Please use this identifier to cite or link to this item: http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10004
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukunthan, T.-
dc.contributor.authorWenwu, W.-
dc.contributor.authorMichael, K.-
dc.contributor.authorRoberto Lo, R.-
dc.contributor.authorAnil, F.-
dc.date.accessioned2023-12-28T06:31:12Z-
dc.date.available2023-12-28T06:31:12Z-
dc.date.issued2023-
dc.identifier.urihttp://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10004-
dc.description.abstractAntimicrobialResistance(AMR)isagrowingpublicandveterinaryhealthconcern,andthe abilitytoaccuratelypredictAMRfromantibioticsadministrationdataiscrucialforeffectivelytreatingand managinginfections.Whilegenomics-basedapproachescanprovidebetterresults,sequencing,assembling, andapplyingMachineLearning(ML)methodscantakeseveralhours.Therefore,alternativeapproachesare required.ThisstudyfocusedonusingMLforantimicrobialstewardshipbyutilisingdataextractedfrom hospitalelectronichealthrecords,whichcanbedoneinreal-time,anddevelopinganinterpretable1DTransformermodelforpredictingAMR.Amulti-baselineIntegratedGradientpipelinewasalsoincorporated tointerpretthemodel,andquantitativevalidationmetricswereintroducedtovalidatethemodel.The performanceoftheproposed1D-Transformermodelwasevaluatedusingadatasetofurinarytractinfection (UTI)patientswithfourantibiotics.Theproposed1D-Transformermodelachieved10%higherareaunder curve(AUC)inpredictingAMRandoutperformedtraditionalMLmodels.TheExplainableArtificial Intelligence(XAI)pipelinealsoprovidedinterpretableresults,identifyingthesignaturescontributingto thepredictions.Thiscouldbeusedasadecisionsupporttoolforpersonalisedtreatment,introducing AMR-awarefoodandmanagementofAMR,anditcouldalsobeusedtoidentifysignaturesfortargeted interventions.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectTransformeren_US
dc.subjectMulti-drug AMRen_US
dc.subjectAntimicrobial stewardshipen_US
dc.subjectMissing labelsen_US
dc.subjectXAIen_US
dc.subjectMulti-label predictionen_US
dc.titleTrans AMR: An Interpretable Transformer Model for Accurate Prediction of Antimicrobial Resistance using Antibiotic Administration Dataen_US
dc.typeArticleen_US
Appears in Collections:Electrical & Electronic Engineering



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.