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ABSTRACT Electric batteries have gained attention with recent developments in the transport sector,
especially with electric vehicles (EVs) technology and with the rapid development in the energy storage
sector with application to the electricity grid. Lithium-ion batteries (LIBs) are particularly popular due to
their high-power density, high energy density, low self-discharge rate, and performance. LIB systems are
also widely utilized in extreme operating conditions and harsh environments, and the safe operation of any
battery management system requires rapid detection and accurate diagnosis of faults. To have an effective
fault diagnosis, the nonlinear behavior of battery systems has been studied in considering the battery real-
time operation. In addition, accurate battery models are used to mimic battery physical processes and predict
aging. The knowledge of battery model parameters plays a crucial role in accurately predicting performance
and ageing. This paper critically reviews different batterymodels, such as electrochemical models, equivalent
circuit models, and data-driven models. Then, the parameter extraction methods for the electrochemical
model were discussed critically since it has been identified as the most promising battery model and also
the techniques for the other battery models may rely on these approaches as they can be derived based on
the electrochemical model parameters. According to the literature parameter estimation for electrochemical
models was discussed under the categories of online, offline, and analytical methods. By the state-of-the-art
review conducted, it has been identified that the mixed method that combines the online and offline methods
shows good performance compared to using them separately. This paper also discusses some future research
directions to obtain better parameter extraction methods for electrochemical models to facilitate battery fault
diagnosis.

INDEX TERMS Battery modeling, lithium-ion battery, parameter extraction, battery management systems,
electric vehicles.

I. INTRODUCTION
The need for energy storage has seen significant growth
due to the rapid development in electric vehicles, wider
penetration of renewable energy, and smart grid technolo-
gies in addition to other applications such as hybrid elec-
tric aircraft and marine vessels. Technological advances in
lithium-ion batteries (LIBs) have resulted in their adoption
as one of the key energy storage devices. Advantages of
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LIBs over other types of energy storage devices include
high energy-to-weight ratio, minimal memory effects, low
self-discharge rates, and low cost [1], [2], [3]. The use of
LIBs in modern applications requires a battery management
system (BMS) [4], where charging/discharging, monitoring,
and control of the battery state are performed to ensure
safety, reliability, and optimal performance. Advanced BMS
technologies [4], [5], [6] typically consist of sensors that
measure the voltage, current and temperature of the battery
as well as a microprocessor that processes the sensor data for
fault detection and fault prognosis. To maintain the longevity
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of the battery and avoid catastrophic failure during a fault,
the BMS may also have protection features such as over-
charging and over-discharging protection. The development
of advanced BMS technologies requires modeling of the LIB
system and the LIB cell. LIB cells exhibit nonlinear behavior
in multi-spatial levels and therefore the model of the LIB
system is complex. A LIB systemmay also consist of an array
of cells, and the inconsistency between the cells also poses a
challenge in modeling the LIB.Mathematical models of LIBs
are widely used to date and can be categorized as;

1) Electrochemical models [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]

2) Equivalent circuit models [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27]

3) Data-driven models [28], [29], [30], [31], [32], [33],
[34]

The quantitative linkage between the electrochemical
model and the equivalent circuit models (ECM) has become
a research focus in the recent past [35], [36], [37]. Since the
ECM has an issue with the limited applicability for long-term
battery performance prediction under the ever-changing sys-
tem dynamics [23]. Though the ECMs are preferable in
real-time implementation considering the model simplicity
it has the issue with lower accuracy in the low SoC level.
Therefore, combining the electrochemical processes with the
ECM has been discussed in the literature. It has been identi-
fied that in the physics-based ECMs, the simplification of the
electrochemical model was used to address this issue [37],
[38], [39]. In [37] an electrochemical model was used as the
virtual battery to replicate the degradation mechanism and
this simulation has been used to estimate the ECMparameters
by varying the associated electrochemical model parame-
ters. Similarly in [39] the same electrochemical model was
simplified using finite volume methods and then ECM was
obtained for the same. It is clear that the identification and
estimation of the parameters of a electrochemical model have
a much impact on developing the ECM model for real-time
implementations rather than estimating the parameters for
ECM using an experimental approach. Therefore, in this
paper, we mainly discuss the parameter estimation method
for electrochemical battery models for LIBs.

In section II a review of the construction of LIB is pre-
sented and followed by battery modeling techniques, and
parameter extraction methods for electrochemical battery
models in sections III, IV respectively. In section V the chal-
lenges and future directions for LIB battery model parameter
extraction have been discussed and then in section V the
conclusion is presented.

II. REVIEW ON THE CONSTRUCTION OF THE LIB
LIB has two distinct compounds: cathode and anode within
the battery. These compounds are capable of reversibly inter-
calating and de-intercalating lithium ions. By convention,
the anode is referred to as the negative electrode and the
cathode as the positive electrode. The anode of LIB contains
carbon-doped materials and the cathode contains lithium-ion

FIGURE 1. Microscopic structure of LIB [42].

intercalation compounds such as LiCoO2 and LiFePO4. The
separator, which is placed in between the anode and the
cathode, is usually a microporous polymer membrane that
allows only the lithium ions to exchange between the cath-
ode and anode and prohibits the electrons to pass through.
The conventional commercial LIB separators are polyolefin
membranes made from polyethylene (PE) or polypropylene
(PP). They are typically designed to be less than 25 µm in
thickness and have porosity around 40% [40].

The electrodes of LIB are partially submerged in a solution
referred to as an electrolyte. The primary purpose of this
solution is to allow ions to flow between electrodes when the
battery is charging or discharging. Typically, the electrolyte
in LIB is found in either liquid form, solid form, or molten
salt [41]. The microscopic structure of a LIB can be consid-
ered to be a sandwiched structure where several layers are
stacked and each layer consists of five parts such as positive
and negative active material, positive and negative current
collectors, and the separator as shown in Fig. 1 [42].

III. BATTERY MODELING TECHNIQUES
A. ELECTROCHEMICAL MODELS
Electrochemical modeling techniques [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16] are widely used to mathematically
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FIGURE 2. P2D Model schematic diagram.

represent LIBs and are considered to be a mature methodol-
ogy among different battery modeling techniques available to
date. The electrochemical model describes the electrochem-
ical reactions occurring at the anode and cathode and the
transport of ions and electrons through the electrodes and
electrolyte. These models can reflect the changes of various
parameters within the battery and it has been extensively
used in various applications such as battery design [43], bat-
tery performance optimization [11], [13], [44], [45], battery
management [46], [47], [48], battery aging modeling [49],
[50], [51], [52], [53] in addition to battery fault progno-
sis [54], [55], [56] and fault diagnosis [57], [58], [59]. These
electrochemical models can be categorized as pseudo-two-
dimensional models (P2D), single particle models (SP), and
modified P2D or modified SP models [14], [50].

1) PSEUDO-TWO-DIMENSIONAL MODELS (P2D) MODELING
ON LIBs
The P2D model for LIBs was first reported in 1993 based
on porous electrode theory and concentrated solution the-
ory [7]. The P2D model is mainly used for the analysis and
optimization of battery performance. The application of these
models in real-time control and monitoring has not been
widely reported due to the computational complexity of the
model. The model requires solving a set of partial differential
equations (PDEs) that describe the transport of lithium ions
within the electrodes as well as the electrochemical reactions
that take place at the electrodes-electrolyte interface.

In the P2D model, the electrodes are treated as a super-
position of two continua, namely the electrolytic phase and
the solid matrix. The solid matrix is modeled as microscopic
spherical particles, where lithium ions diffuse and react at
the surface of the spheres [14]. It is assumed that the chem-
ical reactions occur only in the x-direction, as shown in
Fig. 2, where reactions along y and z are assumed to be
negligible. The diffusion of the lithium ions is assumed to

react at the surface of spherical particles and defuse in the
r-direction. The P2D model considers the reactions in two
dimensions [60] and hence referred to as a 2D model.

The battery-charging process can be represented by the
insertion of lithium ions from the electrolyte at the center
of the cell to the surface of the anode. A ‘particle oxidation
charge-transfer reaction occurs on the surface of the anode,
which is usually made of graphite. Lithium ions are intro-
duced into the graphite lattice during this reaction making the
material positively charged and enabling energy storage. The
reaction can be described as follows [61];

C6 + xLi+ + xe− ⇌ LixC6 (1)

whereC6, Li+, and e−represents the graphite particle, lithium
ion, and electron respectively. The value ‘x’ represents the
number of lithium ions and electrons involved in the reaction.
Lithium ions from the electrolyte are drawn to the anode
during charging and incorporated into the graphite structure
resulting in the transfer of electrons from the anode to the
cathode. The positively charged graphite particles fill the gap
left by the electron shortfall. The reverse process occurs dur-
ing the discharging process where lithium ions are extracted
from the anode and transported to the cathode. This lithium
ion diffusion in the solid phase is represented by Fick’s
second law [14];

∂cs
∂t

=
1
r2

∂

∂r

(
Dsr2

∂cs
∂t

)
(2)

where cs is the lithium-ion concentration in the solid phase
and Ds is the diffusivity of the solid phase.

During the charging process, lithium ions are removed
from the cathode and transferred to the anode by diffusion in
the electrolyte phase following insertion into the crystal struc-
ture of the anode material. The lithium ions are removed from
the anode during discharging process and moved by diffusion
via the electrolyte phase to the cathode where they interact
with the cathode substance to generate energy. Lithium ions
diffusion in the electrolyte phase is modeled by Fick’s second
law [14];

ϵe

(
∂ce
∂t

)
=

∂

∂x

(
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∂ce
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)
+ a(1 − t0+)j (3)

where ϵe is the volume fraction of the electrolyte, ce rep-
resents the lithium-ion concentration in the electrolyte, Deffe
is the effective value of diffusivity of the electrolyte and a,t0+,
and j represent the specific surface area of the electrode, trans-
ference number, and lithium-ion pore wall flux respectively.

During the charging process, electric charge is transferred
from the power source to the battery, and during the dis-
charging process, the charge is transferred from the battery to
the load. The total amount of charge within the battery must
remain constant during this process according to the principle
of the conservation of charge. This charge conservation in the
solid phase is modeled by Ohm’s law [14];

∂

∂x

(
σ effs

∂φs

∂x

)
= Faj (4)
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where σ
eff
s is the effective value of solid phase conductivity,

φs represents potential of solid phase and F indicate the
Faraday constant. Similarly, the charge conservation in the
electrolyte phase is modeled by [14];

∂

∂x

(
κeffe

∂φe

∂x

)
+

∂

∂x

(
κ
eff
D

∂lnCe
∂x

)
= −Faj (5)

where κ
eff
e and κ

eff
D represent the effective values of elec-

trolyte conductivity and electrolyte diffusion conductivity,
and φe represents the potential of electrolyte.
During the charging process, the insertion of the lithium

ions into the crystal structure of the anode material is a
reduction reaction, as the lithium ions are accepting electrons
from the anode material and become oxidized in the process.
During discharging, the opposite occurs where lithium ions
are extracted from the anode material and is an oxidation
reaction, as the lithium ions are donating electrons to the
cathode material which becomes reduced in the process.
The charge transfer reaction is modeled using the Butler-
Volmer equation, which is a two-step reaction mechanism
that describes the rates of electron transfer between the elec-
trode and the electrolyte. The equation considers the activa-
tion energy for the reaction, the exchange current density, and
the overpotential, which is the difference between the actual
voltage of the battery and its thermodynamic equilibrium
voltage given by [14];

j = io

(
exp

(
αaF
RT

ηct

)
− exp

(
αcF
RT

ηct

))
(6)

The parameters R and T are the universal gas constant and
cell temperature respectively, and the variable ηct represents
the charge transfer overpotential. The exchange current den-
sity io is given by [14];

i0 = kcαe (c
max
s − csurfs )αcsurfs (7)

The superscriptsmax and surf represent the maximum and
surface values where e and s subscripts denote electrolyte and
solid phase.

The list of parameters required to implement the P2D
model [62] are listed in Table 1.

The P2D model prediction has been used as a benchmark
model when the experimental data are not available [63].
In certain studies, the P2D model has been coupled with ther-
mal models and aging or capacity fade models to reflect the
ideal behavior of internal physical processes [64], [65], and
therefore it can be considered a valuable tool for advanced
BMS applications. for example, the authors of [64] propose
a fast charging protocol optimization mechanism based on a
P2D-thermal-capacity fade coupled model and dynamic pro-
gram optimization. This method has minimized the capacity
fade due to the solid-electrolyte interphase (SEI) increase to
maximize the SEI potential to decrease the lithium plating,
and to reduce the temperature rise to avoid a thermal runaway
situation. In [65] a novel thermal-electrochemical model was

TABLE 1. Full set of parameters of P2D model.

proposed which can be applied to large-size prismatic bat-
teries which improve the rate of BMS control-oriented pro-
gramming and lessen the computational burden on onboard
applications. P2D models also have been used in the state of
health (SoH) estimation considering battery degradation [16],
[56], [66]. In most of these methods, a simplified version of
the P2D model was used for SoH estimation while coupling
it with other models such as thermal, aging, and degradation
models.

2) SINGLE PARTICLE (SP) MODEL OF LIBs
To reduce the mathematical complexity of the P2D model,
certain applications use a Single Particle (SP) model of LIBs
for SoC estimation [29], [67], [68], SOH estimation [51],
[69], voltage prediction [50], temperature prediction [29].
The SPmodel considers the entire electrode as one active par-
ticle which reduces the complex partial differential equations
to ordinary differential equations to be determined and there-
fore increases the computational speed. The electrolyte is
assumed to be infinitely conductive in or in certain instances,
the electrolyte concentration is considered to be constant
and the current in the electrolyte is not varying with the
space [70], [71]. It is also reported that with rapidly varying
currents, the SPM error will increase as the electrolyte con-
centration changes rapidly whereas in SPM, concentration
polarization is neglected [71], [72]. A schematic representa-
tion of the SPM during the discharge process is given in Fig. 3
below [43].

To apply the SP model to rapidly varying currents and
dynamic scenarios, electrolyte diffusion, and conduction pro-
cesses are included in the modified SP models [10], [14].
Different discretization techniques such as three parameter
parabolic method, Padé approximation method, and finite
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FIGURE 3. Schematic representation of the SPM during the discharge
process.

different method have been used to obtain the simplified SP
models (SSP) [13], [61]. These models not only achieve high
accuracy but also improve model adaptability to conditions
that have rapidly varying currents. The SPmodel assumes that
the active material of the electrode is compact and uniform,
however, the actual electrodes have a porous structure that
impacts the movement of lithium ions. The authors of [73]
and [74] have improved the accuracy of the SPM predictions
by accounting the impacts of electrode porosity. The SP
model also assumes that the electrode-electrolyte interface
is a simple ohmic contact. The accuracy of the SPM predic-
tions can be increased by modeling the electrode-electrolyte
interface using further advanced models such as the modified
Randles-Sevcik model [75].

B. EQUIVALENT CIRCUIT MODELS
The ECM of a LIB represents the battery as an electrical
circuit consisting of a network of basic circuit elements such
as resistors, capacitors, and voltage sources that approximate
the electrochemical and physical behavior of the battery in
addition to its dynamic characteristics. The order of the circuit
is found to determine the performance of the model [61],
[76] and can be a trade-off with complexity where a complex
circuit network can consequently increase the computational
burden.

The ECM is widely used in the BMS and especially
for fault diagnosis, considering the model complexity and
computational accuracy. Parameter estimation methods can
estimate and identify the parameters which can reflect the
physical characteristics such as internal resistance and capac-
ity. In basic form, a fault detection algorithmwill compare the
parameter values to that of the non-faulted system to generate
residuals to determine a faulty condition. Due to the strong

FIGURE 4. Battery equivalent circuit models (a) Rint model, (b) 1st order
model [76].

non-linearity of the battery system, the nonlinear parameter
estimation methods such as the recursive least square (RLS)
method, particle filter, and genetic algorithm have been used
to estimate and identify the parameters [57].

ECM can be categorized as integer-order models (IOMs)
and fractional-order models (FOMs) [38], [76]. It is feasible
to develop battery models that can be used for the manage-
ment, control, and optimization of batteries using both IOMs
and FOMs. The use of the IOMs or FOMs may depend on the
application and is discussed in the next subsections.

1) INTEGER-ORDER MODELS
Ordinary differential equations (ODEs) are used in IOMs to
represent the behavior of the LIBs. IOMs have integer-valued
derivatives for state variables, such as battery voltage and
charge level.

Fig. 4 shows the basic form of IOM circuits used to
date [17], [18], [19]. In Figure 4 (a) the simplest form,
which is the Rint model consists of an ideal voltage source
connected in series with a resistance, however, this model
fails to exhibit the diffusion mechanisms [24]. After the
Rint model, Thevenin models have been proposed by the
authors of [77] and [78] by adding parallel connected resistor-
capacitor (RC) tanks. The number of RC tanks defines the
order of the ECM circuit and accordingly, 1st order, 2nd

order, and nth order models have also been proposed [24].
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FIGURE 5. Structure of fractional order model [76].

The simple 1st order model has been found to be accurate
enough formany real-time implementations. The RC network
consists of a capacitance Cdf , representing the polarization of
themetal electrodes, and a resistanceRdf which represents the
contact of the electrodes with the electrolyte. To have a better
representation of the battery dynamics, additional RC tanks
can be added to 1st older models. However, more RC tanks
complicate the parameter identification problem. Compared
to the electrochemical models, these models are found to be
suitable for real-time implementation as they can be executed
rapidly and have a simple implementation.

2) FRACTIONAL-ORDER MODELS
Fractional-order models (FOMs) use fractional calculus to
depict the behavior of the battery. Fraction-order models
were proposed as pure RC tanks and are not capable to
reflect the electrochemical characteristics (charge transfer
reaction, double layer effect, mass transfer, diffusion, and
other electrochemical processes) of a battery in the whole
frequency range. These models were developed by replacing
the pure RC tanks in IOM with constant phase elements
(CPE) and Walberg components by the authors of [79], [80],
and [81]. A typical structure of a FOM extracted from [81] is
shown in Fig. 5.
FOMs assume that the derivative of the state variables can

take fractional order values. FOMs achieve higher accuracy
as they reflect the physical phenomena closely. However,
The CPE characteristics are difficult to process in the time
domain and therefore fractional calculus theories such as
the Grunwald-Letnikov definition, Reimann-Liouville def-
inition, and Caputo definition are used [82]. The authors
of [79] propose a SoC estimator for LIB based on the frac-
tional order impedance spectramodel. Themodel was derived
based on the characteristics of CPE and Warburg elements
for the wide range of frequencies. The results show that
the SoC estimation can be obtained with less than 0.5%
error. Similarly, the authors of [83] propose a state of power
(SoP) estimation for the LIBs based on FOM approach. The
experimental results show that the maximum error of SOP
estimation results is 1.34%.

A novel fractional variable order model is proposed in [84]
which can be applied in the applications in electric vehicles
based on voltage-current characteristics of lithium batteries.

This model evolves from the typical 2nd order equivalent cir-
cuit model where the new method can obtain the continuous
order change, unlike the conventional RC branch which can
only vary between integers.

C. DATA DRIVEN MODELS
Data-driven methods use black-box models which can be
used as a mathematical model for LIBs, and also for deciding
weight parameters to represent battery characteristics. These
models use a training data set and in certain instances are
recognized as more adaptable and efficient [85]. Although
they use external measurements or the characteristics such as
voltage, current, and temperature, they have good adherence
to non-linear electrochemical reactions as they are capable of
extracting hidden information with the support of machine
learning (ML) approaches. A typical process of establishing
the data-driven model [85] is shown in Fig. 6. As Fig. 6
illustrates, following the collection of enough sample data for
the training data set the data-driven model can be established
through the training process with ML approaches. These
models can directly reflect the relationship between input
(I, T, SoC) for the output terminal voltage (U).
Artificial neural networks (ANN) [86], support vector

machines (SVM) [87], and long-short-term memory net-
work [88] are some of the ML approaches which have
been developed and provide better accuracy. Though these
approaches contain a good performance against nonlinear
problems like battery electrochemical processes they are still
can easily be influenced by the trainingmethods and the train-
ing data set [4]. In addition to the ML approaches dynamic
simulation technologies such as three-dimensional active
Monte Carlo simulation are also used which can explain
internal behavior and reveal the structural evolution [89].

IV. PARAMETER EXTRACTION METHODS FOR
ELECTROCHEMICAL BATTERY MODELS
For precise model-based battery state estimation and the
optimal control design, parameter extraction of the electro-
chemical model is also crucial. Identification of all these
model parameters is a crucial but difficult process because
the PDEs within P2D models involve numerous physical
parameters. First off, the manufactured battery specification
sheet from battery manufacturers typically not revealing the
essential information. In addition, the observable signals such
as temperature, current, and voltage exhibit complex nonlin-
ear relationships with these parameters. The parameterization
goal would be made more difficult by the fact that the param-
eter identifiability would change depending on the operating
conditions. Third, a variety of pricey tools are needed for
characterization in order to measure these properties. Further,
it is an obvious fact that the parameters are varying and
are specific to each cell design. Therefore, not all param-
eters could be interchanged between different cell designs.
In many related works the model parameters are matched
with measured terminal voltage where the terminal voltage
is sensitive to the initial set of the model parameters. These
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FIGURE 6. A typical process of establishing the data-driven model [85].

parameter sets are typically taken from the literature in many
relevant studies; however, the sources of these parameter sets
are rarely identified. Measurement of these factors through
experimentation is a common alternative [90], [91], [92].

A. KEY PARAMETERS IN ELECTROCHEMICAL BATTERY
MODELS
Electrochemical models achieve high accuracy; however, the
model parameters need to be determined with precision. The
key parameters that are used in electrochemical models of
lithium-ion batteries to describe the behavior of the battery
include:
Diffusivity (Ds/e): Diffusivity also referred to as the dif-

fusion coefficient describes the rate at which lithium ions
diffuse through the solid phase (electrodes) and the elec-
trolyte. This depends on the properties of the solid phase
active material and the electrolyte.
Transfer coefficient (α): It describes the rate at which

lithium ions transfer across the electrode-electrolyte inter-
face. It is usually given as a dimensionless number between
0 and 1, and it depends on the properties of the electrode and
the electrolyte.
Solid-state conductivity (σs) [S/m]: This parameter

describes the rate at which lithium ions move through the
electrodes in the solid state and depends on the properties of
the active material.
Pore wall flux (j): Pore wall flux of lithium ions, which is

independent of the active surface areas of the electrodes and
the applied current
Specific surface area of the electrode (a) [m2 m–3]: is the

specific interfacial surface area of the solid particles.
Volume fraction of electrolyte (ϵe): In some references this

is referred to as the porosity of the media. It is calculated as
the ratio between the pore volume in the selected pressure
range and the sample volume, which can also be taken from
the mercury porosimetry data.
Open-circuit voltage (Ucell) [V]: It is the voltage of

the battery when it is not being charged or discharged.
This usually depends on the open circuit potential of the
anode and the cathode which is a function of stoichiometric
number.
Capacity (Qcell) [Ah]: This parameter describes the

amount of energy that can be stored in the battery. It is usually
given in units of ampere-hours (Ah) or watt-hours (Wh) and it
depends on the properties of the electrode and the electrolyte.

B. EXPERIMENTAL TEST METHODS FOR LIB
CHARACTERIZATION
There are several methods that can be used to estimate these
parameters of an electrochemical model of a LIB. Some of
the most common methods include:

1) Electrochemical Impedance Spectroscopy (EIS):
This method involves measuring the complex
impedance of the battery as a function of frequency
and using this data to estimate the parameters of the
model [93], [94], [95].

2) Open-circuit-voltage (OCV) test:The SoC level and
temperature have significant effects on the OCV volt-
age. This test initially starts with a complete charge of
the battery and then discharge current corresponding
to 5% of SoC is applied with a rest time to relax
the battery. The same procedure is applied during the
charging. The flowchart for the OCV test is given in
Fig. 7 below.

3) Hybrid Pulse Power Characterization (HPPC):Bat-
tery dynamics are assessed using the HPPC test under
different operating conditions (temperature, SoC lev-
els, charge/discharge current). The HPPC test enables
the determination of battery parameters that are related
to ohmic effect and charge-transfer reactions [14].
It entails applying a set of varying-amplitude alternat-
ing charge and discharge pulses at each SoC level in
order to generate a transient waveform which is then
used to estimate the battery model parameters [14],
[96], [97].

4) Pulse Discharge (PD) Test: In the PD test initially
the battery is charged with constant-current constant-
voltage (CCCV) protocol at the ambient temperature.
Then it is incrementally discharged in the steps of 5%
SoC from the 100% SoC state to the lower cut-off
voltage point. At the end of each current pulse, a 2-hour
relaxation time is typically used to bring the battery
state to thermodynamic equilibrium.

C. PARAMETER ESTIMATION METHOD FOR
ELECTROCHEMICAL BATTERY MODELS
The classifications proposed for the parameter estimation
methods differ between battery types. Parameter estimation
techniques found in the literature are mainly for the elec-
trochemical or equivalent circuit models while parameter
estimation of thermal and aging models appear to garner
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FIGURE 7. Flow chart for OCV Test.

lower priority. Accordingly, Parameter estimation method
can be classified as;

1) Online identification methods
2) Offline identification methods
3) Analytical or numerical calculation methods
Analytical or numerical calculation methods for parameter

extraction is directly derived from the physical principles of
the LIB battery cells while online and offline identification
methods utilize the experimental techniques. Online methods
allow estimation of parameters/state during the normal oper-
ation of the battery system while offline methods estimate the
selected parameters using specific experiments during which
the battery is removed from the system.

In a BMS, the battery state variables are estimated online,
and certain fixed parameters are obtained using offline
techniques. This is because the parameters are usually esti-
mated via dedicated laboratory tests before they are installed

in the applications. This is frequently the case for the open
circuit voltage (OCV), which is estimated when the bat-
tery is not operating over a long period (usually at least
30 min) [98].

D. ONLINE IDENTIFICATION METHODS
1) ONLINE ESTIMATION OF STATE VARIABLES
Online identification methods are mostly preferred for the
equivalent circuit which represents the electrical behavior of
the battery. The battery SoC changes continuously when the
battery is in use. Therefore, online identification methods
are mostly applied to estimate the SoC during the typical
operation of a battery. The SoC will affect any or all of
the other factors, and their estimation can be done online or
offline (as in mixed methods).

The main important characteristics that online methods
have to guarantee are as follows:

• To allow real-time execution it should have the compu-
tational simplicity

• Ability to estimate all the states using only measured
information such as current, voltage, and temperature.

• Ability of estimation of all the states especially under the
normal operation

Several strategies have been put forth in recent years
for SoC estimation. The fundamental technique is Coulomb
counting, which involves integrating the current. In addition
to the challenge of calculating the initial SoC, this technique
suffers from all the issues related to the drift of the integral.
Some researchers have suggested adding a term obtained
by PI regulators to the coulomb counting as a solution to
this issue [99], [100]. Since the SoC and OCV are related,
numerousmethods have been researched to estimate the OCV
first, and then the SoC using the OCV and the data from
offline experiments [4], [28], [101].

Numerous nonlinear state estimation techniques and adap-
tive filters have also been used to estimate the internal state
of a battery. They can be categorized into three sections as
mentioned below [102].

1) Filter based method [103], [104], [105], [106], [107],
[108], [109]

2) Observer based method [110], [111], [112], [113],
[114]

3) Data-driven method [28], [29], [31], [34], [115], [116]

Kalman Filter (KF), Luenberger observer, Proportion Inte-
gration (PI) observer, H observer, and sliding-mode observer
are examples of common algorithms [117] used for the state
estimation. A typical block diagram for model-based state
estimation is given in Fig. 8.

As discussed previously P2D model is more suitable to
analyze the internal physical processes whereas the SPM is
more suitable for state estimation, particularly for SoC esti-
mation. The authors of [118] consider the SPM in state-space
form with only eight parameters and estimate the SoC using
Iterated Extended Kalman Filter (IEFK). It has been reported
in [85] a nonlinear geometric observer is created to estimate
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FIGURE 8. A general flow chart for model-based state estimation [117].

SoC based on SPM, and it achieves a SoC estimation with the
error of less than 4.5%.

In [119], a novel electrochemical model was proposed for
the SoC estimation. In this work, a projection-based method
with optimized orthonormal basis functions is used to reduce
the complexity of conventional P2D models. A novel moving
window filter is proposed which achieve rapid convergence
compared to typical state filtering method such as KF, EKF.
The moving window-based filer algorithm uses more data
points to estimate the battery state whereas typical state filters
such as KF or EKF utilize a single time point for the state
estimation. The authors of [119] demonstrate that the conver-
gence time is reduced from 30 mins to less than 2 mins using
this approach.

2) ONLINE ESTIMATION LIB PARAMETERS
In contrast to the electrochemical model used for the online
parameter estimation the authors of [56] proposed a novel
reduced-order electrochemical model which combines the
P2D model and SPM together for the online SoH and aging
parameter estimation. The SoH is often recognized by a
reduction in cell capacity and an increase in internal resis-
tance [115]. These changes are primarily brought on by
undesirable side reactions, which eventually result in the
loss of lithium ions and active materials, the consumption of
electrolyte solvents, and an increase in the thickness of the
solid electrolyte interphase (SEI) layer. As capacity fading
is one of the most frequent indicators for degraded battery
cells, the SoH can also be defined based on the capacity [56].
Accordingly, the SoH is given by:

SoH =
Qaged
Qfresh

. (8)

where Qaged and Qfresh are the aged capacity and the fresh
capacity of the cell. The authors of [56] use a SPM for the
cathode and in contrast, a P2D model for the anode. Since
many side reactions occur at the anode at different stages
of the degradation across the thickness direction as well as
increasing intensity toward the separator it is assumed that
the negative electrode has 13 particles whereas the positive

electrode has only one particle. The proposed model consid-
ers SEI layer formation and lithium-ion plating as two major
degradation mechanisms. The initial SEI layer is created
when the cell is charged for the first time to protect graphite
from further reactions with the remaining solvent in the
electrolyte. As the battery cell ages the pores of the particles
are covered with the SEI layer which leads to a decrease
in the accessible electrode surface area and increases the
internal impedance. Lithium plating usually occurs acutely at
sub-zero temperatures or under high charging C-rates when
ion diffusion inside the solid particles is slow. In these cir-
cumstances, the surface solid-electrolyte potential difference
becomes negative, especially near the separator, which causes
lithium ions from the electrolyte to be reduced to metal-
lic lithium, which deposits on instead of intercalating into
the anode particles [52], [56]. A particle filter was used to
estimate the SoH and aging parameters of this model. The
particle filter is considered to be an effective approach for
state estimation in non-linear and non-Gaussian systems and
the adoption of a particle filter in [56] can be considered as
a novel approach. More information about the particle filter
algorithm can be found in [29], [120], and [121]. The SoH
and aging parameter estimation and the capacity and power
fade estimation errors are reported within 3%. and 4%, using
this approach.

The authors of [29] propose an electrochemical-thermal-
neural-network (ETNN) model to estimate the SoC and the
state of temperature (SoT) of the battery. Initially, a sub-
model with SPM and a thermal model are used to estimate the
temperature and the terminal voltage approximately. With the
support of the neural network, the accuracy of the parameters
obtained from the sub-model is improved. Accuracy and
capability for generalization across a range of temperatures is
demonstrated, and the ETNNmodel is shown to perform bet-
ter than the basic electro-thermal model. The authors of [29]
also combine the ETNN model with an unscented Kalman
filter (UKF) to estimate the SoC and SoH. The results show
that RMSEs of steady state SoC are less than 1% for a wide
temperature range from −10 – 40 ◦C. The SoT estimation
error is found to be within 1.08 ◦C.
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E. OFFLINE IDENTIFICATION METHODS
Under the offline estimation methods estimating the param-
eters for a physics-based electrochemical model generally
contains two methods first is physical parameter estimation
to estimate the parameters like electrode dimension, particle
size, material composition, etc. by cell tear-down and the
second is laboratory experiment to obtain parameter values
which are directly link to internal dynamic processes of the
battery.

1) PHYSICAL OR DIRECT PARAMETER ESTIMATION
METHODS
Physical parameter estimation involves tearing down the cells
under an argon atmosphere and measuring the physical prop-
erties. In the event the manufacturer data is unavailable or
unreliable, this method is used to obtain the parameters by a
number of researchers [46], [47], [48].

In [122], to determine particle radius, tortuosity, and poros-
ity of the electrode and the separator, Hg-porosimetry was
used. Conductivity and diffusion constants of the electrolyte
as well as the conductivity of the active material were mea-
sured by detecting the voltage response to a DC current.
Finally, the open circuit voltage curves, diffusion coefficients,
and charge transfer kinetics of the electrodes as well as their
balancing are obtained using experimental measurements on
a coin-cell [122]. The model parameters that have been iden-
tified are listed in Table 2.

A similar approach was adopted by the authors of [123]
and [124] which determines all the parameters required for
the parametrization of a physicochemical model of a LIB.
They have shown that the characteristics of a full battery cell
can be obtained by parameterization of individual material
properties. The authors directly determine the transference
number of the electrolyte and the conductivity of the electrode
material while other parameters are obtained from literature.
The direct measurement of parameters requires an advanced
experiment set up and it is time-consuming. Therefore, these
methods are not very popular to implement an electrochemi-
cal model of LIB.

The authors of [125] also used tear-down analysis of LIB
for parameter estimation. In this work, 35 extensive param-
eters were identified under physical, chemical, and electro-
chemical categories and are validated at different C-rates
(which is defined as the charge/discharge current divided by
the nominally rated battery capacity). And the Root mean
square error (RMSE) between the 36 mV to 46 mV range
is achieved. It is found that, among the 35 parameters, only
8 parameters have to be refined to improve the accuracy.

2) PARAMETER ESTIMATION WITH OPTIMIZATION
ALGORITHMS
Parameter identification of LIBs can be considered a non-
linear optimization problem. Metaheuristic algorithms (i.e.,
search-based optimization methods) have been adopted by
researchers [126], [127], [128] which demonstrate high

FIGURE 9. Optimizing the parameters via GA [126].

performance compared to the gradient-based approaches.
Typically, the gradient-based approaches rely on the gradi-
ent information of the function to guide the search, while
search-based optimization does not rely on the gradient
information, but instead explores the solution space through
different search strategies.

Estimating the electrochemical parameters of a P2Dmodel
indicated in Table 1 based on genetic algorithm (GA) has
been investigated by the authors on [126] and [129]. GA is
a stochastic search, learning, and optimization technique and
mimics the biological evolution process, including muta-
tion, crossover, and selection, on the basis of the concept
that ‘‘good individuals survive and breed good individu-
als’’. Using the GA-based optimization technique, battery
parameters can be extracted [129] by using the charging and
discharging data. A typical block diagram for this is shown in
Fig. 9.
A GA-based parameter estimation approach was proposed

in [126] where it identified the parameters of the P2D model
considering the voltage/ current cycling data and the average
relative voltage error was 5%. Later the authors of [127] intro-
duce a parameter estimation approach to estimate 7 model
parameters (Ds,n, Ds,p, ϵe,n, ϵe,p, ϵe,s, ϵs,n, ϵe,p) using GA for
a wide range of temperature and current. In this work, a sim-
plified electrode-average model is obtained from polynomial
approximation. Compared to that of [126], this method has
better performance with an average relative voltage error
of 0.2%.

Rahman et al [128] have identified four parameters that
show significant variation during severe or abusive conditions
such as over-discharge or over-charge of a battery of a P2D
model using Particle swarm optimization (PSO) algorithm.
The obtained parameters are the solid diffusion coefficient
and interfacial reaction rate of the negative and positive
electrodes. The appropriate battery models for both healthy
and deteriorated batteries were then constructed using the
identified model parameters. By comparing the model out-
put voltage with the experimental output voltage under the
specified operating circumstances, these models were then
verified. The identified Li-Ion battery electrochemical model
parameters are within reasonable accuracy as evidenced by
the experimental validation results.

In [9] electrochemical parameters which include the active
surface areas of the electrodes, the diffusion coefficients in
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TABLE 2. Model parameters [122].

the solid phase, and the reaction rate constants were deter-
mined using the convergent bacterial foraging optimization
algorithm (BFOA). Volume-average integration method and
three-parameter volume average method were used to sim-
plify the SPM model and electrochemical characteristics
which are determined by the model estimated parameter
are identified by the BFOA. It has been observed that the
maximum terminal voltage error is 18 mV for the current-
generated mutation. The maximum error is due to voltage
mutation points due to the influence of resistance at current
mutation points. Further simplification of SPM is proposed
in [130] based on the following assumptions;

1) The non- uniform reaction distribution effect inside the
electrode is neglected, and the pore-wall flux density
is approximately calculated by the operating current
density.

2) The physical property is approximated by a single par-
ticle, and the electrolyte and solid- phase concentration
distribution can be considered to approximately obey
the parabolic profile.

3) The degrees of reaction polarization of both electrodes
are the same, as well as the solid-phase diffusion pro-
cess.

4) The effect of battery internal temperature on model
parameters is neglected at room temperature.

An automatic parameter estimation method for LIB at
the beginning of the life (BOL) is proposed in [131] to
estimate the parameters without postmortem analysis using
a reduced-order P2D model (ROM). After grouping the
parameters of ROM three parameters were selected among
the 20 parameters as the most sensitive parameters for the
charging/discharging and SoC. The three parameters are film

resistance and solid phase diffusion coefficients of positive
and negative electrodes. After obtaining the parameters with
different charge and discharge experiments (C/5, C/2, 1C
& 2C) a GA was used as the optimization method with
multi-objective functions After validating the results with
repetitive cycles, it has been observed that the error is below
12 mV.

In contrast to SPM, eliminating the redundant parameters
is also has been proposed as a method to reduce the number
of parameters to be determined. The authors of [47] proposed
a Lumped-parameter model (LPM) which has been obtained
by eliminating the redundant parameters which are geo-
metric related. The full-order P2D model was reformulated
to have 24 parameters from 36 parameters by eliminating
the redundant parameters. Several transfer functions were
derived to capture the response of state variables of the cell
against the applied current in the LIB cell. These transfer
functions are derived considering only the assumption of
linearity. In order to capture the cells’ dynamic behavior
more accurately Constant Phase Elements (CPE) were added
to the transfer functions in this work as a novel concept.
In addition, to improve the fidelity of the proposed model
impact of the electrolyte concentration on its potential also
has been considered. The same authors further improved
their model in their second paper [46] proposing a step-
wise parameter identification approach based on the LPM
using simple tests. These tests introduce a reference elec-
trode in the reformulated LPM that has been converted to
a frequency response initially. The reference electrode was
introduced to for distinguishing the parameter value for the
positive and negative electrodes. Four different tests with
eight steps listed belowwere proposed based on the frequency
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response and electrode decoupling. For both positive and
negative electrodes, the single-electrode voltages are indi-
vidually with the support of the reference electrode in each
test. Then by applying the particle swarm optimization (PSO)
algorithm parameters were estimated. The parameters identi-
fied have an error less 5% and the terminal voltage predicted
from the model has an error less than 3% to the actual
figures.

In many literature, the SMP [29], [132], extended single
particle model (ESPM) [133], [134], multi-particle model
(MP) [67], [135] models were proposed as simplified models
of the P2D model. All of these models neglect some physical
processes inside the LIB cell and therefore the accuracy of
these models is still low compared to the P2Dmodel. Though
they are simplified versions of the P2D model, from the
mathematical point of view these models are still complex
with several PDEs involved. As a result, a concentration-
dependent solid-phase diffusion model with lumped param-
eters and reduced order thermal coupling is suggested [136].
Comparing the proposed isothermal electrochemical model
to other battery electrochemical models, there are only
11 unknown lumped parameters in the proposed model.
The model parameters were categorized as slow-dynamics
(SD), fast-dynamics (FD), and thermodynamics (TD) param-
eters. Here SD parameters referred to the diffusion process,
whereas FD and TD parameters referred to the ohmic effect
and static performance of a LIB respectively. Following the
categorization, the different dynamics were extracted from
themeasured data of the planned experiments in order to carry
out stepwise parameter identification. Finally, a galvanostatic
test conducted between 25 and 45 degrees Celsius served to
validate the model. The RMSEs for voltage prediction and
temperature prediction, respectively, are within 79.2 mV and
1.98 ◦C of the measured data.
Though there are many previous studies that estimated

parameters for the electrochemical and thermal coupling
models, a lack of interest was given to identifying the param-
eters related to heat generation. In [137] a two-step parameter
identification method with the square-root cubature Kalman
filter was proposed. In this work not only the full set of
electrochemical model parameters were identified but also
the parameters related to heat exchange and generation also
were identified. Initially, the extended single particle model
(ESPM) proposed by [138] was converted to a reduced-order
model using a pseudo-spectral approach. The pseudo-spectral
method is another numerical method to solve PDEs and it has
been used instead of finite different methods to reduce the
number of discrete nodes. It has been identified that in the
reduced order model the computation time for discharge volt-
age is within 1.5 s which makes sure that the model is suitable
for parameter identification and real-time state estimation.
21 electrochemical and 4 thermal parameters were identified
using Ant lion optimizer. In their results the voltage RSME
is less than 30 mV and the temperature RSME is 0.1097 K in
the IUDDS test.

With the recent developments of artificial intelligence
date-driven parameter estimation also becoming the recent
research focus. These methods require a large volume of data
for training and validation. Despite their high accuracy, those
models are computationally and memory expensive.

In [139], a neural network and genetic algorithm combi-
nation was proposed as a new method for parameter iden-
tification. In order to determine the relationship between
the input current (a known parameter) and its corresponding
voltage, this method employs a 1-dimensional convolutional
neural network (CNN).With the help of data generated during
GA operation, the correlation between the model parameters
and the current and voltage was established. The dynamic
properties of the P2D model are present in the data simulated
by the GA procedure. Electrolyte porosities of the electrodes
and the separator were taken into consideration as capacity-
related factors, and the dynamics parameters, which include
solid diffusion coefficients, reaction rate constants, and an
SEI resistance, were chosen as dynamic parameters.

Although there are numerous additional capacity-related
parameters, such as particle radius, electrode thickness, max-
imum lithium concentrations at the electrode, and current
collector, in this study, they are regarded as known param-
eters because they are chosen by the manufacturer during
the design of the cell. The output voltage RMSE and the
parameterMPEwere both dropped by 0.761mV and 13.71%,
respectively, after the proposed technique was confirmed
using both experimental and synthetic data. Additionally, a
6.496 mV reduction in the output voltage RMSE for the
experimental data was achieved. Another data-driven param-
eter estimation framework is proposed in with the cuckoo
search algorithm [140], [141], [142]. Parameter sensitivity
analysis was conducted to categorize the parameters into
three groups with high, medium, and low sensitivity. This
method only considered the current and voltage profile data to
estimate the parameters. As a new concept in order to reduce
the estimation errors of capacity-related parameters capacity
error between two electrodes was also considered other than
the voltage error in the model and cell. A multi-step param-
eter estimation approach was used considering the different
sensitivities which increases the accuracy of low-sensitive
parameter estimation. With the use of the cuckoo search
algorithm, a higher convergence speed was obtained com-
pared to the other meta-heuristic methods for parameter
estimation. The proposed data-driven strategy minimizes the
voltage error under low and high load dynamics by 82.0%
and 59.6%, respectively, in comparison to the experimental
identification method also reduces the capacity error between
two electrodes to 95.4%.

A two-phase surrogate model-based parameter estimation
(TPSMA-PEAL) algorithmwas proposed in [34]. This model
has been implemented to obtain the parameters (Ds,n, Ds,p,
De, kp, kn, t0+)of a P2D model by combining a reduced order
model and a data-driven model. To eliminate the redundant
parameters a reduced-order model was implemented initially.
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Then the data-driven model was used for the parameter esti-
mation. The proposed TPSMA-PEAL method has overcome
two major challenges in parameter estimation which are
the over-fitting problem and the low observability of some
parameters. The relative error for estimated parameters is in
the range 4-5% as observed from the simulation and experi-
ments. It was also identified by the authors that this method
is having difficulty in on-board implementation BMS due to
high computation power and storage space. They also have
been identified that it can be improved with the support of
cloud computing.

F. ANALYTICAL OR NUMERICAL CALCULATION METHOD
As previously mentioned, the third family of identification
methods is based on analytical modeling or finite element
calculations. These methods should be offline. However,
because they are not based on the results of experimental
tests, it is preferable to classify them separately. Indeed, the
calculations could be repeated as functions of some measure-
ment (i.e., current, voltage, or temperature) and could be used
to tune the parameter values. In this case, they could be used
online.

G. VALIDATION OF ESTIMATED PARAMETERS
It’s important to note that the accuracy of the parameter
estimation depends on the quality of the data used, the
complexity of the model, and the method used. The esti-
mated parameters should be validated by comparing the
model predictions with the experimental data, and the param-
eters should be updated as necessary. After obtaining the
model parameters the validation of the models with estimated
parameters is the final step of batterymodeling. Thesemodels
can be validated mainly using three different approaches.
It can be based on voltage, temperature, and the parame-
ters itself. Voltage validation is the process of comparing a
cell’s voltage response to a parameterized cell model. As the
temperature has a significant impact on the battery behav-
ior it also can be taken into consideration. In most of the
previous methods these two methods are applied to validate
the parameters. The final method of validation compares the
actual parameter values to the estimated parameter values
directly. The true values must be known in order to use this.
This is done by simulating the P2D model for a particular
input-current profile to generate synthetic simulated cell-test
data, utilizing that data to estimate parameter values, and then
comparing the estimated parameter values to the actual values
utilized in the simulation. It has been demonstrated that some
parameters of the electrochemical model are not sensitive to
the cell voltage and it concludes that only voltage validation
is not enough to estimate the parameters correctly. As a solu-
tion to this, lumped parameter or parameter grouping [14],
[132], [143], [144] can be used as some of the parameters
are identifiable but the sensitivity to measurable variables is
negligible.

V. CHALLENGES & FUTURE DIRECTIONS IN PARAMETER
EXTRACTIONS OF LIB BATTERY MODELS
It has been identified by the presented review in this paper
that the parameter estimation method can be categorized into
online, offline, and analytical methods. While online meth-
ods are basically implemented to state estimation SoC, SoT
and SoH from the battery model, Offline methods are being
used to estimate the electrochemical parameters of the bat-
tery model. In the offline method parameter extraction from
post-mortem analysis and non-invasive parameter estimation
has been widely used. Though the post-mortem analysis pro-
vides robust and accurate results the process requires many
recourses and is time-consuming. As the specific equipment
are required the process is costly.

As a solution to issues reported in direct measurements,
non-invasive methods are proposed. The non-invasive meth-
ods are highly dependent on the sensitivity and identifiability
of the model parameters. To achieve the best results, the
quality of training data and the predetermined parameter
variation range are essential. Currently, it is still challeng-
ing to fully identify many factors from direct current and
voltage measurements. On the other hand, there are always
some redundant parameters that are difficult to identify when
utilizing computational methods to estimate the model
parameters [90], [145]. Another issue is it’s still not obvious
whether assumptions made for various factors are consistent.
For instance, while parameterizing a model, many assump-
tions are generally made. This makes it difficult to obtain
accurate results as the assumptions may vary depending on
operating conditions. There are no proofs to appear in the
literature that the parameters related to aging are incorporated
in electrochemical model parameter estimation. Therefore,
it is an obvious requirement to design new identification tests
which include the parameters related to the aging of LIB cells.

Thoughmanymethods are proposed in the literature to esti-
mate the parameters of electrochemical models it is unclear
whether the input-state dynamics and input-output dynamics
of a lithium-ion cell will actually match in models. In this
case, the models may accurately predict temperature or volt-
age, but there are no guarantees that the internal electrochem-
ical variables are estimated correctly or that the parameter
estimates are concise.Mixed approaches can be a very helpful
tool in this situation since they take into account not only
exact parameter estimates but also precise state and voltage
prediction which can be used improve the accuracy of the
parameter estimation of electrochemical model. TheseMixed
approaches combine the adaptability of data-driven models
with the advantages of conventional electrochemical models.
It creates the models that are more accurate than conventional
electrochemical models by using both experimental data and
physical concepts. Therefore, these techniques would be
more robust to errors in model assumptions and parameter
values. In case of applying these models in BMS for online
operation it is important that these variables are correctly
modeled.
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VI. CONCLUSION
As a result of technological advances and rapid development
of LIB and their applications ensuring the safer operation
becoming popular in LIB systems. As these battery systems
are operating in extreme operating conditions and harsh envi-
ronments efficient and reliable BMS operation is needed
to detect the abnormalities and faulty conditions. Battery
modeling plays a major role in online BMS operations. This
paper reviewed existing battery modeling concepts basically
under the electrochemical model, equivalent circuit models,
and data-driven models. Basic principles, applications, and
parameters for each model were presented. It has been iden-
tified the electrochemical model is the most detailed and
accurate battery model since it clearly describes the internal
physical processes with several PDEs. Accurately predicting
performance and aging depends heavily on understanding the
battery model’s parameters. As the most promising battery
model parameter estimation methods for the electrochemical
model were critically discussed. Parameter estimation for
electrochemical models was examined under the categories of
online, offline, and analytical methods. More focus was given
to online and offline methods as they are widely used in real-
time implementations. In each method, the state-of-the-art
review was conducted to date and the implementation, appli-
cations, and limitations were analyzed. It has been identified
that the mixed method which combines the online and offline
methods shows a good performance compared to using them
separately. The challenges and future directions for param-
eter estimation methods for the electrochemical model were
discussed in the last section of the paper.
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