Please use this identifier to cite or link to this item:
http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10004
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mukunthan, T. | - |
dc.contributor.author | Wenwu, W. | - |
dc.contributor.author | Michael, K. | - |
dc.contributor.author | Roberto Lo, R. | - |
dc.contributor.author | Anil, F. | - |
dc.date.accessioned | 2023-12-28T06:31:12Z | - |
dc.date.available | 2023-12-28T06:31:12Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://repo.lib.jfn.ac.lk/ujrr/handle/123456789/10004 | - |
dc.description.abstract | AntimicrobialResistance(AMR)isagrowingpublicandveterinaryhealthconcern,andthe abilitytoaccuratelypredictAMRfromantibioticsadministrationdataiscrucialforeffectivelytreatingand managinginfections.Whilegenomics-basedapproachescanprovidebetterresults,sequencing,assembling, andapplyingMachineLearning(ML)methodscantakeseveralhours.Therefore,alternativeapproachesare required.ThisstudyfocusedonusingMLforantimicrobialstewardshipbyutilisingdataextractedfrom hospitalelectronichealthrecords,whichcanbedoneinreal-time,anddevelopinganinterpretable1DTransformermodelforpredictingAMR.Amulti-baselineIntegratedGradientpipelinewasalsoincorporated tointerpretthemodel,andquantitativevalidationmetricswereintroducedtovalidatethemodel.The performanceoftheproposed1D-Transformermodelwasevaluatedusingadatasetofurinarytractinfection (UTI)patientswithfourantibiotics.Theproposed1D-Transformermodelachieved10%higherareaunder curve(AUC)inpredictingAMRandoutperformedtraditionalMLmodels.TheExplainableArtificial Intelligence(XAI)pipelinealsoprovidedinterpretableresults,identifyingthesignaturescontributingto thepredictions.Thiscouldbeusedasadecisionsupporttoolforpersonalisedtreatment,introducing AMR-awarefoodandmanagementofAMR,anditcouldalsobeusedtoidentifysignaturesfortargeted interventions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.subject | Transformer | en_US |
dc.subject | Multi-drug AMR | en_US |
dc.subject | Antimicrobial stewardship | en_US |
dc.subject | Missing labels | en_US |
dc.subject | XAI | en_US |
dc.subject | Multi-label prediction | en_US |
dc.title | Trans AMR: An Interpretable Transformer Model for Accurate Prediction of Antimicrobial Resistance using Antibiotic Administration Data | en_US |
dc.type | Article | en_US |
Appears in Collections: | Electrical & Electronic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TransAMR_An_Interpretable_Transformer_Model_for_Accurate_Prediction_of_Antimicrobial_Resistance_Using_Antibiotic_Administration_Data.pdf | 1.56 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.