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A B S T R A C T   

Background: Drug repurposing provides an opportunity to redeploy drugs, which are already tested for safety or 
approved for use in humans, for the treatment of diseases distinct from their primary indication. For example, the 
repurposing of dexamethasone and baricitinib has played a crucial role in saving patient lives during the SARS- 
CoV-2 pandemic. There remains a need to expand therapeutic approaches to prevent life-threatening compli
cations in vulnerable patients with COVID-19. 
Method: Using an in silico approach based on structural similarity to drugs already in clinical trials for COVID-19, 
potential drugs were predicted for repurposing. For a subset of identified drugs with different targets to their 
corresponding COVID-19 clinical trial drug, a mechanism of action analysis based on affected pathways in the 
context of the first 24 h of infection was applied to establish whether they might have a role in inhibiting the 
replication of SARS-CoV-2. 
Results: Twenty-nine structurally similar drugs with potential for repurposing against COVID-19 were predicted. 
Two of these with the potential to inhibit SARS-CoV-2 replication were identified using mechanism of action 
analysis. Triamcinolone is a corticosteroid that is structurally similar to dexamethasone; gallopamil is a calcium 
channel blocker that is structurally similar to verapamil. 
Conclusion: The identification of these drugs as potentially useful for patients with COVID-19 who are at a higher 
risk of developing severe disease supports the use of in silico approaches to facilitate quick and cost-effective 
identification of drugs for repurposing. Such drugs could expand the number of treatments available to the 
subset of patients who are not fully protected by vaccination.   

1. Introduction 

The novel virus, severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), which causes Coronavirus disease 2019 (COVID-19), was 
first identified in Wuhan in December 2019 and by March 2023 had 
spread to 192 countries or regions and infected over 670 million people, 
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killing more than 6 million [1]. COVID-19 infection can cause symptoms 
which fall on a wide spectrum. Those with mild infections may be 
asymptomatic, have anosmia [2] (the loss of ability to detect smells), or 
mild respiratory symptoms [3] and need no treatment, whereas in pa
tients that develop severe infections, COVID-19 pathogenesis can 
progress to acute respiratory distress syndrome (ARDS), cytokine storm 
[4,5], and in some patients, eventually death. Certain subpopulations 
are known to be at higher risk of developing severe COVID-19 compared 
to the whole population. These subpopulations include people over 70 
years old [6], those with obesity [7], those with diabetes [7,8] pregnant 
women [9], and those who are recipients of a solid organ transplant 
[10]. Despite several highly efficacious vaccines being deployed against 
SARS-CoV-2 [11–14], COVID-19 continues to spread. Vaccine efficacy 
wanes with time [15] and this as well as breakthrough infections [16] 
and unequal vaccine distribution between higher and lower income 
regions [17] all contribute to the ongoing spread of the virus. Moreover, 
SARS-CoV-2 strains designated as variants of concern [18] [–] [20] also 
have the potential to alter infection rates [21,22]. 

Current treatments for those infected with SARS-CoV-2 and at high 
risk of developing severe disease [23] are split into early and late 
therapies. Therapies for early stage disease Molnupiravir [24,25] and 
nirmatrelvir (with ritonavir) [26,27], which prevent replication of 
SARS-CoV-2, can be administered in patients with mild to moderate 
COVID-19 disease to prevent development of severe disease. Being 
orally administered, these drugs have an advantage over intravenously 
administered monoclonal antibodies [28], as they can be prescribed for 
use outside of a clinical setting and are less expensive [29,30]. Hospi
talised patients with severe disease can be treated with dexamethasone 
[31] and in the US, the Food and Drug Administration (FDA) has 
approved Veklury (remdesivir) for patients who are hospitalised with 
COVID-19 [32]. 

Despite these advances in the treatment of mild and severe COVID- 
19, new drugs are still needed to treat this disease. For example, preg
nant women are a high risk population for severe disease and neither 
nirmatrelvir or molnupiravir are currently approved for use in this 
population [33,34]. There is also the risk of new variants arising which 
are resistant to approved drugs, as has occoured in HIV therapeutics, 
where mutations in HIV protease cause resistance to protease inhibitor 
treatment [35]. 

The development of a novel therapeutic can take many years [36] 
and attrition rates are high, often owing to concerns around safety and 
toxicity [37]. Drug repurposing aims to use existing approved or 
investigational drugs for therapeutic uses beyond the scope of the 
original medical indication [38]. This approach offers de-risked possi
bilities to identify safe, effective treatments faster and more economi
cally than novel drug development [39]. Computational approaches are 
now routinely through multiple steps of the drug discovery process [40] 
[–] [45] and can be applied to repurposing of existing drugs [46,47]. For 
example, network modelling [48–50], text mining [51] and various 
machine learning techniques [52–54] have been applied to repurposing 
drugs for COVID-19. 

Chemical structure similarity is another approach that can be used in 
drug repurposing studies. It is based on the concept that structurally 
similar molecules often share similar biological function, and is a 
concept frequently used in drug discovery [55,56]. In this study, this 
approach has been used to identify drug candidates from publicly 
available databases [57] that could be potentially be repurposed against 
COVID-19 based on structural similarity and similar targets to drugs 
already in clinical trials for COVID-19. A list of COVID-19 clinical trial 
drugs (C19-CTDs) was obtained from DrugBank [58]. Such C19-CTDs 
were used as a starting point because they have hypothesis-driven pre
dicted utility against COVID-19 and have passed safety assessment, 
which is why they have been entered into these clinical trials, and these 
also includes the few drugs which have been approved for the treatment 
of COVID-19. The rationale being, that if any C19-CTD is effective in 
clinical trial, then a structurally similar drug (SSD) which also impacts 

the same targets as the C19-CTD from which it was predicted, would be 
expected to have similar utility and could be rapidly prioritised for 
investigation. In cases where chemical similarity identified structurally 
similar drugs that have different targets to the C19-CTD, an additional 
network analysis was used to predict the probable mechanism of action 
and to determine whether utility in inhibiting SARS-CoV-2 replication 
was likely. 

2. Results 

2.1. Identification of drugs based on chemical structure similarity 

To identify drugs that could be safely and rapidly deployed to treat 
COVID-19, the ChEMBL API was used to computationally predict 
structurally similar drugs (SSDs) to the C19-CTDs identified in Drug
Bank. Similarity was based on the Tanimoto coefficient (Tc), a similarity 
measure widely used in molecular fingerprint comparison [59]. When 
these analyses were initiated, there were 7,682 compounds listed in 
ChEMBL [57] as in clinical trials for any indication at Phase II or higher 
(including approved drugs). Among these 7,682 compounds, 101 com
pounds were determined to have structural similarity to 153C19-CTDs, 
with a Tanimoto coefficient >0.7 (Fig. 1). 

2.2. Short-listing SSDs by step-by-step triage process 

To eliminate any redundancy in the list of SSDs, several stages of 
filtering were applied (Fig. 2). Initially, any SSDs which were already in 
the list of C19-CTDs were removed. For example, etripamil is an SSD 
because of its similarity to C19-CTD verapamil. However, etripamil is 
already in clinical trials for COVID, so it is already a C19-CTD, for this 
reason etripamil was removed from the SSD list. Next, any duplicated 
drugs were removed. For instance, taribavirin and taribavirin hydro
chloride were both identified as similar to ribavirin (Tc 0.76). However, 
since taribavirin hydrochloride is the acid salt of taribavirin, and once 
solubilized in the body (at approximately pH 7.4), both structures will 
exist in the same deprotonated form and have the same behaviour, these 
were considered as effective duplicates and the acid salt was removed 
from the list. After the removal of these duplicates, 65 unique SSDs 
remained. This list of 65 SSDs was compared to lists of drugs predicted 
from 6 other in silico repurposing papers which employed different 
techniques [48–53], 19 SSDs were predicted in other repurposing papers 
(Supplementary Table 1). These drugs were from 43 different Anatom
ical Therapeutic Chemical (ATC) classes (Supplementary Table 1), with 
the top 3 most frequent classes being classes J01-“Antibacterials for 
systemic use”, L01-“Antineoplastic agents” and S01-“Ophtamoligicals. 
Finally, 5 antineoplastic agents (designated ATC code L01) were 
excluded from the list of SSDs, this is because these drugs have the po
tential for severe side effects [60] [–] [62] and therefore would be un
suitable to treat mild COVID-19 infections. This reduced the final list of 
SSDs to 60. 

2.3. Prioritisation of SSDs by their biological function 

For the identified SSDs which have similar chemical structure to C19- 
CTDs, the next stage of the analysis was to map their biological functions 
based on the proteins they target and the role of these proteins in the 
context of early SARS-CoV-2 infection. As part of this process, a previ
ously published SARS-CoV-2-induced protein (SIP) network [48] of 
protein-protein interactions (PPI) that occur at 24-h after SARS-CoV-2 
infection was used as the base network to investigate SSDs in the 
context of COVID-19. This SIP network contains a computationally 
constructed PPI layer that connects directly interacting proteins (DIPs) 
and differentially expressed proteins (DEPs) identified by mass spec
trometry [48,63,64]. The 24-h SIP network was selected as it contains a 
high concentration of protein-protein interactions (PPI) in RNA- or 
viral-replication related pathways [48], which this study wanted to 

M. MacMahon et al.                                                                                                                                                                                                                           



Informatics in Medicine Unlocked 43 (2023) 101387

3

Fig. 1. Drug structural similarity screening (A) Histogram showing the number of drugs in PhaseII + clinical trials with a Tc > 0.4 and <1 that are similar to C19- 
CTDs. The cut off for similarity of 0.7 used in this study is shown by the blue dashed line. The red box highlights the drug structures shown in panels B–L in the form 
of a heatmap of similarity. (B) Tamoxifen predicts afimoxifene. (C) Verapamil predicts gallopamil. (D) Sirolimus predicts (E) everolimus, (F) ridaforolimus, (G) 
temirolimus, and (H) zotarolimus. (I) Dexamethasone predicts triamcinolone. (J) Icosapent predicts docosapentaenoic acid. (K) Amoxicillin predicts ampicillin. (L) 
Mannitol predicts xylitol. The structural differences are highlighted in red. 

Fig. 2. Overview of SSD prediction and filtering. This figure shows the workflow used to identify SSDs from C19-CTDs and filtering steps used to and identify 
those with potential for treating early COVID-19 including the number of SSDs retained after each filtering step. 
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examine in greater detail. 
To prioritise SSDs based their biological function, the targets of SSDs 

and C19-CTDs were compared. The comparison categorised the targets 
into three groups (Supplementary Table 1). In the first group, 16 SSDs 
among 60 short-listed SSDs have identical targets to their corresponding 
C19-CTD and would therefore be expected to have the same biological 
function. In the second group, 11 SSDs have the same targets as their 
corresponding C19-CTD in the context of proteins affected in early 
SARS-CoV-2 infection (ie. proteins within the 24-h SIP network) and 
might therefore be predicted to have the same biological function in this 
context. In the third group, 17 SSDs have some different targets from 
their corresponding C19-CTD, indicating they might have different 
biological function. Additionally, 16 SSDs were excluded at this stage 
due to lack of target information meaning no comparison could be 
carried out. 

Since the third group of 17 SSDs target different proteins, they 

cannot be assumed to have the exact same biological implications as the 
C19-CTD from which they were predicted, although they could still 
impact the same pathways. We studied SSDs in this group farther, as 
although they might have no utility,some may also have an advantage in 
that SSDs with different biological implication to their C19-CTD could 
be particularly appropriate as drug repurposing candidates: if any have 
utility despite having some difference in biological implication to their 
corresponding C19-CTD then treatment options available to patients 
could be expanded. For this reason, SSDs in this group underwent 
further analysis establish their MoA in the context of early SARS-CoV-2 
infection. 

2.4. Mechanism of action analysis of SSDs in relation to COVID-19 

An initial pathway enrichment analysis carried out on the target 
proteins of all 28 drugs in the third group (17 SSDs and 11C19-CTDs 

Fig. 3. Drug-pathway association study (A) 20 SOM component plane heatmaps, one for each set of SSDs which were not correlated to their corresponding C19- 
CTDs. In each plane heatmap, the hexagon in a certain position corresponds to a set of unique pathways which has the same position across all heatmaps (drugs). 
Each hexagon is coloured according to the distance between corresponding data vectors of neighbour neurons, with low distances areas (bright yellow) indicating 
high data density. The 488 pathways assigned to hexagons in the SOM heatmap were clustered using a unified distance matrix (U-matrix) (B), that captures the 
distribution of the trained artificial neurons in the data space (C). The SOM also provided the clustering information based on the U-matrix and number of hits 
(pathways) per hexagon (neuron) (D). In addition, the Davies–Bouldin index (DBI) was used to establish the optimal number of clusters for k-means clustering (E). 
Using this information, 488 pathways were classified into 10 pathway clusters (F). 
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from which they were predicted) identified a set of 488 enriched bio
logical pathways. To measure the extent to which the targets of each 
drug were associated with any of these 488 pathways, an F1 score was 
calculated for each drug to pathway association. From these, an F1 score 
matrix was generated, with 488 F1 scores for each of the 28 drugs, 
scoring their association with each of the 488 enriched pathways. 

The unsupervised training of a Self-Organizing Map (SOM) with this 
F1 score matrix generated 28 SOM component plane heatmaps (Sup
plementary Fig. 1; Fig. 3). Each heatmap represents one drug, and each 
hexagon in the heatmap represents unique pathways which have clus
tered together, and which have the same position across all heatmaps 
(corresponding to drugs) (Fig. 3B–F). As the position of hexagons re
mains consistent across all SOM heatmaps, this allows direct visual 
comparison between pathways affected by each drug. To check how 
similar drug-pathway associations were between SSDs and their corre
sponding C19-CTD, the correlation coefficient (r) between SOM heat
map values for each pair was calculated (Supplementary Table 2). This 
was carried out to narrow the focus on SSDs with different biological 
implications to their corresponding C19-CTDs. 12 SSDs which were not 
correlated with their corresponding 8C19-CTDs (r < 0.5) were identified 
(Fig. 3A). These SSDs are triamcinolone and beclomethasone (which are 
similar to dexamethasone), Omega-3-carboxylic acids (which is similar 
to icosapent), beta-carotene (which is similar to isotretinoin), dextro
thyroxine (which is similar to Liothyronine), xylitol (which is similar to 
mannitol), Clinidipine (which is similar to nimodipine), gallopamil 
(which is similar to verapamil) and four SSDs similar to zinc sulfate. 

2.5. In silico target validation of SSDs which have potential in treating 
early COVID-19 

As current approved drugs for early stage COVID-19 infection pre
vent SARS-COV-2 replication [65], and later stage patients with severe 
disease may develop cytokine storm [4] (an uncontrolled immune 
response), it was reasoned that drugs which target viral-replication 
associated proteins/pathways might be more useful for the treatment 
of early-stage disease, while drugs whose targets are linked with 
immune-response-associated pathways might be better suited for 
later-stage COVID-19 infection. To assess whether any of the 12 SSDs 
would be useful in treating early COVID-19 infection the capacity of 
these drugs to impact pathways related to viral replication was inves
tigated using the SOM generated data (Fig. 3F). For example, the cor
relation coefficient between dexamethasone and both SSDs predicted 
from it (beclomethasone and triamcinolone) was lower than 0.5, making 
it probable that these drugs have a MoA that is distinct from dexa
methasone (Fig. 3A1, Supplementary Table 2). The SOM heatmap for 
beclomethasone is associated with pathways related to the immune 
response, including the estrogen receptor (ESR) [66], glycosylation 
[67], mitogen activated protein kinase (MAPK), activation protein 1 
[68] (AP-1) and phospholipase A2 (PLA2) [69] pathways (Fig. 3F, 
Supplementary Table 3). Interestingly, triamcinolone is associated with 
the high-density lipoprotein (HDL) remodelling pathway (Fig. 3F), a 
pathway that is reported to be strongly associated with coronavirus 
replication [70,71]. 

Due to their association with viral-replication pathways in the SOM, 
by the same approach, gallopamil, omega-3-carboxylic acids and beta- 
carotene were also investigated as potential treatments for COVID-19 
at an early stage of infection. The SOM heatmaps for gallopamil and 
triamcinolone are highly similar (Fig. 3A1 and Fig. 3A7), and unsur
prisingly gallopamil is also associated with HDL remodelling (Fig. 3F). 
Omega-3-carboxylic acids is associated with fatty acid beta-oxidation, 
which is related to virus replication [72]. Beta-carotene is associated 
with the retinoic acid (RA) pathway, which is also related to virus 
replication. However, omega-3-carboxylic acids and beta-carotene are 
both listed as discontinued in the FDA approved drugs database [73] and 
so they were not analysed further in relation to early COVID-19. 
Although beta-carotene appears to be available in other jurisdictions, 

it is linked with increased risk of lung cancer [74,75] and possibly 
pneumonia [76,77] in individuals who smoke. Smoking is associated 
with increased severity of disease and death in hospitalised COVID-19 
patients [78]. 

As a result of these insights, only triamcinolone and gallopamil were 
analysed further for a potential impact on viral-replication in patients 
with early and mild to moderate COVID-19 symptoms. Triamcinolone is 
a corticosteroid, which is approved for the treatment of a range of in
flammatory conditions including arthritis, asthma, and skin conditions. 
Triamcinolone inhibits nuclear factor kappa-B, which decreases the 
production of pro-inflammatory signals such as interleukin-6 (IL-6), 
interleukin-8, and monocyte chemoattractant protein-1 [79]. IL-6 has an 
important role in cytokine release syndrome [80], which is triggered in 
patients with severe COVID-19 symptoms. Sustained elevation of IL-6 is 
also linked to death in acute respiratory distress syndrome [81] (ARDS), 
the respiratory condition experienced by critically ill patients with 
COVID-19. 

Gallopamil is an L-type calcium channel blocker and an analogue of 
verapamil. Gallopamil is not yet approved for the treatment of any 
disease, although it has been tested in a Phase II trial as an orally 
administered drug for patients with severe asthma [82]. Gallopamil 
targets membrane metalloendopeptidase (MME), which is a type 2 
transmembrane glycoprotein that cleaves angiotensin converting 
enzyme 1 (ACE) and ACE2. Since ACE2 is a cellular entry point for 
SARS-CoV-2 into human cells [83], this could be a potential mechanism 
through which gallopamil impacts SARS-CoV-2 replication. Addition
ally, ACE directly interacts with the HDL remodelling pathway proteins 
APOA1, APOE and ALB, as well as kinases that are activated in response 
to viral infection (AKT1, MAPK3, and MAPK1). 

2.6. Triamcinolone and gallopamil targets impact SARS-CoV-2 
replication 

To establish the potential effect of triamcinolone and gallopamil on 
the replication of SARS-CoV-2, in silico validation was performed on 
their targets within the SIP network [48]. The proximity of the targets of 
each drug to a group of kinases that are predicted based on the regula
tion of their known substrates [84] to be active in the first 24-h post 
infection with SARS-CoV-2 was measured. Both triamcinolone and gal
lopamil have 3 targets in the SIP network, and for both drugs, a per
mutation test showed that their targets are significantly (P < 0.05) closer 
to the active kinases identified by Bouhaddou et al. [84] than 10,000 
randomly selected groups of three proteins (Fig. 4A). Indeed, targets of 
both these drugs directly interact with some of these active kinases 
identified by Bouhaddou et al. [84] (Fig. 4B). 

As a further in silico check of the potential efficacy of triamcinolone 
and gallopamil in inhibiting SARS-CoV-2 replication, the activity levels 
(expression patterns) of the target genes of these two drugs in data from 
patients with moderate symptoms of COVID-19 was investigated. Viral 
replication is known to be active in patients with moderate COVID-19 
symptoms but decreased in patients who are severely ill with COVID- 
19 [85]. Using the SOM results, a list of the proteins and pathways 
that are targeted by the two drugs was generated (Fig. 3F, Supplemen
tary Fig. 2). To examine pathways being targeted, drugs were mapped to 
key pathways using SOM component plane heatmap (Fig. 3A) and 
pathway clusters (Fig. 3F, Supplementary Fig. 2). For example, in the 
plane of the SOM component of triamcinolone (Fig. 3A), the yellow 
hexagons are the triamcinolone associated pathways. The positions of 
the yellow hexagons in the triamcinolone SOM component plane can be 
mapped to the HDL remodelling pathway cluster, whose location can be 
seen in Fig. 3F. This cluster is also associated with gallopamil (Fig. 3F), 
and transcriptome analysis was used to identify upregulated pathways in 
this cluster. The neighbouring proteins of the drug’s target proteins 
within each pathway were examined; that is, the proteins within each 
pathway that directly interact with the target proteins in the SIP 24-h 
network (Fig. 4B). The proteins in the HDL remodelling pathway were 
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found to be significantly upregulated compared with a random selection 
of the same number of proteins (the drugs target proteins plus neigh
bouring proteins of the HDL-remodelling pathway) (Mann Whitney U 
test p-value <0.05, Fig. 4C, Supplementary Table 4). Of the targets of the 
two drugs, ACE, and serpin peptidase inhibitor clade A member 6 
(SERPINA6) directly interacted with APOA1 in the SIP 24-h network. 
APOA1, which is a major transporter of HDL-cholesterol and is essential 
for HDL metabolism and remodelling [86], has been linked in silico to 
the severity of COVID-19 [87,88]. The subnetwork for each drug 
(Fig. 4B) shows that both gallopamil and triamcinolone interacted with 

proteins that directly interact with SARS-CoV-2, with kinases proposed 
to be active during early infection, with the HDL remodelling pathway 
including APOA1, and with proteins that show expression changes in the 
first 24 h of COVID-19 infection (Fig. 4B, Supplementary Video 1). As 
the target proteins of gallopamil and triamcinolone directly interact 
with these key proteins, these data indicate mechanisms by which these 
two drugs might impact early COVID-19 infection. 

Fig. 4. In silico validation of gallopamil and triamcinolone. (A) Histogram of the results of a permutation test, the average distances between 10,000 groups of 3 
proteins and kinases active at 24 h after infection with SARS- COV-2. The distances of the gallopamil and triamcinolone targets are indicated with arrows, and the red 
dashed line shows the permutation cut-off for the 5 % of protein groups closest to the kinases (p-value = 0.05) (B) Subnetwork of gallopamil and triamcinolone target 
proteins and their direct interactors showing how the targets of both drugs interact with proteins, which are proposed to be important in COVID-19 infection. The 
targets of both drugs (yellow) interact with DIPs (red), DEPs (blue), active kinases (green), and the proteins related to the HDL remodelling pathway (purple). (C) 
Boxplots showing targets of drugs in HDL remodelling pathway and their neighbouring proteins are up-regulated compared to control in patients with moderate 
COVID-19 symptoms. The control results in the boxplot show fold-change of random genes with the same number of target proteins and neighbour proteins as the 
drugs of interest. Significance was tested by the Mann Whitney U test (p-value <0.05). 
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3. Discussion 

In this study, an in silico approach was taken to identify drugs that 
have structural similarity to drugs already in clinical trials for the 
treatment of COVID-19. Of 65 unique drugs predicted, 19 have also been 
predicted by other in silico repurposing studies targeting COVID-19, 
which used different approaches to this study. This overlap with other 
repurposing studies suggests lends support to the validity of this 
approach. 

Of the 60 predicted drugs, 29 can be considered from this analysis to 
have some potential for repurposing in COVID-19. Firstly, 16 have a 
highly similar structure and the exact same targets, so would be pre
dicted to have the same biological activity, therefore should the drug to 
which they are similar succeed in clinical trials, these drugs would be 
expected to be similarly useful in patients with COVID-19 at the same 
stage of disease pathogenesis as their corresponding C19-CTD. Addi
tionally, 11 other drugs have the same protein targets as their corre
sponding C19-CTD within an interaction network containing proteins 
that are predicted to be active in patients 24 h after infection with SARS- 
CoV-2, and should their corresponding C19-CTD be approved in early or 
mild-moderate infection, these would be expected to functionally 
overlap, and could similarly be investigated for repurposing at this stage 
of infection. This study has further examined drugs that have structural 
similarity to drugs already in COVID-19 clinical trials but, target 
different pathways. The analyses from this study indicate that 2 of these, 
triamcinolone and gallopamil, have a distinct MoA related to virus 
replication and therefore might be useful in the early treatment of pa
tients infected with SARS-CoV-2 who are at high risk of developing se
vere COVID-19. This supports the finding in a study by Zhou et al. [50] 
published before there was available interactome data for SARS-CoV-2, 
which examined network interactomes of other human coronaviruses 
including SARS-CoV and MERS-CoV, and with which this study had 3 
overlapping drugs, that triamcinolone was found to be significantly 
associated with the MERS-CoV-host interactome. With regards to gal
lopamil in the context of repurposing, no other study has proposed this 
drug. However there are several studies which suggest the use of calcium 
channel blockers has been associated with decreased mortality in pa
tients hospitalised with COVID-19 [89–91], particularly in those pa
tients with hypertension [90,91], which is a risk factor for severe 
infection and death with COVID-19 [92,93] and gallopamil is a calcium 
channel blocker. 

This in silico approach is based on publicly available data from online 
databases such as STITCH [94] and ChEMBL [57], and studies published 
in response to the pandemic [48,64,84,85]. The focus of this study on 
drugs that are in clinical trials for COVID-19 was a logical starting point 
given the urgent nature of the COVID-19 pandemic, but this has some 
obvious limitations. Firstly our understanding of COVID-19 is still 
developing, and as the controversy surrounding hydroxychloroquine 
[95] highlights, a drug being in a COVID-19 clinical trial does not 
necessarily mean it is likely to be effective. A limitation of structural 
similarity-based approaches such as this is that investigations are 
limited to the chemical structure data available. Results are limited to 
similarity to the starting set (in this case C19-CTDs) which is limited by 
its nature, and are identified from within the chemical space available to 
screen against, relying on chEMBL as with all externally curated data
bases limits results within database comprehensiveness and curation 
[96]. Additionally, this approach relies on the assumption that similar 
structure has similar biological activity [97,98] whereas small changes 
in chemical structure may change the way a molecule interacts with a 
target protein meaning structurally similar compounds, even those with 
the same targets, may not have similar activity. Instances where two 
compounds are structurally similar, with the same targets, but different 
potency levels when interacting with targets, are known as activity cliffs 
[99]. An additional limitation of this study is that owing to the 
chemical-structure-based approach the focus was on small molecules 
only and did not take biologics into account. Polypharmacology is a term 

describing when drugs interact with multiple targets [100], as many 
C19-CTDs and SSDs do (Supplementary Table 1). When drugs hit an un 
known or unintended biological target this is known as an off-target 
effect [101]. Off-target effects can cause adverse drug reactions in pa
tients [102]. In this paper we focused on annotated targets of drugs, 
specifically those active in early COVID-19 infection, this is a limitation 
as it is unknown how inhibiting other targets (either unknown or outside 
the network of proteins active in early infection) of these drugs could 
impact disease progression. The decision to only study SSDs which were 
in at least a phase 2 clinical trial was taken to ensure drugs identified for 
repurposing in this study were already tested for safety in humans. 
Online curated publicly available databases were used to obtain target 
information for comparing C19-CTDs to SSDs; while these are important 
and useful resources, they do not take account of incomplete drug in
formation, and especially in relation to inactivity and off-target effects 
may be skewed towards underreporting [103]. Future in silico work 
could include using chemoinformatic tools to search for proteins with 
similar binding sites to predict off target effects [104]. Finally, although 
in silico validation has indicated promise for triamcinolone and gallo
pamil, these results are based on a protein-protein interaction (PPI) 
network generated from cell-derived mass spectrometry data and a PPI 
resource [105], which lack directionality for the protein interactions 
[48]. These limitations highlight the key point that in silico work sup
ports experimental work, and wet lab follow-up studies in experimental 
in vitro and in vivo models are required to verify the clinical potential of 
these predictions. 

3.1. Conclusions 

This in silico study has predicted drugs that have potential for 
repurposing for the treatment of COVID-19. The overlap with other 
COVID-19 drug repurposing studies lends support to this approach. A 
further MoA analysis predicts triamcinolone and gallopamil as drugs 
with potential for targeting the replication of SARS-CoV-2. Of the two, 
triamcinolone is already approved for other indications, so could be 
deployed quickly. Gallopamil has passed Phase II trials and could be 
quickly prioritised into COVID-19 trials. All drugs predicted require 
further investigation in in vitro and in vivo models, as well as clinical 
trials. It is likely that further diseases of zoonotic origin will emerge in 
the future [106], and the scientific community must be prepared to 
respond rapidly to future pandemic threats. This kind of in silico 
approach allows for a quick and cost-effective approach to repurposing 
drugs, which could be deployed in such a situation. 

4. Materials and methods 

4.1. Obtaining list of structurally similar drugs 

A list of 184 COVID-19 clinical trial drugs (C19-CTDs) was obtained 
from DrugBank [58] (date accessed 25/05/2020). There were 153 small 
molecules (Supplementary Table 5) and 31 biotech drugs, as this anal
ysis was based on chemical structure, biotech drugs were excluded. 
Drugbank is an online bioinformatics and chemoinformatics database 
which contains data on drugs and their targets, for instance the structure 
of a drug and any clinical trials it has been involved in as well as 
approval status. ChEMBL is a database containing bioactivity data for 
drugs and drug-like molecules and tools for mining this information, 
including by searching for similar chemical structures within the 
ChEMBL database itself [57]. The ChEMBL application programming 
interface (API) for chemical structural similarity accepts input in the 
simplified molecular-input line-entry system (SMILES) format, which is 
a format for represents chemical structures using ascii strings [107]. For 
each C19-CTD, the structure in SMILES format was extracted from the 
DrugBank data (script in code repository). The ChEMBL API library 
(written in python) was used to obtain a list of structurally similar drugs 
(SSDs) which were phase II clinical trial or higher from ChEMBL (script 
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in code repository). SSDs that were in Phase II clinical trials or higher for 
any condition were retained at this stage because they passed Phase I 
trials and have therefore been tested for safety in humans. The ChEMBL 
structural similarity tool used is based on the Tanimoto coefficient (Tc), 
a similarity measure widely used in molecular fingerprint comparison 
[59]. 

4.2. Filtering the list of SSDs 

The list of SSDs was refined to remove drugs which fell into several 
categories (Fig. 2). Tc > 0.7 was used as a similarity cut off. For context, 
a threshold of 0.7–0.75 is typical for structure based screening [108]. 
The list of SSDs was cleaned to remove drugs which were already 
C19-CTDs, drugs which are synonyms of C19-CTDs (using synonym in
formation from Drugbank) and effective duplicates that behave the same 
in the body despite of a slightly different chemical structure (using salt 
information from Drugbank). 

4.3. Obtaining target information for drugs 

Target information for all drugs was collected from target informa
tion in DrugBank [58], targets in Therapeutic Target Database (TTD) 
[109] and targets with interaction confidence score ≥ 0.7 in drug to 
target interactions from STITCH (v 5.0) [110], a score of 0.7 is consid
ered high confidence by STITCH [111]. TTD is a database containing 
target-specific drug binding information about known therapeutic tar
gets from literature [109]. STITCH is a database containing scored in
teractions between proteins and small molecules which has evidence 
from experimental/biochemical data, association in curated databases 
and co-mention in abstracts from the scientific literature [94]. 

4.4. Filtering of drug list based on target information 

The SARS-CoV-2-induced protein (SIP) network at 24 h generated by 
Han et al. [48] was used as the base network to investigate the 
COVID-19 pathways on which these structurally similar drugs (SSDs) are 
acting. This SIP network is a network constructed in silico of the 
protein-protein interaction pathways which are activated at 24 h post 
COVID-19 infection. The methods for construction of this network are 
described in the Han et al. paper [48]. Briefly, this network contains the 
directly interacting proteins (DIP) of SARS-CoV-2 identified by mass 
spectrometry [64], differentially expressed proteins (DEP) after infec
tion by SARS-CoV-2 identified by mass spectrometry [63], and a layer of 
connections between the two built by obtaining all shortest paths be
tween DIP proteins and DEP proteins using known protein-protein 
interaction (PPI) data as described in the Han et al. paper [48]. 

4.5. Distance between targets of SSD and the targets of C19-CTD 

The distance dc(S, C) is defined between S, the set of target proteins 
of a SSD, and C, the set of target proteins of a C19-CTD, as the shortest 
path length d(s, c) between all pairs of nodes s ∈ S and c ∈ C in the SIP 
24-h network [48]. Closest distance measure (equation (1)) was used to 
calculate the distance between a SSD’s target to its corresponding 
C19-CTD’s target in the SIP 24-h network because it showed the best 
performance in drug-drug relationship prediction in a study by Cheng 
et al. [112]. If the average distance <1 between the targets of any SSD 
and its corresponding C19-CTD in the SIP 24-h network [48] the two 
drugs don’t have different targets in the network. 

dc(S,C)=
1

‖C‖

∑

c∈C
mins∈Sd(s, c) (1)  

4.6. Drug-pathway associations 

To identify key pathways that are significantly enriched in the 

proteins that are targeted by 28 SSDs and C19-CTDs, pathway enrich
ment analysis was conducted using R (v 3.5.2) package gprofiler2 [113] 
gost function, which uses a hypergeometric test to identify genes over
represented in known pathways for functional enrichment analysis of 
gene list (FDR-BH < 0.05). Reactome is a database of manually curated 
and peer reviewed biological interactions, including curated human 
pathways organised based on biological function [114]. Although there 
are a number of pathway databases [115,116], Reactome (accessed on 
15/05/2020) was chosen for pathway enrichment analysis because it is 
the most actively updated public database containing human pathways 
[117]. To understand the MoA of the 28 drugs, pathway enrichment 
analysis was performed on the targets of each of these drugs. The 
number of target proteins of the 28 drugs ranges from 2 to 125. The 
average number of target proteins of the 28 drugs is 14. Drugs targeting 
fewer than six proteins have too few protein targets to have significantly 
enriched pathways. To overcome this problem for drugs with fewer than 
the average number of target proteins (ie. 14), neighbour proteins (ie. 
proteins with which they directly interact) of the target proteins in the 
SIP 24-h network were included in their target list for enrichment 
analysis, up to 14 proteins. Significantly enriched biological pathways of 
target proteins for each of the 28 drugs were integrated, resulting in 488 
key pathways. The Reactome pathway database has a hierarchical 
structure of biological pathway. For a given function, the lower hierar
chy pathways are more specific than the higher hierarchy pathways. 
Additionally, the parent pathway semantically includes its child path
ways. For instance, the parent (highest) hierarchy pathway “Transport 
of s mall molecules” contains “Plasma lipoprotein assembly, remodel
ling, and clearance” among its child pathways, which in turn contains 
“Plasma lipoprotein remodelling” as a child pathway, “HDL remodel
ling” is contained within this pathway, therefore it is also contained 
within the higher hierarchy levels. In the process of integrating the 
enriched pathways per drug, the lowest-possible hierarchy pathways 
were used to avoid overlapping biological meaning among the hierar
chical pathways. 

Based on these identifications, a matrix containing F1 scores of the 
28 drugs and the 488 key pathways was generated for drug-pathway 
association. F1 score is the harmonic mean of precision and recall 
values in a classification and is an accuracy metric used here to calculate 
enrichment accuracy. The Reactome pathway enrichment analysis for 
the 28 drugs using gprofiler2 [118] provides enrichment p-values, pre
cision and recall information that were used to produce the F1 scores. 
The meaning of precision here is that the proportion of a drugs target 
proteins that are annotated to the pathway. The meaning of recall here is 
that the proportion of the pathway gene sets that a drugs target proteins 
are located in. Precision and recall were used to construct a matrix of F1 
score (F1 = 2(precision x recall)/(precision + recall) from the pathway 
enrichment analysis. 

4.7. SOM analysis of pathways impacted by targets of drugs 

Self-Organizing Map (SOM) [117] was used to analyse the MoA of 
the candidate drugs based on pathways impacted by their targets in this 
analysis. SOM, a type of artificial neural network, is an unsupervised 
machine learning technique used for dimensional reduction and clus
tering. Due to the map representation feature of SOM, this technique 
also has an ability to describe and visualise high dimensional data. For 
this reason, it was useful to directly compare the SOM component 
heatmaps of the 28 drugs for COVID-19 with one another. SOM also has 
the advantage of dimensional reduction to allow a clearer clustering 
result. SOM was used to calculate the low-dimensional abstractions, 
which are then clustered using k-means. This two-phase approach in
creases the efficiency of k-means clustering with a relatively small 
number of samples, a known limitation in hierarchical clustering algo
rithms including k-means [119]. Another advantage of SOM is noise 
reduction because the SOM abstractions are less sensitive to random 
variations than the input data. In addition, SOM offers a systematic 
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arrangement of the candidate drugs to each neuron (or node) and hence 
to pathway clusters (Fig. 3C). 

The data used in training was the F1 score matrix for Drug-Pathway 
associations (key pathways to candidate drugs). From the SOM training 
results a Unified distance matrix is generated which captures the dis
tribution of the trained artificial neurons in the data space, this contains 
the vector norms between the neighbouring SOM nodes and shows data 
density in input space. Each sub-unit is coloured according to distance 
between corresponding data vectors of neighbour units. Low distances 
areas (dark blue) have high data density (clusters) (Fig. 3B). Davies- 
Bouldin (DB) index [120], a method for identifying the optimal k 
number for k-means clustering,was calculated based on the U-matrix to 
determine the optimal number of clusters. DB index is calculated by 
obtaining the average similarity of each cluster with the cluster most 
similar to it. The lower the DB index is, the better separated clusters are. 
The lowest DB index value occurred at 10 clusters (Fig. 3F). The k-means 
algorithm was then used to cluster pathways (Fig. 3F). The SOM 
component maps of key pathways were analysed based on the k-means 
clustering result (Fig. 3F) and mapped into two MoA categories based on 
the biological functions (Fig. 3F). The mapping result of key pathways to 
clusters is available in Supplementary Table 3. The SOM Toolbox 
package [121] for MatLab was used for this analysis with default settings 
and parameters. 

4.8. In silico mechanism of action analysis of triamcinolone and 
gallopamil 

To identify MoA for triamcinolone and gallopamil in COVID-19 their 
relationships within the SIP 24-h SARS-CoV-2 network were identified. 
There are 14,827 proteins and 528,969 interactions in this network. 
Bouhaddou et al. [84] predicted kinase activities in the first 24h post 
infection with SARS-CoV-2 based on the regulation of their known 
substates. From their data all kinases with activity absolute LogFC >1.5 
at any time point in the first 24h post infection for verification were used 
as these are being activated in early SARS-CoV-2 infection. To estimate 
the proximity of the targets of the drugs of interest to these active ki
nases in the SIP network, the distance of each target to each kinase was 
calculated and the average of these distances was taken. To establish 
significance, a permutation test was used as follows; each drug had 3 
targets in the network, so 10,000 groups of 3 proteins present in the 
network were randomly generated and the average distance of these 
from the active kinases was calculated (Fig. 4A, Supplementary Video 
1). A permutation test is an exact test to establish statistical significance 
of a null hypothesis by randomly resampling all data points [122], it has 
been applied in network analysis based drug repurposing [48,50,112]. 
The closest 5 % distances to the kinases were used as a cut off to establish 
significance of P < 0.05. To visualise the target proteins interacting with 
these kinases and other key COVID-10 proteins, subnetworks were 
plotted using Virtualitics Immersive Platform [123]. An additional 
movie file shows this in more detail (Supplementary Video 1) 

4.9. Expression analysis of the drugs target proteins using COVID-19 
patients’ data 

To indirectly validate the effects of triamcinolone and gallopamil in 
COVID-19, it was established whether the target proteins of these drugs 
are significantly changed between patients with moderate and severe 
COVID-19 as compared to the expression of random proteins. Arunna
chalam et al. [85] provide Log2 fold change gene expression values 
between 4 COVID-19 moderate patients compared to 12 COVID-19 se
vere patients. In the boxplot shown in Fig. 4C Expression of proteins 
belonging to pathways in the HDL remodelling cluster (Fig. 3F) which 
were also among the neighbour proteins of each of the drug’s targets in 
the SIP 24-h network were compared to the same number of randomly 
selected control proteins, comparisons for the significantly upregulated 
pathway are shown in Fig. 4C. To ensure the control proteins were 

unbiased, this random choice was repeated for 100 permutations to 
create control protein expression values. For example, if five of the 
target proteins and their neighbour proteins belong to the pathway in 
the HDL remodelling cluster, 500 proteins were randomly selected and 
made into control proteins. The Mann Whitney U test, a non-parametric 
version of the independent samples t-test [124], was performed to 
determine whether the expression two groups were significantly 
different between moderate and severe COVID-19 patients. 
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[59] Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for 
fingerprint-based similarity calculations? J Cheminf 2015;7:20. https://doi.org/ 
10.1186/s13321-015-0069-3. 

[60] Hamnvik O-PR, Larsen PR, Marqusee E. Thyroid dysfunction from antineoplastic 
agents. JNCI J Natl Cancer Inst 2011;103:1572–87. https://doi.org/10.1093/ 
jnci/djr373. 

[61] Dimopoulou I, Bamias A, Lyberopoulos P, Dimopoulos MA. Pulmonary toxicity 
from novel antineoplastic agents. Ann Oncol 2006;17:372–9. https://doi.org/ 
10.1093/annonc/mdj057. 
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