Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10021
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJananie, J.-
dc.contributor.authorLiChen-
dc.contributor.authorFeiXu-
dc.contributor.authorBoLi-
dc.date.accessioned2023-12-29T07:19:33Z-
dc.date.available2023-12-29T07:19:33Z-
dc.date.issued2022-
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10021-
dc.description.abstractWiththeabilitytosimplifythecodedeploymentwithone-clickuploadandlightweightexecution,serverlesscomputinghas emergedasapromisingparadigmwithincreasingpopularity.However,thereremainopenchallengeswhenadaptingdata-intensive analyticsapplicationstotheserverlesscontext,inwhichusersofserverlessanalyticsencounterthedifficultyincoordinatingcomputation acrossdifferentstagesandprovisioningresourcesinalargeconfigurationspace.Thispaperpresentsourdesignandimplementationof Astrea,whichconfiguresandorchestratesserverlessanalyticsjobsinanautonomousmanner,whiletakingintoaccountflexibly-specified userrequirements.Astreareliesonthemodelingofperformanceandcostwhichcharacterizestheintricateinterplayamongmultidimensionalfactors(e.g.,functionmemorysize,degreeofparallelismateachstage).Weformulateanoptimizationproblembasedon user-specificrequirementstowardsperformanceenhancementorcostreduction,anddevelopasetofalgorithmsbasedongraph theorytoobtaintheoptimaljobexecution.WedeployAstreaintheAWSLambdaplatformandconductreal-worldexperimentsover representativebenchmarks,includingBigDataanalyticsandmachinelearningworkloads,atdifferentscales.Extensiveresults demonstratethatAstreacanachievetheoptimalexecutiondecisionforserverlessdataanalytics,incomparisonwithvariousprovisioning anddeploymentbaselines.Forexample,whencomparedwiththreeprovisioningbaselines,Astreamanagestoreducethejobcompletion timeby21%to69%underagivenbudgetconstraint,whilesavingcostby20%to84%withoutviolatingperformancerequirements.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectCloud computingen_US
dc.subjectServerless computingen_US
dc.subjectResource provisioningen_US
dc.subjectModelingen_US
dc.subjectOptimizationen_US
dc.titleAstrea: Auto-Serverless Analytics Towards Cost-Efficiency and QoS-Awarenessen_US
dc.typeArticleen_US
Appears in Collections:Computer Engineering

Files in This Item:
File Description SizeFormat 
AstreaAuto-ServerlessAnalyticsTowards Cost-EfficiencyandQoS-Awareness.pdf2.73 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.