Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJeyakumar, V
dc.contributor.authorLee, G.M
dc.contributor.authorSrisatkunarajah, S
dc.date.accessioned2014-02-01T08:45:13Z
dc.date.accessioned2022-06-28T06:46:02Z-
dc.date.available2014-02-01T08:45:13Z
dc.date.available2022-06-28T06:46:02Z-
dc.date.issued2009-07
dc.identifier.issn0362546X
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/171-
dc.description.abstractIn this paper, we first establish that the Kuhn-Tucker necessary optimality condition is sufficient for global optimality of the class of convexifiable programming problems with bounds on variables for which a local minimizer is global. This result yields easily verifiable Kuhn-Tucker sufficient conditions for non-convex quadratic programs. We also present new conditions for a feasible point which satisfies the Kuhn-Tucker conditions to be a global minimizer of multi-extremal mathematical programming problems which may have local minimizers that are not global. In the multi-extremal case, the convexifiability of an augmented Lagrangian function plays a key role in deriving the result. As an application, we also derive sufficient optimality conditions for multi-extremal bivalent programming problems. Several examples are given to illustrate the significance of the results.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectBivalent programsen_US
dc.subjectConvexifiable functionsen_US
dc.subjectConvexifiable programsen_US
dc.subjectKuhn-Tucker sufficient optimalityen_US
dc.subjectMulti-extremal problemsen_US
dc.subjectQuadratic programsen_US
dc.titleNew Kuhn-Tucker sufficiency for global optimality via convexificationen_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Statistics

Files in This Item:
File Description SizeFormat 
4.New Kuhn-Jeyakumar.pdf178.24 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.