EV is in the range of 3 – 8 
MW. However, with further uptake in EV in the market 
beyond the long term scenario’s projection, it is essential 
to place a greater attention on the regulating reserves and 
system ramping needs under different charging schemes.
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