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NOTE

An Improved Method to Detect Shoreline Changes in
Small-Scale Beaches Using Google Earth Pro

T. W. S. Warnasuriyaa , M. P. Kumaraa , S. S. Gunasekarab , K.
Gunaalanc , and R. M. R. M. Jayathilakab

aFaculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka;
bNational Aquatic Resources Research and Development Agency, Colombo, Sri Lanka;
cDepartment of Fisheries Science, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka

ABSTRACT
Shoreline change studies in small-scale beaches require high-
resolution satellite images. In this regard, high-resolution satel-
lite images from Google Earth (GE) would be an alternative
source however novel studies are needed to verify the effective-
ness and the efficiency of applying those images for shoreline
change detection in small-scale beaches. Addressing this gap,
the current study attempts to develop a new method.
Accuracies of delineated shorelines under different scenarios
were used to develop relationships with digitizing methods and
used eye-altitude to estimate the most effective, efficient and
productive method. This was done using Digital Shoreline
Analysis System (DSAS) in ArcGIS software. It was found that the
eye-altitude influences on digitizing accuracy and it could be
improved when increasing the zoom level of the image which is
under investigation. Maximum zoom level (50m) used in this
study showed the highest accuracy in shoreline digitizing while
the most productive eye-altitude for shoreline delineation was
found as 300m. The current study identified that GE coupled
with DSAS tool in ArcGIS software can be used as an effective
and efficient method for small-scale shoreline change analysis
and it is suggested that this methodology could be adopted for
other similar studies.
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Introduction

Shoreline changes are caused by individual or combined effects of natural
processes and anthropogenic activities. Such natural processes include wave
actions, water currents, tides, winds, sea level rise, storms and tsunami (Ali
and Narayana 2015; Dayananda 1992; Pajak and Leatherman 2002) whereas
construction of harbours, sand mining, and sand nourishments are among
some of such major anthropogenic activities (Oyedotun, Ruiz-Luna, and
Navarro-Hern�andez 2018; Li, Ma, and Di 2002).
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The shoreline is a highly dynamic (Li, Liu, and Felus 2001) boundary
that separates land from water (Boak and Turner 2005), and shoreline
changes occur as short (Ali and Narayana 2015) or long term (Fenster,
Dolan, and Morton 2001) scenarios. Consequences of long term shoreline
changes could lead to erosion or accretion (Dayananda 1992). But the
trends of erosion or accretion for a given time period cannot be predicted
well if they have been caused by extreme events like storms (Dayananda
1992; Dolan, Fenster, and Holme 1991; Fenster, Dolan, and Morton 2001;
Forbes et al. 2004). Coastal erosion causes negative impacts on habitats,
biodiversity, space, infrastructure and services, public access, recreation,
subsistence and cultural practices, and other economic activities. Assessing
shoreline changes provides significant insights to coastal impact assess-
ments, risk and decision making in coastal zone management practices
(Boateng, Wiafe, and Jayson-Quashigah 2017; Chen et al. 2005; Green et al.
2000). Continuous monitoring of the shoreline through field surveys is
more reliable; however, this approach is practically difficult because it is
time consuming, labour intensive and expensive. Further, there are large
gaps of historic shoreline field data for most parts of the world (Flanders
2013). Therefore, using of remote sensing data in estimating shoreline
changes has become very effective and popular (Elnabwy et al. 2020;
Warnasuriya, Gunaalan, and Gunasekara 2018).
Aerial photographs from aircrafts or UAVs (Unmanned Aerial Vehicles)

(Crommelinck et al. 2016; Paravolidakis et al. 2016), satellite images (White
and El Asmar 1999; Zhao et al. 2008), LiDAR (Light Detection and
Ranging) data (Hapke et al. 2011; Liu, Sherman, and Gu 2007; White and
Wang 2003) and SAR (Synthetic Aperture Radar) data (Lee and Jurkevich
1990; Robinson 2011; Shu, Li, and Gomes 2010; Wang and Liu 2019) are
some of the prominent remote sensing data currently used in estimating
and monitoring shoreline changes. Aerial photographs and LiDAR data
have limited global coverage, and may be obtainable only after necessary
approvals and security clearances, which make them less accessible for
many regional researchers in the world. As an alternative, some satellite
images are now available in the internet for free use. Such satellite image-
ries include Landsat satellite images from the longest earth observing satel-
lite mission since 1972, and Sentinel satellite images since 2014 which have
higher global coverage. Irrespective of the type of satellite images used, the
level of accuracy in terms of spatial resolution and georeferencing has
become one of the key concerns in current shoreline change detection
studies (Amaro et al. 2015; Genz et al. 2007; Guariglia et al. 2006; Li et al.
2008). The required accuracy level depends upon several factors such as,
objective and extent of the study, geomorphological features due to
dynamic nature of the coast and availability of good quality data. High-
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resolution satellite images are well demanded by researchers because of its
high accuracy (Bertacchini and Capra 2010; Li, Di, and Ma 2003). For
change detection, time series data are needed, however obtaining high-reso-
lution satellite images for different time periods can be expensive and is
restricted to available time periods. Interestingly, Google Earth (GE) plat-
form freely offers some high-resolution images for certain years. Therefore,
using of GE in scientific studies (Malarvizhi, Kumar, and Porchelvan 2016;
Traganos et al. 2018) has increased recognizing GE as an effective tool in
educational and research (Nicholson and Dodsworth 2012; Patterson 2007;
Sidhu, Pebesma, and Câmara 2018) over the last decade. Few studies have
already used satellite images from GE for shoreline change detection and
however this effective and inexpensive study approach still needs more
development and validation (Li 2016; Warnasuriya, Gunaalan, and
Gunasekara 2018).
It is very important to first identify shoreline positions from the satellite

images by visual interpretation governed by spatial, radiometric and spec-
tral characteristics (Reddy 2008). High-resolution images can give enough
information on land-water boundary and the adjacent coast. Conversely,
the shoreline is not very clear in low resolution images for which, image
enhancement techniques may be applied either to single band or multi-
band to identify geomorphological features. The image enhancement tech-
niques provide spatial, radiometric and spectral enhancements by using
contrast enhancement, image filtering, arithmetic operations applied on
image bands, colour composites (true and false), edge feature enhancement
(Paravolidakis et al. 2016) and pan-sharpening. Image classification meth-
ods (Lu and Weng 2007) can be used to separate land from water in order
to facilitate demarcation of the shoreline as well as to extract coastal land-
use types (Wu and Xu 2018). When the land-water boundary is not suffi-
ciently resolved in the images, some other reference lines such as vegetation
line or dry-wet line may be used for better understanding of shoreline
changes. However, a single shoreline proxy need to be identified through-
out a time series of images to measure shoreline changes. Land-water
boundary extracted directly from satellite images can be considered as an
“Instantaneous Shoreline” (ISL) as this is a sudden capture at one instant
in time (Boak and Turner 2005; Dang et al. 2018; Gens 2010; Li, Ma, and
Di 2002). GIS (Geographical Information System) techniques that include
manual digitizing method or semi-automated method (Altinuc, Keceli, and
Sezer 2014; Shu, Li, and Gomes 2010) can be used to extract the ISL from
satellite images. During this digitizing process, there is a possibility to
introduce errors due to the aforementioned image resolution limitations
coupled with human errors and these errors should be considered during
the ISL uncertainty estimation. Geo-referencing, tidal variations and wave
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actions are the other sources of errors which also contribute to the uncer-
tainty of the ISL. Therefore, estimation of ISL uncertainty plays an import-
ant role when describing the accuracy of shoreline change detection studies
(Yao et al. 2015). Wave climate data which has open access nowadays (Luo
et al. 2018) also can be coupled with remote sensing and GIS data in order
to describe shoreline change uncertainties more thoroughly.
Shoreline change can be described in different ways by using shoreline

change statistics such as Net Shoreline Movement (NSM), End Point Rate
(EPR), Average Of Rate (AOR), Shoreline Change Envelop (SCE),
Weighted Linear Regression Rate (WLR) which help to understand the
shoreline change patterns quantitatively and qualitatively (Dolan, Fenster,
and Holme 1991). It is very important to use the most appropriate change
statistics for a given time series of shoreline positions because some scen-
arios cannot be explained meaningfully by using certain statistics (Dolan,
Fenster, and Holme 1991). Typical example is when the time span
between shorelines is very low, the EPR cannot be trusted. Combination
of several statistics and use of supplementary statistics can ensure the reli-
ability of the results. Most of the current shoreline change detection stud-
ies are based on measuring change in shoreline position along roughly
shore-perpendicular measurement transects using the Digital Shoreline
Analysis System (DSAS) developed by United States Geological Survey
(USGS) to implement shoreline change statistics (Armah 2011; Ahmad
and Lakhan 2012; Dewidar and Frihy 2010; Hapke et al. 2011;
Himmelstoss 2009; Mahapatra, Ratheesh, and Rajawat 2014; Nassar et al.
2019) while few other studies have focused on area-based shoreline change
analysis (Anfuso et al. 2016).
Further, the methods used to delineate and analyze the shorelines are

also very crucial as some methods introduce more errors resulting uncer-
tain outcomes (Hapke et al. 2011). Collectively, the published shoreline
change estimation studies have focused on global, national or regional
changes, with the least attention to detect changes in small-scale beaches
(small sandy beaches isolated in local scale extending to a limited extent)
of given regions. On the other hand, information derived from medium or
low resolution satellite images for lengthy shorelines doesn’t reflect the
dynamism of small-scale beaches well. Thus, the up to date literature sur-
vey indicated the need of GIS studies that would validate the use of GE
high-resolution images as effective, efficient and free sources during shore-
line change studies in small-scale beaches. Such model studies would also
produce more reliable outcomes which could subsequently be applied for
other similar studies. Therefore, the main aim of the current study was to
address the above study gap along with the objectives of (a) developing a
methodology to use GE Pro for shoreline change studies in a selected
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small-scale beach and (b) verifying the efficiency and effectiveness of the
above method in order to make it validated for future studies.

Study area

Pareiwella Beach site is an isolated sandy beach located in Tangalle, southern
Sri Lanka, approximately 200 km away from the capital Colombo (Figure
1a). It is a recreationally important bathing beach sheltered by reefs with
some rock outcrops (Rathnayake 2015). This beach is bordered by a break-
water of the Tangalle fishery harbor established in 1964 (Gerritsen and
Amarasinghe 1976) at the north end, while there is a natural rocky shore at
south. A shore-perpendicular groyne between the middle of the beach and
natural rocky area offshore was developed after the 2004 Indian Ocean
Tsunami. Due to distribution of natural and artificial barriers, the beach has
a convex shape seaward with a salient near the middle of the beach. The
Pareiwella Beach lies between 6�1’23.22"N, 80�48’2.80"E to 6� 1’19.51"N,
80�48’1.34"E extending approximately 180m in length. The adjacent reef is
rich in biodiversity consisting of corals, seaweeds, seagrasses and other micro
and macro flora and fauna (Gunathilake et al. 2015). Both locals and for-
eigners frequently visit this site as this is one of the attractive beaches in the
down south of Sri Lanka. According to the study carried out by Rathnayake
in 2015, the economic benefits of this beach are estimated to be LKR 6.39
million (�34398.48 USD) per year for locals from visitors. These environ-
mental, economic, social and scientific values have made this small beach a
significantly important site in Sri Lanka. Climate of the area belongs to Dry
Zone according to the Sri Lankan climatic zones classified based on rainfall
and is influenced by southwest and northeast monsoons during June to
September and December to March respectively (De Vos et al. 2014). Tidal
pattern at the site is semi-diurnal and the tidal range varies between 0.5m to
0.6m during Spring Tides and 0.1m to 0.24m during Neap Tides (Gerritsen
and Amarasinghe 1976; Pattiaratchi and Wijeratne 2009). According to the
Sri Lankan coastal wave climate, the study area belongs to the High Energy
Zone where the wave height ranges 1.3m to 3.5m and 1.1m to 3m during
the southwest and northeast monsoons respectively (Survey Department of
Sri lanka 2007).

Methodology

Data collection

Primary data
Extracted shorelines. On the high-resolution images (0.31–1.84m) from
various satellites in GE Pro platform (Table 1), the land-water
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Figure 1. (a) Location map of study area showing Pareiwella beach and adjoining features.
Source: T. W. S. Warnasuriya, (b) Zones used for shoreline uncertainty estimation (Note:
Depicted Zones have been developed based on the SCE for all the years other than year 2005
because, this is an extreme case which could not be clearly represent in the diagram. Zone
overlapping has been mentioned as intersection), (c and d) Ground Control Points (GCPs) of the
study site (c – Rooftop, Breakwater, Groyne, Rock, 500m boundary, Shoreline; d – Slope loca-
tion, Shoreline).
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boundary of the study beach site (Pareiwella) was delineated (Figure 2)
along the studied shoreline by manual free-hand digitizing method
using ‘Path’ tool for each year (2003 to 2017) at 20 different eye-alti-
tudes ranging from 50m to 1000m with an interval of 50m. Three
replicate shorelines were delineated at the same place under each eye-
altitude for each year in three different times by a single user. Tilt of
the satellite images was kept 0� at each digitizing by activating ‘Do not
automatically tilt while zooming’ option in GE. The time spent for
each digitizing process was measured using a stop-watch. This was used
to establish relationships between: (a) digitizing time and eye-altitude,
(b) normalized digitizing time and eye-altitude and, (c) digitizing speed
and eye-altitude separately. Computer specifications were kept constant
and the same computer placed in the same environment was used
throughout the entire digitizing process.

Figure 2. (a) Satellite images from Google Earth for each year for the study site (Pareiwella
Beach, Tangalle), (b) Delineated shorelines showing the distribution for different years.

Table 1. General specifications of the satellite images used in the study.

Date Monsoon period
Approximate spatial

resolution (m)

Approximate
radiometric

resolution (bits) Image courtesy

27/09/2003 Southwest 0.65–0.82 11 Digital Globe
28/01/2005 Northeast 0.65–0.82 11 Digital Globe
19/02/2006 Northeast 0.65–0.82 11 Digital Globe
04/07/2009 Southwest 0.46–1.84 11 Digital Globe
08/03/2012 Northeast 0.46–1.84 11 Digital Globe
24/02/2013 Northeast 0.46–1.84 11 Digital Globe
22/02/2014 Northeast 0.5� 12� CNES/Airbus
14/03/2016 Northeast 0.31–1.84 11 Digital Globe
11/02/2017 Northeast 0.5� 12� CNES/Airbus

Note: � denotes the confirmed values using the specification of EOS (Earth Observing System) website (Sources:
Google Earth Pro, Digital Globe web site, CNES website, EOS website).
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Table 1explains the specifications of the high-resolution satellite images
used in the study. Image courtesy was found from copyright information
displayed on Google Earth Pro for respective images. Approximate spatial
and radiometric resolutions of the images were estimated based on several
factors such as specifications of available high-resolution images in the image
source, size of the smallest possible identifiable features from the images and
the clarity of the images. Spatial and radiometric resolutions of 2017 and
2014 images were confirmed using the specifications of images which are
available for purchase from EOS (Earth Observing System) website.

Ground control points (GCPs) and measurements. From GE Pro platform. Nine
locations of rooftops laid within 500m distance from the beach head seen
in all the 2003 to 2017 satellite images (Figure 1c) were marked (total 81
place marks) as the point features on the GE Pro platform for each year.
All these points were marked under 50m eye-altitude (eye-altitude at which
the features are identifiable under maximum zoom level) and 0� tilt.
Geometric measurements (length, width) of objects (such as buildings,
breakwaters, groynes, rocks, buses, cars, boats, 3-wheelers) and image shift
distance (obtained from the shift of GCPs) with their shift directions were
obtained using the ruler of GE Pro. The ground features were verified
using GE Street View.

From ground survey. Global Positioning System (GPS) locations of perman-
ent structures adjacent to the beach (buildings, breakwaters, groynes, rocks
etc.: Figure 1c) and the locations of beach slope measurements (Figure 1d)
were obtained using a “Garmin eTrex 20” hand-held GPS instrument under
4m accuracy (Garmin Ltd 2020). Geometric measurements (length and
width) of the aforementioned structures and vehicles were obtained using a
measuring tape in order to interpret the spatial resolution of the satellite
images by considering the clarity and visibility of the same features or simi-
lar features from the image in terms of their size.

Beach slope. Beach slope was measured for two days in each monsoon
period by using a clinometer at nine places (Figure 1d) in the swash zone
(three replicates at each place) during the southwest (2018) and northeast
(2019) monsoon periods. According to Figure 6, pole 1 was fixed at the
land-water boundary during the low tide and pole 2 was fixed in the berm
crest. Paired t-test was used to see if there is a significant difference in
beach slope between the two monsoon periods. Historical data such as con-
struction activities, beach morphological changes, economic activities, social
activities and human alterations were collected via community interviews
focusing on local people and related officers.
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Secondary data
Survey maps (1:10,000 and 1:50,000), hydrographic charts, published
reports of statistics, government web sites, and research papers were used
as secondary data sources to understand the present and past situations of
the study area.

Data pre-processing and analysis

All the digitized shorelines and GCPs were saved as KML (Keyhole
Markup Language) files from GE Pro. All the saved KML files were then
converted to Layer file (Shape file format) in ArcGIS 10.5.1 software. The
converted layer files were corrected based on the average distance and dir-
ection of image shift (which is discussed under error estimation section)
and were managed in a personal geodatabase in ArcGIS. All the shorelines
were projected in WGS 1984 UTM (Universal Transvers Mercator) projec-
tion. Shorelines were appended (This is essential in DSAS for change

Figure 3. Flow charts of the append scenarios (a – Append 1; b – Append 2).
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detection) using ‘Append’ tool in ArcGIS 10.5.1 in order to facilitate error
estimation under scenarios given in Table 2.

Creation of baselines and transects with zonation
Suitable baselines were created manually by considering all the appended
shorelines enabling the intersection at almost equal intervals for each error
estimation scenario. One-meter interval transects were cast for each base-
line using “Smooth Baseline Cast” method (Smoothing Distance is 10m)
from DSAS tool in ArcGIS software as this close transect spacing reflects
even slight changes of small beaches. Transect length varied in different
append scenarios as this depends upon the width of appended shoreline
sets i.e., maximum length of transect in “Append 1 scenario” (Figure 4a–d)
and “Append 2 scenario” (Figure 4e,f) was 10m.
Due to the high heterogeneity of beach geomorphology (Figure 2b) dur-

ing the study period within the study area, it was divided into three zones
(Figure 1b) based on the shoreline aspect (Table 3) and uncertainty was
calculated for each zone.

Error estimation
Digitizing error, tidal error and shifting error of the shorelines were esti-
mated using the method described by Warnasuriya, Gunaalan, and
Gunasekara (2018) with additional improvements. Introducing two differ-
ent scenarios (Append 1 and 2) of digitizing error (described in the section
“Digitizing error”) with eye-altitude and using of wave runup error in the
total uncertainty of shorelines were the main improvements.

Digitizing error. Digitizing error was estimated by using the appended sets
of shorelines in “Append 1 scenario” (Figure 4a–d) and “Append 2
scenario” (Figure 4e,f) from DSAS tool to analyze shoreline changes and
calculate the change statistics (Ali and Narayana 2015; Himmelstoss 2009).

Table 2. Shoreline (SL) append scenarios.

Append scenario Appending process No. of SLs in a set
No. of appended

SL sets Purpose

Append 1 Three SLs delineated
under each eye-altitude
were appended for
each year.
(Figures 3a and 4a–d)

3 180 To estimate the individual
digitizing error under
each eye-altitude for
each year and to build
a relationship between
eye-altitude
and accuracy.

Append 2 All the initially digitized
SLs under each eye-
altitude were appended
for each year. (Figures
3b and 4e,f)

20 9 To estimate the digitizing
error due to the eye-
altitude for each year.
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Mock dates (this had to be used because DSAS doesn’t work for same dates
in the attribute table for shoreline change analysis) were used in “Date_”
fields in order to facilitate the error calculation of the shoreline in each
year and under different eye- altitudes. This approach was taken as several

Figure 4. Examples for Append 1 (a–d) and 2 (e, f) Scenarios. (50m to 1000m eye-altitudes).
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shorelines are used in the calculation for the same date. Gaps between
mock dates were kept constant. Shoreline Change Envelope (SCE) was the
change statistics used in this regard to estimate the errors as this gives the
maximum change of all considered shorelines in the calculation irrespective
of the shoreline date. Uncertainty field was not used in the “Append 1
scenario” while the digitizing error estimated from the “Append 1 scenario”
was used as the uncertainty of the “Append 2 scenario” in order to esti-
mate the Weighted Linear Regression (WR2) of the error as the uncertainty
value is one of the major requirements in this calculation. Average errors
under each eye-altitude of all the years were also estimated and the rela-
tionship between digitizing error and eye-altitude was established. The
trend of the digitizing error due to various shoreline lengths were estimated
using the shorelines having 20m gap between consecutive shorelines along
the shore considering all the years. Digitizing error differences between
years and between eye-altitudes (One-way ANOVA) and zones (Two-Way

Figure 4. Continued.

Table 3. Shoreline aspect of the beach and coordinate limits in each zone.

Zone Direction
Start End

Latitude Longitude Latitude Latitude

1 Northeast 6� 10 23.498" N 80� 480 2.952" E 6� 10 22.302" N 80� 480 4.036" E
2 East 6� 10 22.302" N 80� 480 4.036" E 6� 10 21.586" N 80� 480 3.769" E
3 Southeast 6� 10 21.586" N 80� 480 3.769" E 6� 10 20.01" N 80� 480 1.616" E
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ANOVA) were tested. Tukey Post Hoc comparisons were applied wherever
necessary for pairwise comparison in different scenarios (e.g., errors
between eye altitudes; 50m and 300m, 50m and 1000m, 300m and
1000m). Overall Average Digitizing Error (OADE) for “Append 2 scenario”
was calculated by averaging the mean digitizing error of all the years.

Tidal error. Although the tide in Sri Lanka is very small compared to some
other parts of the world, this has been taken in to consideration for this
study to check the error due to tide with respect to the beach slope and as
the guide for other similar studies when apply this method in some other
places where the tide is considerable. Horizontal displacement of the shore-
line caused by tidal variation was used as the Tidal Error and it was calcu-
lated by using approximate tide variation of the study area and its average
beach slope. Historical data at the proximity of the study area is not avail-
able, therefore global tidal model data were used to estimate the approxi-
mate tide. The source for tidal data used in this study is the regional tidal
model (TMD) developed by the Oregon State University (Egbert and
Erofeeva 2002). TMD was setup for Bay of Bengal at a resolution of 1/
30 deg. (3.5 km) and the main tidal constituents of M2, S2, N2, K2 and K1
in the study area were extracted. Water level data at Hambanthota tide
gauge between 1st and 30th of December in 2009 were used as a validation
period for the model. Overall, the model validation shows a moderate per-
formance as shown in the Figure 5.
The main sea level variation in the study area occurs due to the semi

diurnal tide (M2) which is considered as the main tidal constituent in Sri
Lanka. The spring tide range recorded here is 0.5m. The extracted main
tidal constituents for the study area are listed in Table 4.
Validated tidal model was hindcasted to determine the water level at the

time of image acquisition of the shoreline. Image acquisition time was
interpreted by considering both shadow evidence (West of the buildings)

Figure 5. Comparison between measured tide data and TMD model results at Hambanthota
fisheries harbor.
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and equator passing time of satellites (10.30 a.m.). Therefore, it was
approximated that the images have been obtained around 10.30 a.m.
The average slope of the beach was estimated using a clinometer (Figure

6) and it was used to calculate the tidal error in each zone. The slope data
(described in the section “Beach slope”) was further used to calculate eleva-
tion at each sampling location by using horizontal distance between the
locations and Digital Elevation Model (DEM) was created (0.1m cell size).
Shoreline position in 2017 was used as the zero line in the DEM because
this is the most recent satellite image used in the study. Beach profiles near
the middle of each zone were obtained from the DEM using 3D Analyst
Tool (Profile Graph option) in ArcGIS 10.5.1. It was assumed that the
mean slope was not changed during the study period under each monsoon
with respect to the past satellite data. Beach slope within monsoons and
between monsoons were compared using Paired t test while One-way
ANOVA test was used to compare the beach slope in different zones.
Eq. (1) (Warnasuriya, Gunaalan, and Gunasekara 2018) was used to cal-

culate the tidal error (Figure 6). The approximate tide value (Table 5) at
the time of image acquisition was used in the equation.

Tidal error ðDÞ ¼ Approximate tide value ðTÞ=tan h (1)

where, h ¼ Average beach slope

Table 4. Extracted main tidal constituents for the study area (regional tidal model).
Tidal constituents Amplitude (m) Phase (Degree)

M2 0.1010 265.80
S2 0.0834 294.12
N2 0.0126 271.59
K2 0.0245 292.13
K1 0.0425 273.35

Figure 6. Diagrammatic representation of beach slope analysis, tidal error estimation and wave
runup error estimation (not to the scale).
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Shifting error. Some images had shifted compared to the 2017 image and
this shift was estimated in terms of the distance and the direction (heading)
of the shift. For this purpose, 9 rooftops of the buildings available in all the
images within 500m distance from the beach head were taken into consid-
eration (Figure 1c). Corrections were applied to the shorelines by manual
editing based on the shift distance and direction using ‘Editor’ tool in the
GIS software. Standard Deviation (SD) of the shift was used as shifting
error of the study.

Wave runup error. Difference between water-land boundary and dry-wet
line (W) was used as the wave runup error for each year (Figure 6). Mean
SCE in DSAS was used to calculate this difference for each year and each
zone under each eye-altitude.

Shoreline uncertainty. The total uncertainty of the shoreline was calculated
using Eq. (2) developed by Warnasuriya, Gunaalan, and Gunasekara (2018)
by adding newly considered wave runup error;

Total Uncertainty ¼ DEþ TEþ SEþWE (2)

where, DE – Digitizing error, TE – Tidal error, SE – Shifting error, WE –
Wave runup error
Two-Way ANOVA test was used along with Tukey Post Hoc compari-

sons to test significant difference of the total uncertainty between different
eye-altitudes and zones. Grand mean uncertainty was calculated for max-
imum possible zoom level (50m eye-altitude) in order to get an idea about
the overall accuracy which could be achieved from the study by averaging
the uncertainty in all the years.
Most effective (accurate), most productive and most efficient eye-alti-

tudes were estimated by plotting relationships between (a) digitizing time
and eye-altitude, (b) digitizing error and eye-altitude, (c) digitizing error
and digitizing time respectively. Differences of the shoreline change statis-
tics between different eye-altitudes and zones were tested by Two-Way

Table 5. Summary of tide data.
Shoreline date Most closest moon phase Day of moon phase Tide condition Approximate tide value

27/09/2003 New Moon 26/09/2003 Low �0.1869
28/01/2005 Full Moon 25/01/2005 Low �0.2501
19/02/2006 Third Quarter 21/02/2006 Low �0.1894
04/07/2009 Full Moon 07/07/2009 Flood 0.1101
08/03/2012 Full Moon 08/03/2012 Low �0.1747
24/02/2013 Full Moon 26/02/2013 Flood 0.0051
22/02/2014 Third Quarter 22/02/2014 Low �0.1062
14/03/2016 First Quarter 15/03/2016 Low �0.1747
11/02/2017 Full Moon 11/02/2017 Low �0.0871

Note: Moon phase was found by Garmin etrex 20 GPS. Tide is given with reference to the Mean Sea
Level (MSL).
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ANOVA test along with Tukey Post Hoc comparisons. Consisted method-
ology is given in Figure 7.
Eye-altitude responsible for the most productive shoreline was estimated

by considering both effectiveness and efficiency. For this purpose, percent-
age error (Eq. (3)) and percentage digitizing time consumption (Eq. (4))
was calculated and were potted in a graph in order to find the equilibrium
point (Figure 10c). Effectiveness and efficiency were calculated using Eqs.
(5) and (6), respectively.

Figure 7. Flow chart showing the overall methodology adopted in this study. Note: Object size
was used for spatial resolution interpretation of satellite images. GE stands for Google Earth.
GPS stands for Global Positioning System. SD stands for Standard Deviation.

556 T. W. S. WARNASURIYA ET AL.



Percentage error ¼ ðMean error=Maximum mean errorÞ x 100% (3)

Percentage time ¼ ðMean time=Maximum mean timeÞ x 100% (4)

Effectiveness ¼ 100% � %error (5)

Efficiency ¼ 100% � %time (6)

The equilibrium point can be considered as the most productive scenario
as this contains both high accuracy and high efficiency. Mean productivity
was calculated using the Eq. (7).

Mean Productivity ¼ ðEffectiveness þ EfficiencyÞ=2 (7)

Results and discussions

Relationships between digitizing error and digitizing time with eye-altitude

Under the “Append 1 scenario,” the estimated mean digitizing error
(mean ± SD) showed its lowest (0.56 ± 0.14 m) and the highest (2.4 ± 0.72
m) values at 50m and 1000m eye-altitudes respectively. Minimum and the
maximum errors recorded out of all the considered years were 0.39m and
3.97m respectively. This type of error can occur due to human errors in
digitizing process, reduced image clarity and geomorphology of the beach.
Eye-altitude and digitizing error resulted an exponential regression (R2 ¼
0.97; Figure 8a) where both digitizing error and the standard deviation
(SD) of the error exponentially increased with increasing eye-altitude.
Derived equation from this model was;

y ¼ 0:5457e0:0015x (8)

where, y¼Digitizing error (m) and x¼Eye-altitude (m)
For direct applications, the equation was linearized and re-written as

(Figure 8b);

ln y ¼ 0:0015x þ ln 0:5457 (9)

The Figure 8b relationship is useful for researchers to estimate the digi-
tizing error associated with eye-altitude in GE Pro high-resolution images
by considering the correction factor of 0.0012m (slope of the Figure 9) per
each exceeding 1m length of shoreline or vice versa which is described in
the Figure 9.
The mean digitizing time (mean ± SD) under each eye-altitude revealed

the lowest (9.2 ± 2.59 s) in 1000m and the highest (64.24 ± 15.43 s) in 50m.
Out of all the considered years, the minimum recorded digitizing time was
6 s while the maximum was 94 s. The trend of mean digitizing time fol-
lowed a power relationship (R2 ¼ 0.99: Figure 8c) where both digitizing
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Figure 8. Derived relationships among digitizing error, time and eye-altitude (a – Relationship
between eye-altitude and digitizing error, b – Linearized model of the relationship between
eye-altitude and digitizing error, c – Relationship between eye-altitude and digitizing time, d –
Linearized model for the relationship between eye-altitude and digitizing time, e – Relationship
between normalized time and eye-altitude, f – Relationship between average digitizing speed
and eye altitude).
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time and the standard deviation (SD) of the digitizing time decreased with
increasing eye-altitude.
Derived equation from this model was;

y ¼ 930:35x�0:651 (10)

where, y¼Digitizing time (s) and x¼Eye-altitude (m)
For direct applications, the equation was linearized and re-written as

(Figure 8d);

log y ¼ � 0:651 log x þ log 930:35 (11)

The relationship between the eye-altitude and the digitizing time is useful
for researchers to estimate the digitizing time associated with eye-altitude
in GE Pro high-resolution images. This can be done by considering the
curve (Figure 8e) normalized by the shoreline length (180m) and the
derived equation (Eq. (12)) with constant digitizing speed under each eye-
altitude. The average digitizing speed for each eye-altitude is given in
Figure 8f and it was identified that digitizing speed is linearly increased
with increasing eye-altitude.

y ¼ 5:1686x�0:651ð Þ� L (12)

Table 6. Summary of the relationships between percentage digitizing time and percentage
digitizing error with respect to eye-altitude.

Equation R2 Regression type

Efficiency y¼ 1448.3x-0.651 (Eq. (14)) 0.9879 Power
Effectiveness y¼ 22.772e0.0015x (Eq. (15)) 0.9703 Exponential

Figure 9. Relationship between shoreline length and digitizing error.
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where,y¼Normalized digitizing time, x¼ eye-altitude, L¼ length of the
shoreline in the real world
Relationship between digitizing time and digitizing error (Figure 10a)

also followed a power regression model (R2 ¼ 0.93) where the digitizing
error decreased with increasing digitizing time.
Derived equation from this model was;

y ¼ 11:846x�0:794 (13)

where, y¼Digitizing error (m) and x¼Digitizing time (s)
For direct applications, the equation was linearized and re-written as

(Figure 10b);

Figure 10. Derived relationships among digitizing efficincy, effectiveness and productivity (a –
Relationship between digitizing error and digitizing time, b – Linearized model of the relation-
ship between digitizing error and digitizing time, c – Relationships between percentage digitiz-
ing time and percentage digitizing error in association with eye-altitude, d – Productivity curve
for shoreline digitizing from high resolution images of GE under different eye-altitudes).
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log y ¼ � 0:794 log x þ log 11:846 (14)

Most accurate (effective), most productive and most efficient eye-alti-
tudes for shoreline change analysis are explained by the graph in Figure
10c. The percentage error followed a power regression model while per-
centage digitizing time followed an exponential regression model (Figure
10c; Table 6). Time can be considered as an indicator for efficiency and the
error can be considered as an indicator for effectiveness where 100% time
consumption means low efficiency while 100% error means low effective-
ness. In order to become more efficient, digitizing time should be kept low
while digitizing error should be kept low for high effectiveness. The study
showed the highest effectiveness is at 50m eye-altitude digitizing while the
highest efficiency is at 1000m eye-altitude digitizing. However, in order to
achieve the highest productivity of a digitizing work, both efficiency and
the effectiveness should be fulfilled to the highest possible levels.
As the intersecting point (equilibrium point) of the Figure 10c indicates,

the highest possible levels of effectiveness and efficiency, the best eye-alti-
tude for shoreline digitizing process from the GE Pro was considered as
the eye-altitude at this point where the two curves are intersected.
Accordingly, the eye-altitude of this point was 300m with approximately
35% error and 35% time consumption (Figure 10c). On the other hand, it
reveals 65% accuracy and 65% efficiency (Table 7). As this point can fulfill
both the highest efficiency and the highest effectiveness, this could be con-
sidered as the efficient-effective (e-e) equilibrium of shoreline digitizing
which explains the most productive eye-altitude scenario. Therefore, the
highest productivity was obtainable at the shorelines from 300m eye-alti-
tude for a small-scale beach. (Table 7 and Figure10d).
Digitizing error due to “Append 2 scenario” explains the error among 20

eye-altitudes which were taken into consideration in the study (Table 8).
One-Way ANOVA showed occurrence of significant error due to “Append
2 scenario” between years (p< 0.05) which may be attributed to clarity of
the images, slip of the hands during the digitizing process or various geo-
morphological complexities in different years.
Overall Average Digitizing Error (OADE) due to “Append 2 scenario”

was 3.92 ± 0.54m while the highest (5.00 ± 0.09m) average error was shown
in the year 2003 with the maximum and minimum of 10.04m and 3.11m
respectively (Table 8; Figure 11). Further, it was identified that the

Table 7. Mean productivity of shoreline digitizing under the three eye-altitudes viz. 50m,
300m and 1000m.

50 m 300 m 1000 m

Efficiency 0 65% 85.68%
Effectiveness 76.82% 65% 0
Mean Productivity 38.41% 65% 42.84%
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maximum digitizing error (Append 2) was given in the beach head as
shown in the Figure 11. Since no any definite relationship between eye-alti-
tude and the “Append 2” digitizing error (WR2< 0.5), the resulted digitiz-
ing error might be random (Table 9).
The digitizing error (Append 2) depends on digitizing random error and

the ability to distinguish water-land boundary under different eye-altitudes.
Therefore, for the purpose of change detection, the digitizing should be
done under the same eye-altitude for all years through which the digitizing
error (Append 2) could be ignored in shoreline uncertainty as there are no
any errors introduced due to different eye-altitudes. When different eye-
altitudes (between 50m to 1000m) are used to delineate the shorelines
from GE for different years, this digitizing error (Append 2) should also be
taken into consideration during uncertainty calculation. Since our study
used the shorelines delineated under the same eye-altitude for change
detection at a time, we ignored this digitizing error (Append 2) in uncer-
tainty calculation.

Shoreline uncertainty

In order to calculate the shoreline uncertainty, the tidal error, wave runup
error and the shifting error are to be taken into consideration same as the
digitizing error mentioned in section “Relationships between digitizing
error and digitizing time with eye-altitude.” Therefore, under this section
the results of digitizing error estimation, tidal error estimation, shifting
error estimation, wave runup error estimation and total uncertainty estima-
tion (Table 10) will be discussed under main three different eye-altitude
(50m, 300m and 1000m) scenarios and under the three different zones
(Zone 1, Zone 2 and Zone 3) of the study area.

Digitizing error
Highest accuracy in terms of digitizing error (0.57 ± 0.12m) was given in
50m eye-altitude while the lowest (2.45 ± 0.2m) of that was given in
1000m eye-altitude. Mean digitizing error under 300m eye-altitude was
0.88 ± 0.11m. Results revealed that it is possible to digitize shorelines under
the digitizing error lower than 1m in both 50m and 300m eye-altitudes
while the lowest eye-altitude (50m) can be used to check the results after
digitizing. Further, it was identified in certain digitizing under 1000m eye-
altitude could exceed the digitizing error more than 4m. According to the
Two-Way ANOVA test, there was a significant difference in digitizing error
among different eye-altitudes (p< 0.05). However, Tukey Post Hoc test
revealed significant difference in digitizing error neither between 50m and
300m eye-altitudes nor between zones (p> 0.05). Zone 2 had the highest
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mean digitizing error (1.42 ± 0.43m) compared to other zones. This is due
to the complex geomorphology formed by a beach head in this particu-
lar zone.

Tidal error
Beach slope and tide at the time of image acquisition were found as the
major factors governing the tidal error. The highest mean beach slope
(26.51 ± 2.29�) was observed in zone 1 while the lowest (6.72 ± 3.46�) was
in zone 2. Further, it was identified that the mean beach slope in southwest
monsoon is higher than that of northeast monsoon. None of the three
zones showed significantly differed beach slopes (p> 0.05: separate paired
t-test for each zone) between the two measured days during the northeast
monsoon whilst this was significant during the southwest monsoon
(p< 0.05: separate paired t-test for each zone). For all the three zones, their
mean beach slope during the southwest monsoon period was significantly
higher (p< 0.05: separate paired t-test for each zone) than that of the
northeast monsoon period. As the historic ground data for beach slope was
not available, it was assumed that the beach slope was not significantly
changed in respective monsoon periods of other years. According to the

Table 8. Digitizing error due to “Append 2 scenario.”
2003 2005 2006 2009 2012 2013 2014 2016 2017

Error/m 5.00 3.74 3.51 3.73 4.53 3.22 3.62 4.02 3.90
SD 0.09 0.22 0.20 0.07 0.23 0.23 0.18 0.21 0.74

Note: SD stands for “Standard Deviation.”

Figure 11. (a) The graph showing the distribution of digitizing error under “Append 2 scenario”
(2003) along the baseline under each transect, (b) spatial distribution of digitized shorelines in
2003 under different eye-altitudes and intersected transects.

Table 9. Weighted regression of “Append 2 scenario.”
2003 2005 2006 2009 2012 2013 2014 2016 2017

WR2 0.09 0.08 0.18 0.45 0.26 0.21 0.20 0.35 0.29
SD 0.01 0.04 0.05 0.04 0.02 0.01 0.02 0.09 0.03
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two separate one-way ANOVA tests conducted for each monsoon, the
beach slope significantly differed (p< 0.05) between zones during both
northeast and southwest monsoons (Figures 12 and 13).
The highest mean tidal error (1.17 ± 0.61m) was observed in zone 2

while the lowest (0.35 ± 0.19m) was in zone 1 which may have been
resulted due to differences of beach slope in each zone. The study found
that the tidal error is governed by the beach slope (negatively related),
monsoon (beach slope is low in northeast monsoon) and the tide at the
time the image is acquired. The maximum tidal error (2.12m) was given in
zone 2 of 2005 as it has the highest tidal variation (�0.25m) and the low-
est beach slope (6.72�). It was identified that the influence of the tidal error
can be kept less than 1m in the Zone 1 and Zone 3.

Shifting error
The highest image shift (10.67m) was shown in 2014 image while the high-
est SD (2.6m) was shown in 2006 image. SD values of all the other images
were lower than 1.5m. However, the shifting error was assumed to influ-
ence all the zones similarly.

Wave runup error
Zone 2 had the highest wave runup error (9.99 ± 3.47m) while the lowest
of that was in zone 3 (4.66 ± 1.6m). Wave runup error had a greatest con-
tribution to the total uncertainty compared to the other errors. It was
found that in some cases this error exceeded more than 10m across and
entire study area.

Total uncertainty
There was a significant difference in shoreline uncertainty among zones
and among eye-altitudes (Two-Way ANOVA: p< 0.05). However, Tukey
Post Hoc test reveals no significant difference in shoreline uncertainty
between 50m and 300m eye-altitudes (p> 0.05). Lowest mean uncertainty

Table 10. Summary of shoreline uncertainty.

Year
Zone 1 Zone 2 Zone 3

50 m 300 m 1000 m 50 m 300 m 1000 m 50 m 300 m 1000 m

2003 15.42 15.81 17.01 19.44 19.42 22.66 5.24 5.76 9.12
2005 12.5 12.83 13.55 15.62 16.02 18.2 8.99 9.11 12.22
2006 8.59 8.96 9.47 14.14 15.08 15.03 10.4 11.06 11.54
2009 6.9 7.21 8.73 12.14 12.46 14.4 6.74 6.92 7.79
2012 4.79 5.19 6.92 14.63 14.8 15.87 8.02 8.18 9.44
2013 6.8 7.09 9.16 10.04 10.31 10.85 5.45 5.77 7.02
2014 5.66 5.91 7.35 5.32 5.53 7.96 3.49 4.07 4.63
2016 6.86 7.0 8.5 12.3 12.47 13.21 5.48 5.99 7.24
2017 4.3 4.65 7.37 9.76 9.8 12.98 5.5 5.34 6.89
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(6.59 ± 2.16m) was observed in zone 3 under 50m eye-altitude while high-
est mean uncertainty (14.57 ± 4.22m) was recorded in zone 2 under 1000m
eye-altitude (Table 10).

Conclusions and recommendations

The current study indicated that the shoreline changes of a small-scale
beach can be accurately (Grand mean uncertainty ¼ 9.06 ± 3.15m)
delineated using images from GE Pro under the eye-altitude (50m) that
has the maximum possible zoom level. However, when considering both
effectiveness and efficiency of the shoreline delineation, it was identified
that the study had the highest productivity under the eye-altitude 300m.
Although the accuracy is a key factor, efficiency may also be a key

Figure 12. Digital Elevation Models of day 1 (a) and 2 (b) in northeast monsoon, day 1 (c) and
day 2 (d) in southwest monsoon.
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Figure 13. Selected beach profiles from the three zones over two days each of the southwest
(SW) and northeast (NE) monsoon (Only middle profiles of each zone are given. Z1 – Zone 1
(a–d), Z2 – Zone 2 (e–h) Z3 – Zone 3 (i–l), D1 – Day 1, D2 – Day 2).
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consideration if project duration is limited. In that particular circumstance,
minimizing the trade-off between effectiveness and the efficiency is very
important. If time is not a concern of the project, 50m is recommended as
the most accurate eye-altitude whilst the most efficient eye-altitude is
1000m having the highest errors. Further, if there are more shorelines to
be delineated or if the shoreline is very long, it is advisable to select the
eye-altitude which satisfies both effectiveness and efficiency because; more
shorelines or long shoreline consumes much time to delineate and analysis.
However, all the shorelines should be delineated under the same eye-alti-
tude in this case. It was identified that DSAS played an important role not
only in shoreline change detection but also in shoreline digitizing error
estimation as introduced in this study.
The current study indicated that the digitizing error is caused by human

errors, image resolution problems and complex coastal morphological fea-
tures. This error could be minimized by improving the digitizing skills, by
correctly identifying the land-water boundary via visual interpretation and
selecting the low eye-altitudes for digitizing process. Tidal error was found
to be governed by beach slope that significantly changed between the mon-
soons, tide type (Spring or Neap) and the tide at the time of the image
acquisition. However, the tidal errors in this study were low as the tidal var-
iations in Sri Lanka are considered to be very low. The slight image shift
found during the study can be corrected in the GIS software. As this shift is
not homogenous for all the sampling points, it is ideal to use the SD of the
shift as the shifting error in shoreline uncertainty. As the bathing area (Zone
3) of this beach is a pool which is partly covered by reefs and rocks, it could
be assumed that the wave action is negligible on this part of the beach lead-
ing the lowest uncertainty (6.59 ±2.16m). But, in the places where the wave
action is high, it is recommended to consider the wave action as one of the
error sources (Wave runup error) of the shoreline positions.
The major limitations of the study were (a) temporal gaps in satellite

imagery, (b) lack of certain historical ground data for beach slope, winds,
waves, tides and currents of the study area, (c) difficulty in finding the
exact time of image acquisitions (d) lack of information on exact image
resolutions for most of the satellite images and (e) short time span of avail-
able imagery only back to the early 2000s, which may not be enough to
reliably measure long-term shoreline change trends, especially in an area
prone to storm impacts. By considering all the aspects discussed here, it is
recommended that the GE Pro can be used as effective and efficient remote
sensing and GIS data source for small-scale shoreline change analysis
coupled with DSAS tool in ArcGIS software. The methodology followed
during the current study could be adopted for other similar small-scale
beaches for shoreline change estimations.
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