Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4271
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVarathan, N.
dc.contributor.authorWijekoon, P.
dc.date.accessioned2021-11-29T04:30:33Z
dc.date.accessioned2022-06-28T06:46:05Z-
dc.date.available2021-11-29T04:30:33Z
dc.date.available2022-06-28T06:46:05Z-
dc.date.issued2018
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/4271-
dc.description.abstractIn this paper, we propose a new efficient estimator namely Optimal Generalized Logistic Estimator (OGLE) for estimating the parameter in a logistic regression model when there exists multicollinearity among explanatory variables. Asymptotic properties of the proposed estimator are also derived. The performance of the proposed estimator over the other existing estimators in respect of Scalar Mean Square Error crite rion is examined by conducting a Monte Carlo simulation.en_US
dc.language.isoenen_US
dc.publisherUniversity of Jaffnaen_US
dc.subjectlogistic regression;en_US
dc.subjectbiaseden_US
dc.subjectmulticollinearityen_US
dc.subjectestimatoren_US
dc.subjectOptimal generalized logistic estimatoren_US
dc.subjectScalar mean square erroren_US
dc.titleOptimal generalized logistic estimatoren_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
Optimal generalized logistic estimator.pdf1.29 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.