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SOME BEHAVIOR OF COARSE STRUCTURE AND COARSE EQUIVALENCE

N. KAJAN1 AND K. KANNAN

ABSTRACT. I am going to introduce some properties of coarse structure. Coarse
space is defined for large scale in metric space similar to the tools provided by
topology for analyzing behavior at small distance, as topological property can
be defined entirely in terms of open sets. Analogously a large scale property
can be defined entirely in terms of controlled sets. The properties we required
were that the maps were coarse (proper and bornologous), but why do these
maps imply that the spaces have the same large structure? Essentially this has
to do with contractibility. Spaces which are the same on a large scale can be
scaled so that the points are not too far away from each other, but we are not
concerned with any differences on small scale that may arise. In addition I am
going to explain some basic definition related with the title of my research work
besides ,I want to investigate several results in coarse map, coarse equivalent
and coarse embedding. Further I have to proof some results of product of coarse
structure.

Coarse map need not be a continuous map. Coarse space has some applica-
tion in various parts in mathematics. More over coarse structure is a large scale
property so we can invest some results related with coarse space and topology.
Topology is the small scale structure, but topological coarse structure is the
large scale structure. We investigated some results about coarse maps, coarse
equivalent and coarse embedding.
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1. INTRODUCTION

Imagine a new student of analysis. In calculus he hears about limit and con-
tinuity, probably at first in a quite informal way: The limit is what happens on
the small scale, later this idea formalized in terms of the classical definition and
soon it becomes apparent that the no tune domain of this definition is the world
of metric spaces. Then perhaps in the first graduate course, the student takes
the final step in this journey of abstraction. He learns that what really matters in
understanding limits and continuity is not numerical value of the metric, just the
open sets that it defined. This realization leads naturally to the abstract notation
at topological space but it also enhances understanding even in the metrizable
world for in stone, there is only one natural topology on a finite- dimensional
(real) vector space, though there are many matrices that give rise to it.

The notation of coarse space arises through a similar process of abstraction
starting with the informal idea of studying what happens on the large scale to
understand this idea, consider the metric spaces Zn and Rn. Their small scale
structure their topology is entirely different, but the large scale they resemble
each other closely. Any geometric configuration in Rn can be approximated by
one in Zn to within in a uniformly bounded error.

We think such spaces as coarse equivalent. Formally speaking, a coarse struc-
ture on a set X is defined to be a collection of subsets of X×X called controlled
set entourages for the coarse structure which satisfy some simple axioms. It is
more accurate to say that a coarse structure is the large scale counter part of a
uniformly then of a topology.

Coarse structures are on abstract construction describing of a space at a large
distance. In journal variety of existing results on coarse structure are presented,
with the main focus being coarse embedding into coarse equivalent. Coarse
structure defined, and it is shown how a metric induces a coarse structure,
coarse maps, coarse equivalent and embedding are defined, and some of their
basis properties are presented.

Coarse spaces are sets equipped with a coarse structure, which describes the
behaviour of the space at the distance. A coarse space has a well define notion
of boundedness and bounded subsets. One can obtain some intuition on the
concept by considering a extremely zoomed-out view of a space, under which
for example the spaces and R look similar.
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To study the large scale structure of the metric space or topological space ,one
naturally becomes concerned with properties which hold at large scales, such
as boundedness, degrees of freedom and restriction of movement :continuity
becomes correspondingly less important ,since it has little impact on these qual-
ities of a space. Coarse geometry provides a set of tools for discussion of large
scale structure by consideration of maps which preserve these properties.

2. PRELIMINARIES

Definition 2.1. Let X be a set, ε ⊂ P(X×X), the collection ε is a coarse structure
on X. Then the following conditions apply

(1) Diagonal property: 4X is an element of ε, i.e 4X = {(x, x) : (x, x) ∈ X}
(2) Subset property: A ∈ ε, B ⊆ A then B ∈ ε ;
(3) Finite union property: A ∈ ε, B ∈ ε then A ∪B ∈ ε ;
(4) Inverse property: A−1 = {(y, x) ∈ X2 : (x, y) ∈ A};
(5) Composition property: A,B ⊆ X2,

A ◦B =
{

(x, z) ∈ X2,∃ y ∈ X such that (x, y) ∈ A and (y, z) ∈ B
}
.

The elements of the coarse space commonly referred to as controlled sets or en-
tourages. Then the pair (X, ε) is called coarse space.

Definition 2.2. [4] Let X be a set and ε be a coarse structure on X. let B be a
non empty subset of X. we say that X is bounded with respect to ε , if there is an
x ∈ X such that B × {x} is controlled.

Definition 2.3. [1] (Coarse Map) Let X,Y be a metric spaces and f : X → Y be a
map. The map f is called coarsely proper (metrically proper ), if for every bounded
set B in Y then f−1(B) is bounded in X. If f is called bornologous (uniformly) if
∀R > 0,∃S > 0 Such that dX(x, y) < R then dY (f(x), f(y)) < S. Then f is
called coarse map if it is both coarsely proper and bornologous.

Definition 2.4. [1] (Closeness) Let S be a set and X be a coarse space then two
maps f, g : S → X is called close if f(s), g(s) ⊆ X2 is controlled set. In particular
metric space {d(f(s), g(s)); s ∈ X} is bounded set.that is

sup {d(f(s), g(s)) | s ∈ X} <∞.
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Definition 2.5. [1] (Coarse Embedding) Let X, Y be a metric spaces . A (not
necessarily continuous) function f : X → Y is a coarse embedding if there exists
non decreasing functions ρ1, ρ2 : [0,∞)→ [0,∞) satisfying

(1) ρ1(dX(x, y)) ≤ dY (f(x), f(y) ≤ ρ2(dX(x, y)) for all x, y ∈ X;
(2) limt→∞ ρ1(t) = +∞.

Definition 2.6. [1] (Coarse Equivalent) We say that metric space X and Y are
coarse equivalent if there exists coarse maps f : X → Y and g : Y → X such that
f ◦ g and g ◦ f are closed to the identity maps on Y and X. Either of the maps f, g
is then called a coarse equivalent.

3. EXAMPLES

Example 1. Let (X, d) be a metric space. Define εd, as follows εd = {E ⊆ X2 :

d [E] < ∞}. Then εd is a coarse structure, where d [E] = supx,y∈X d(x, y). The
coarse structure εd is called bounded course structure of (X, d). Since d(x, x) =

0, (x, x) ∈ 4X . Consider d [4X ] = supx,x∈X d(x, x) = 0 < ∞. Therefore
∆X ∈ εd. Let A ∈ εd, d(x, y) = d(y, x) : (x, y) ∈ A implies that d [A−1] =

supx,y∈X d(y, x)d [A−1] = supx,y∈A d(x, y);∀(x, y) ∈ A therefore d [A−1] < ∞.
Therefore A−1 ∈ εd . Let B be subset of A , Let (x, y) ∈ B and d [B] =

supx,y∈B d(x, y) = supx,y∈A d(x, y) = d [A] < ∞, hence d [B] < ∞. Therefore B ∈
εd. Let A,B ∈ εd. So d [A] , d [B ] <∞. Let (a, b) ∈ A∪B. Then (a, b) ∈ A∨(a, b) ∈
B. Therefore d(a, b) ≤ d [A]∨d [B] d(a, b) ≤ max {d [A] , d [B]} implies that d(a, b) ≤
d [A ∪B] ≤ max {d [A] , d [B]} <∞, therefore d [A ∪B] <∞. Therefore A ∪ B ∈
εd. Let (a, c) ∈ A ◦ B. There exist b ∈ X Such that (a, b) ∈ Aand (b, c) ∈ B.
Then d(a, c) ≤ d(a, b) + d(b, c).d [A] + d [B] <∞. Then d [A ◦B] ≤ d [A] + d [B] <

∞ so d [A ◦B] <∞. Hence A◦B ∈ εd. Therefore εd is a bounded coarse structure.

Example 2. Let f : R+ ∪ {0} → R+ ∪ {0} be defined as f(x) =
√
x. Show

that f is coarse map.First we shall show that f is coarse map. For bornologous,
assume that | x − y |< R. For a Case I: x, y ∈ [0, 1]. Then |f(x)− f(y)| =∣∣√x−√y∣∣ =

∣∣∣ (√x−√y)(√x+√y)(
√
x+
√
y)

∣∣∣ =
∣∣∣ x−y√

x+
√
y

∣∣∣ ≤ 1. For a Case II: If x ≥ 1, y ≥ 1,

|f(x)− f(y)| =
∣∣√x−√y∣∣ =

∣∣∣ (√x−√y)(√x+√y)(
√
x+
√
y)

∣∣∣ =
∣∣∣ x−y√

x+
√
y

∣∣∣ ≤ R.For Case III:If x ≥

1, y < 1 1√
x+
√
y
≤ 1 implies that |f(x)− f(y)| =

∣∣√x−√y∣∣ =
∣∣∣ (√x−√y)(√x+√y)(

√
x+
√
y)

∣∣∣ =
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x+
√
y

∣∣∣ ≤ R.Therefore f is uniformly (bornologous). For metrically (proper) Let
S be a bounded subset of R+ ∪ {0}. There exist an interval (a, b) such that S ⊆
(a, b), since f is increasing function, f−1(S) ⊆ (a2, b2). Which is bounded so f is
metrically (proper). There fore f is coarse map.

Example 3. Let (X, dX) be a bounded metric space. Let Y = ([0,M ], |.|), where
M = supx,y∈X d(x, y). Then X is coarse equivalent to Y . Let x, y ∈ X. Define
F : X → Y by F (x) = dX(x, x0) and G : Y → X by G(x) = y0, we have
to prove that F is coarse map, G is coarse map, F ◦ G is closed to identity of
X and G ◦ F is closed to identity of Y . For let S be a bounded subset of Y .
ConsiderF−1(S),since (X, d) be a bounded metric space. F−1(S) ⊆ X so F−1(S)

is also bounded. So f is proper. Now let x, y ∈ X satisfy dX(x, y) < R. Consider
|F (x)− F (y)| = |dX(x, y0)− dX(y, y0)| ≤M . Since F is bornologous. Therefore F
is coarse map. Now consider G : Y → X, let S be a bounded subset of X. Consider
G−1(S), |G−1(S)| ≤ M so G−1(S) is bounded. Therefore G is proper. Let y1, y2 ∈
Y, |G(y1)−G(y2)| = |y0 − y0| = 0 ≤ K, ∀ K > 0. Therefore G is bornologous.
Hence G is coarse map. Consider dY (F ◦ G, x) = |dX(y0, y0)− x| = x < M and
also dX(G ◦ F, x) = dX(y0, x) ≤ supx,y∈X dX(x, y) = M .

Thus X and Y are coarse equivalent.

Example 4. Let (X, dX) be a bounded metric space. Let Y = ([0,M ], |.|), where
M = supx,y∈X d(x, y). Then X is coarse equivalent to Y . Let x, y ∈ X. De-
fine F : X → Y by F (x) = dX(x, x0) and G : Y → X by G(x) = y0. We
shall show that F is coarse map, G is coarse map, F ◦ G is closed to identity of
X, and G ◦ F is closed to identity of Y . Let S be a bounded subset of Y . Con-
sider F−1(S), since (X, d) be a bounded metric space.F−1(S) ⊆ X so F−1(S) is
also bounded. So f is proper. Now let x, y ∈ X satisfy dX(x, y) < R.Consider
|F (x)− F (y)| = |dX(x, y0)− dX(y, y0)| ≤ M . Since F is bornologous. Therefore
F is coarse map. Now consider G : Y → X, let S be a bounded subset of X.
Consider G−1(S),|G−1(S)| ≤ M so G−1(S) is bounded. Therefore G is proper. Let
y1, y2 ∈ Y ,|G(y1)−G(y2)| = |y0 − y0| = 0 ≤ K, ∀ K > 0. There fore G is bornolo-
gous. There fore G is coarse map. Consider dY (F ◦G, x) = |dX(y0, y0)− x| = x ≤
M , and also dX(G ◦ F, x) = dX(y0, x) ≤ supx,y∈X dX(x, y) = M . Thus X and Y
are coarse equivalent.
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Proposition 3.1. Let h : X → Y be a coarse embedding, then X and h(X) are
coarse equivalent.

Proof. Let f : X → h(X) defined by f(x) = h(x), ∀x ∈ X.Let take ρ1, ρ2 be non
- decreasing functions.clearly f is onto (because h is onto). First we shall show
that f is coarse. For bornologous (uniformly), let R > 0, suppose that dX(x, y) <

R. Since ρ2 is non decreasing ρ2(dX(x, y)) < ρ2(R). Since f is coarse embedding
we have dY (f(x), f(y)) ≤ ρ2(dX(x, y)) < ρ2(R). Hence f is bornologous. For
f is proper, let S ⊂ h(X) be bounded ∀ y, y′ ∈ S there exists R ≥ 0 such
that dY (y, y

′
) ≤ R. Consider f−1(S), let x, x′ ∈ f−1(S), there exists y, y′ ∈ S such

that y = f(x), y
′

= f(x
′
). Since f is coarse embedding we have ρ1(dX(x, x

′
)) ≤

dY (f(x), f(x
′
)) = dY (y, y

′
) ≤ R. Let R′

= sup
{
ρ−11 ({R})

}
, Where ρ−11 ({R}) is

the pre-image of the singleton set {R} under ρ1. Since limt→∞(ρ1)(t) = +∞ and
ρ1 is non decreasing then R′ is finite. Thus dx(x, x

′
) ≤ R

′. Therefore f is proper
this shows that f is coarse map.Now we define the function g : f(X) → X, for
every y ∈ f(X). We choose g(y) to be an element x ∈ X such that f(x) = y.
We can now show that g is coarse. We begin by showing g is bornologous. Let
R > 0, assume that dY (y, y

′
) < R, there exists x, x′ ∈ X such that f(x) =

y, f(x
′
) = y

′, where g(y) = x, g(y
′
) = x

′. Since y, y
′ ∈ f(X), since f is

coarse embedding ρ1(dX(x, x
′
)) ≤ dY (f(x), f(x

′
)) = dY (y, y

′
) < R. By a similar

argument as before let R′
= sup {ρ−1 {R}}. We see that R′

= sup {ρ−1 {R}}.
Proving that g is bornologous. To show g is proper. let S ⊂ X be bounded
∀ x, x′ ∈ S there exists R > 0. Such that dY (y, y

′
) ≤ R. Consider the set

f−1(S). Let y, y′ ∈ f−1(S), there exists x, x′ ∈ S such that x = g(y), x′
= g(y

′
)

by definition of g we have f(x) = y, f(x
′
) = y

′. Since f is coarse embedding
dY (y, y

′
) = dY (f(x), f(x

′
)) ≤ ρ2(dX(x, x

′
)) ≤ ρ2(R). Which is shows that f−1(S)

is bounded. Thus g is proper. Therefore g is coarse. To show f ◦ g is closed to
the identity in X.dY (f ◦ g(y), y) = dY (f(g(y)), y) = dY (f(x), y) = dY (y, y) = 0.
Now g ◦ f is closed to identity in X. By the definition of g, ? x

′ ∈ X such that
g(f(x)) = x

′, where f(x) = f(x
′
), we can rewrite dX(g(f(x)), x) = dX(x

′
, x),

and f is coarse embedding. We have ρ1(dX(x
′
, x)) ≤ dY (f(x), f(x

′
)) = 0. Since

f(x) = f(x
′
). Letting C ′

= Sup
{
ρ−11 {0}

}
we see that dX(x

′
, x) ≤ C

′, we thus
have shown that for all x ∈ X. dX((g ◦ f)(x), x) = dX(g(f(x)), x) = dX(x

′
, x) ≤

C
′. �
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Proposition 3.2. Let X and Y be metric spaces and say that X is coarsely equiv-
alent to Y . Then coarse equivalent is an equivalence relation.

Proof. Clearly X coarse equivalent to X, letting f and g each be the identity
maps. idX on X, so since identity map is coarse map means that f ◦ g and g ◦ f
are actually identity maps fromX toX. SoX coarse equivalent toX is reflexive.
If X is closed to Y then by the symmetric of the definition of coarse equivalence,
it follows that Y is closed to X. Thus symmetric of coarse equivalent is satisfied.
Suppose that X coarse equivalent to Y and Y coarse equivalent to Z. Then
there are maps fX : X −→ Y , gY : Y −→ X, fY : Y −→ Z and gZ : Z −→ Y

such that fX ◦ gY and gY ◦ fX are close to the identity maps idY and idX on Y

and X respectively, and fY ◦ gZ and gZ ◦ fY are close to the identity maps idZ
and idY on Z and Y respectively. Since composition of coarse map is coarse
map fY ◦ fX : X −→ Z and gY ◦ gZ : Z −→ X are coarse maps, (fY ◦ fX) ◦
(gY ◦ gZ) = fY ◦ ((fX ◦ gY ) ◦ gZ) = fY ◦ (idY ◦ gZ) = fY ◦ gZ = idZ , and also
(gY ◦gZ)◦ (fY ◦fX) = gY ◦ ((gZ ◦fY )◦fX) = gY ◦ (idY ◦fX) = gY ◦fX = idX . This
shows that there exists coarse maps f = fY ◦ fX from X to Z and g = gY ◦ gZ
from Z to X such that f ◦g coarse equivalent to idZ and g◦f coarse equivalent to
idX . Thus X coarse equivalent to Y and Y coarse equivalent to Z, so X coarse
equivalent to Z so coarse equivalent is transitive. Therefore coarse equivalent is
an equivalence relation. �

Example 5. Z is coarse equivalent to R. Let f : Z −→ R be the inclusion map
x 7→ x and letting g : R −→ R be the map x 7→ bxc. f is coarse map since it is
inclusion map and g is greatest integer function is also coarse map. (f ◦ g)(x) =

f(g(x)) = f(bxc) = bxc for each x ∈ R, (g ◦ f)(x) = g(f(x)) = g(x) = bxc = x for
each x ∈ Z. g ◦f closed to the identity map on Z is obvious. (Since it is the identity
map) That f ◦ g is close to the identity map on R is also clear, since d(bxc , x) < 1

for all x ∈ R. It follows that Z is coarse equivalent to R.

Example 6. Q is coarse equivalent to Z and hence R. Let f : Q −→ Z be the
inclusion map x 7→ x and letting g : Z −→ Q be the map x 7→ bxc. f is coarse
map since it is inclusion map and a greatest integer function g is also coarse map.
(f ◦g)(x) = f(g(x)) = f(bxc) = bxc for each x ∈ Z, (g◦f)(x) = g(f(x)) = g(x) =

bxc = x for each x ∈ Q. g ◦ f closed to the identity map on Q is obvious. (Since it
is the identity map) That f ◦ g is close to the identity map on Z is clear also, since
d(bxc , x) < 1 for all x ∈ Z. It follows that Q is coarse equivalent to Z. Now Z is
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coarse equivalent to R and Q is coarse equivalent to Z, then Q is coarse equivalent
to R. Since coarse equivalence is an equivalent relation.
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