Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/174
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJeyakumar, V
dc.contributor.authorSrisatkunarajah, S
dc.contributor.authorHuy, N.Q
dc.date.accessioned2014-02-01T15:06:04Z
dc.date.accessioned2022-06-28T06:46:01Z-
dc.date.available2014-02-01T15:06:04Z
dc.date.available2022-06-28T06:46:01Z-
dc.date.issued2008-07
dc.identifier.issn03990559
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/174-
dc.description.abstractIn this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimization problems, whereas our sufficient conditions give easily verifiable conditions for global optimality of various classes of nonconvex minimization problems, including the class of difference of convex and quadratic minimization problems. We discuss numerical examples to illustrate the optimality conditions.en_US
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.subjectbox constraintsen_US
dc.subjectDifference of convex functionsen_US
dc.subjectDiscrete constraintsen_US
dc.subjectglobal optimizationen_US
dc.subjectNonconvex optimizationen_US
dc.subjectOptimality conditionsen_US
dc.subjectQuadratic minimizationen_US
dc.titleUnified global optimality conditions for smooth minimization problems with mixed variablesen_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.