Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/228
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKannan, K
dc.date.accessioned2014-02-02T09:28:27Z
dc.date.accessioned2022-06-28T06:46:02Z-
dc.date.available2014-02-02T09:28:27Z
dc.date.available2022-06-28T06:46:02Z-
dc.date.issued2013
dc.identifier.issn13118080
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/228-
dc.description.abstractLet G be a countable exact discrete group. G has the strong invariant approximation property(SIAP) if and only if C* u(G, S)G = C*λ(G) ⊗ S for any Hilbert space H and closed subspace S ⊆ H. We shall use results of Haagerup and Kraus on the approximation property (AP) to investigate some permanence properties of the SIAP for discrete groups. This can be done most efficiently for exact groups. In this paper we describe that the stability properties of the SIAP property pass to semi direct products, and extensions for discrete exact groups.en_US
dc.language.isoenen_US
dc.publisherAcademic Publications, Ltden_US
dc.subjectInvariant approximation propertyen_US
dc.subjectStrong invariant approximation propertyen_US
dc.subjectUniform Roe algebrasen_US
dc.titleThe stability properties of strong invariant approximation propertyen_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
2.Kannan-The stability properties of strong invariant approximation property.pdf277.64 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.