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Abstract— Recent rapid development in Unmanned Aerial 

Vehicles (UAVs) have extensively promoted several types of 

civilian tasks. In this paper, we propose and compare two different 

deep learning and convolutional neural network methods to detect 

and extract the region of water pooling areas, such as gutters, 

abandoned ponds, tires, and other water retaining areas on 

rooftops, using UAVs based aerial images. The performance 

comparison between the YOLOv4 algorithm and the Mask-RCNN 

algorithm was explored in the case study to identify the best deep 

learning method for detecting these uneven regions of water 

pooling. Experimental results show that the Mask-RCNN 

approach efficiently detects these uneven areas in an aerial image 

while simultaneously generating a high-quality segmentation 

mask for each instance. On the other hand, YOLOv4 detects the 

best bounding box for the area of interest. The mean average 

precision (mAP) scores for Mask-RCNN and YOLOv4 are 71.67% 

and 57.9% respectively. The Mask-RCNN system has shown 

promising results on test images and video clips. Such real-time 

detection systems would eventually help to identify mosquito 

breeding sites to assist the dengue eradication as well as to identify 

suitable water resources for daily uses, thereby facilitating a better 

community health system.  
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I. INTRODUCTION  

In the recent past, research and development in computer 
vision have already impacted a wide range of applications in the 
real world owing to the advancements in deep learning. Deep 
learning implements a neural network approach with multiple 
layers of processing units, mainly for object detection, 
segmentation, and classification [1].  Also, Unnamed Aerial 
Vehicles (UAVs), mostly drones, coupled with image analysis 
have experienced a drastic development in diverse fields ranging 
in civilian and military applications due to their small size, fast 
deployment, automation capabilities, agility, and low cost 
during the past few years.  Inspection of power lines [2], 
buildings [4], wildlife conservation [3], traffic and vehicles [8], 
and effective agriculture [5] are some examples of such 
applications.  Moreover, in [6], a UAV cloud surveillance 
system is explored to eradicate the damages caused by both 
natural and man-made disasters.  Li et al. [7] propose an 
unsupervised classification model for the detection of 
aftereffects of earthquakes, specifically earthquake-triggered 
roof-holes, using UAV-based aerial images. However, the 

inherent limitations of drones, such as their weight, power 
consumption, and limited battery lifetime, cannot be overlooked 
and should pay careful consideration when running the deep 
learning algorithms onboard a UAV in itself. 

Furthermore, it can be seen that the development in object 
detection technology in many sectors, including multi-object 
detection, edge detection, salient object detection, face 
detection, scene text detection, etc has come a long way owing 
to the rapid development in the Deep Learning (DL) 
architectures.  The mainstream object detection algorithm can be 
divided into two categories: (1) two-stage detection algorithms 
[9]; as the most representative one, it works in two stages, 
separately yet in series to generate the region proposals and to 
classify the features extracted from region proposals, in order to 
refine the location of the object. Typical examples of two-stage 
detectors are R-CNN (Region-Based Convolutional Neural 
Networks) [11], Fast R-CNN [12], Faster R-CNN [13], Mask-
RCNN [14], etc.; (2) one-stage detection algorithms [9], such as 
YOLO (You Only Look Once) [15] and SSD [16], does not 
generate the region proposals separately as it does the 
classification and bounding box regression concurrently. The 
main difference between these two categories is that the two-
stage detector gives better results with high localization and 
overall accuracy, whereas the one-stage algorithm predicts the 
results at high speed [17]. 

In order to compare the performance of the above mentioned 
two categories of object detection algorithms and identify the 
best model for region detection on UAV-based aerial image 
analysis, this paper evaluates the two state-of-the-art deep 
learning algorithms from each category; Mask-RCNN and 
YOLOv4 algorithm, as these two approaches have shown 
significant performance in their respective categories [17]. We 
specifically focus on detecting water pooling areas using the 
aerial image. In line with the practical application scenario, the 
aerial image dataset generated has water-retaining surfaces 
which do not have a fixed geometrical shape. Hence the 
detection algorithm should possess the ability to identify objects 
and areas with different arbitrary shapes.  In countries where 
mosquito-borne diseases are present, the proposed system can 
be utilized to identify potential mosquito breeding sites at 
unreachable locations such as rooftops and gutters of high-rise 
buildings.  

Although several datasets [19-24] are available in public 
domain for water detection assignments, they were designed to 
address different tasks, than ours.  Strictly speaking, most of 



these datasets contain satellite images and these images are low 
in resolution while been captured from high altitudes. They are 
affected by several noisy artefacts such as clouds and smoke. 
Moreover, while deploying satellites and collecting high altitude 
satellite images are costly alternative,  it would not suite low 
altitude image analysis tasks. To address these issues, we have 
created a dataset using locally collected high-resolution images 
taken from a UAV operated at low altitudes. These 
characteristics of the dataset bring more clarity to the task as 
well as novelty. Furthermore, it helps deep learning models to 
make more accurate and highly precise decisions regarding 
water pooling uneven region detection.  

In addition, DL models by inheritance are data-hungry. In 
literature transfer learning approach is proposed to address the 
lack of data in task-specific applications of DL [10]. Transfer 
learning is an approach where knowledge is transferred from one 
domain to another. Hence, with this approach, a DL model pre-
trained on a generalized larger dataset such as the COCO dataset 
or ImageNet dataset, can be adapted to perform a different yet 
specific task using the knowledge gained at the initial training.  

In our implementation, we have utilized a transfer learning 
approach with the pre-trained weights of each model to address 
the lack of a significantly large dataset. Later we fine-tune the 
pre-trained weights to meet the application scenario using our 
custom dataset with aerial images. Finally, we compare and 
analyze the results obtained from both of the proposed models 
in terms of efficiency, effectiveness, and accuracy to understand 
the model most suited for the application.  

The rest of the paper is organized as follows. Section II 
describes the methodology adopted, models, and 
hyperparameters we have experimented with our custom 
dataset in this study. In Section III, we present and discuss the 
results obtained in the experimental analysis. Finally, we 
conclude the paper by summarizing our results in Section IV. 

II. METHODOLOGY 

In this research, we propose a model to detect and locate 
water retaining areas within objects such as gutters, abandoned 
ponds, tires, and rooftop objects, using UAV-based aerial 
images with high efficiency. At the initial stage of the research, 
a dataset of water retaining sources, which have uneven 
boundaries of water, was created using images captured from a 
drone camera. The quality of the captured images depends on 
the sensor capacity of the drone camera and the Ground 
Sampling Distance (GSD). We have considered a GSD of 7cm 
or larger, which is sufficient to identify the objects clearly using 
the classification system. The custom built dataset contains a 
total of 600 images belonging to two classes; objects with water 
(a total of 300 images) and objects without water (total of 300 
images). Next, all images in the dataset were divided into a 
training set and a validation set with an 80:20 ratio respectively. 
Then the training dataset was used to fine-tune the pre-trained 
weights of both Mask-RCNN and YOLOv4 algorithms for the 
feature extraction and classification.   

A. Mask-RCNN 

After dividing the dataset into a training set and a validation 
set, all aerial images were annotated using VGG Image 

Annotator (VIA) tool, which converts the dataset to the ‘.json’ 
format to fit the proposed model. Since deep learning is data-
hungry and the dataset has only 600 images, we adopted 
improved Mask-RCNN with transfer learning for our 
experimental setup. In this research, we have adopted the pre-
trained model, trained initially on large COCO datasets. The 
model with pre-trained weights is further trained and fine-tuned 
using the locally collected dataset. Also, we have fine-tuned 
hyper-parameters of the pre-trained CNN model by manual 
search to achieve better results and the optimized hyper-
parameters are shown in Table I. 

TABLE I.  THE OPTIMIZED HYPER-PARAMETERS 

Parameter Value 

Learning rate 0.001 

Weight decay 0.0001 

Minimum confidence of 
detection 

0.9 

Steps per epoch 10 

Number of classes 2 

Pool size of Mask 14 

Pool size 7 

Validation steps 50 

 

Fig. 1 shows the complete system with the Mask RCNN 
model proposed in this study. The model was trained and fine-
tuned, over 20 epochs with the softmax classifier to perform 
binary classification, using frame regression to get more precise 
information on the candidate-frame position, and eliminating the 
part of the region of interest (ROI) by non-maximum 
suppression. Once the model is trained, it is tested against new 
generalized as well as unseen data to check the accuracy of the 
proposed model in detecting water retaining areas. 

 

 

Fig. 1.  Flow chart of the proposed system with Mask-RCNN architecture 



B. YOLOv4 

In this setup, the same dataset, which is used for the Mask-
RCNN model, was utilized.  The input images are annotated 
using the BBox tool to refine the coordinates of the instance of 
the object presented in the aerial images to make it suitable for 
the model training purposes. Google Collab with GPU was used 
for the simulations. Fig. 2 shows the outlook of the proposed 
YOLOv4 architecture. 

 

 

Fig. 2. Proposed system with YOLOv4 architecture  

After initializing hyperparameters, learning rate, 
regularization, dropout as 0.0026, 0.001, 0.5 respectively, we 
trained the model on the locally collected image dataset using 
GPU. The two hyperparameters, batch normalization, and 
anchor model are used to predict the bounding box and the 
location of the object region in the given dataset. Finally, the test 
images and video clips captured using a drone camera were 
tested using the trained model to evaluate the model 
performance. Training loss variation through the 6000 iterations 
for the model presented at Fig.2 is shown in Fig. 3. 

 

 

Fig. 3. Training loss graph of YOLOv4 model 

III. RESULTS AND DISCUSSION 

The outputs of both models were evaluated by using mean 
average precision (mAP). Eq. (1) defines mAP, which is 
obtained by using Intersection over Union (IoU), defined as the 
ratio of the area of overlap between the predicted and ground 
truth box.  

   mAP = 
�

�
∑ ���

���
���   ,                               (1)                               

where APk means average precision (AP) of class k, which is 
given by (2), and n stands for the number of classes. 
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where the interpolated precision ( �����	�) (3) at a certain 

level of recall r is defined as the highest precision found for any 
recall level �̃ � �. 

                         �����	���� �  ��� 	̃�	 ���̃�         (3) 

 

and ���̃� is the measured precision at recall �̃. The Precision 
(P) and Recall (R) values alone also were used to analyse the 
target detection performance. 

 

Precision = TP/((TP+FP)),    Recall= TP/((TP+FN)),      (4) 

where true positive (TP) is the number of correctly predicted 
samples. False positive (FP) is the number of samples that are 
incorrectly marked. False Negative (FN) illustrates the number 
of samples that are incorrectly marked as negative samples. The 
results obtained during the testing process are shown in Table II. 

TABLE II.  SEGMENTATION PERFORMANCE  OF MASK-RCNN BASED 

SYSTEM AND YOLOV4 BASED SYSTEM 

Model mAP Precision Recall 

Mask-RCNN 71.67% 0.625 0.75 

YOLOv4 57.9% 0.57 0.53 

  

 According to Table II, the test results show that the mAP of 
Mask-RCNN (71.67%) is much higher than that of YOLOv4, 
(57.9%). This high mAP performance is the major advantage of 
using Mask-RCNN for this application. Moreover, the boundary 
outline of the detected area drawn by the Mask-RCNN has high 
precision compared to the bounding box drawn by YOLO. The 
flexibility within Mask-RCNN to draw an arbitrary shape 
contour is an added advantage for the given task.   

By contrast, YOLOv4 runs a lot faster than the Mask-RCNN 
at testing due to its simpler architecture with a direct approach 
for detecting the ROI. It predicts the output in 1 s, whereas 
Mask-RCNN predicts the result in 5 s. This could be due to 
YOLOv4 being trained to do classification and bounding box 
regression at the same time. Hence, in a time critical aerial image 
analysis environment, YOLO performs faster than Mask-
RCNN. 

When we used an aerial video clip for the testing, Mask-
RCNN located the water resources very accurately because of 
its high mAP, compared to YOLOv4. Moreover, Mask-RCNN 
shows good precision and recall values, which are at 0.625 and 
0.75 respectively, and these values are computed using the 



confusion matrix shown in Fig. 4. Furthermore, Fig. 5 presents 
the mAP graph for YOLOv4, for 6000 iterations. 

 

Fig. 4. Confusion matrix of Mask-RCNN model  

 

Fig. 5. mAP variation of YOLOv4 model 

In addition, Fig. 6 shows samples of RGB test images and 
detected outputs of the YOLOv4 and Mask-RCNN models 
respectively.  

IV. CONCLUSION 

The main task of this study is the detection of water pooling 
areas using aerial images and deep learning algorithms. Such a 
system can be used to eradicate the ecological and hydrological-
based problems, especially identifying potential mosquito 
breeding sites. For this purpose, we propose two deep learning 
algorithms to automatically detect the water retaining areas with 
arbitrary shapes in aerial images. We built two complete 
detection systems using Mask-RCNN and YOLOv4 architecture 
with the newly acquired dataset, which contains a total of 600 
images belonging to two categories; with water, and without 
water. The performance evaluations show that the Mask-RCNN 
algorithm effectively detects water retention areas with an 
accuracy of 71.67% compared to the YOLOv4 algorithm which 
only achieves a mAP score of 57.9%. Similar superior 
performance in Mask-RCNN was observed in precision and 
recall as well.  By contrast, the proposed YOLO model predicts 
the outputs faster than the Mask-RCNN. Time delay is the only 
disadvantage present in Mask-RCNN when compared to 
YOLOv4 for the given task.  

 

Fig. 6. Sample outputs; (a) RGB test images; (b) Predicted outputs from the 
trained YOLOv4 model with confidence intervals; (c) Segmentation outputs 
from the trained Mask-RCNN model with confidence intervals 
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