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Analytic properties of invariant approximation property, studies analytic tech-
niques from operator theory that encapsulate geometric properties of a group.
We show that the following theorem holds: For a discrete group G satisfying the
rapid decay property with respect to a conditionally negative length function `,
the reduced C∗-algebra C∗r (G) has the invariant approximation property. We
then use this to show that some groups have invariant approximation property.
We also show that if G is a free product group satisfying the rapid decay prop-
erty with respect to a conditionally negative length function `, then the reduced
C∗-algebra C∗r (G) has the invariant approximation property.
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1. INTRODUCTION

We assume that the reader is familiar with the basic notions in operator
algebras and operator spaces, see Roe [23] and Jolissaint [11], for the details
on the invariant approximation property (IAP) and the Rapid Decay property
(Property RD). A discrete group Γ is said to have Rapid Decay property [11]
with respect to the length function ` if there exist C ≥ 0 and s > 0 such that,
for all f ∈ C[Γ],

‖f‖∗ ≤ C ‖f‖`,s ,
by left convolution on `2(G). We give a general exposition of property RD
essentially based on Jolissaint’s results [11]. Who introduced the rapid decay
property for groups, which generalizes Haagerup’s [8] inequality for free groups.
This property for groups has deep implications for the analytical, topological
and geometric aspects of the groups. Jolissaint proved in his thesis that groups
of polynomial growth and classical hyperbolic groups have property RD, and
the only amenable discrete groups that have property RD are groups of poly-
nomial growth. He also showed that many groups, for instance SL3(Z), do not
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have the Rapid Decay property [11]. De la Harpe improved Jolissaint’s results
and showed that the word hyperbolic groups of Gromov [7] have property RD
as well, and this leads to the result of Connes and Moscovici that word hy-
perbolic groups satisfy the Novikov conjecture. Since then, many important
works have been done on establishing the property RD, notably the works of
Lafforgue [19], Chatterji [3–5] and Ruane, and Drutu and Sapir. Examples of
RD groups include groups acting on CAT(0)-cube complexes [5].

The first examples of higher rank groups given by Ramagge, Robertson
and Steger in [22], proved that property RD holds for discrete groups. Laf-
forgue [19] proved property RD for co-compact lattices in SL3(R) and SL3(C).
Chatterji generalized Lafforgue’s result [3] to co-compact lattices in SL3(R)
and E6(−26). Chatterji, Pittet and Saloff-Coste [4] proved that the locally com-
pact group with unimodular groups of type PK have property RD. Lubotzky
[5] have proved that any non uniform lattice in a higher rank contains an in-
finite cyclic subgroup growing exponentially with respect to the generators of
any non co-compact lattice. This shows that non compact lattices in higher
rank cannot have property RD. In particular, SLn(Z) does not have property
RD for n ≥ 3 [4]. Author had prove that the Discrete Heisenberg group and
Crystallographic groups have the property RD [15].

In Section 5, we define what a coarse space is, and we study a number
of ways of constructing a coarse structure on a set so as to make it into a
coarse space. We also consider some of the elementary concepts associated
with coarse spaces. A discrete group G has natural coarse structure which
allows us to define the uniform Roe algebra, C∗u(G) [23]. We say that the
uniform Roe algebra, C∗u(G), is the C∗-algebra completion of the algebra of
bounded operators on `2(X) which have finite propagation. The reduced C∗-
algebra C∗r (G) is naturally contained in C∗u(G) [23]. According to Roe [23] G
has the invariant approximation property (IAP) if

C∗r (G) = C∗u(G)G.

Section 5 makes use of the processes used in the invariant approximation
property and approximation property in [1]. We prove that for a discrete
group G satisfying the rapid decay property with respect to a conditionally
negative length function `, the reduced C∗-algebra C∗r (G) has the invariant
approximation property (see Theorem 5.4). In section 4, we study the invariant
translation approximation property (IAP). We then use this to show that the
following groups have invariant approximation property (see Examples 5.6, 5.7,
5.9, and 5.11):

• The classical hyperbolic group

• Hyperbolic groups
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• CAT (0)-cubical groups

• finitely generated coxeter group

We also show that if G is a free product group satisfying the rapid decay
property with respect to a conditionally negative length function `, then the
reduced C∗-algebra C∗r (G) has the invariant approximation property (see Ex-
ample 5.15).

2. PRELIMINARIES

Coarse geometry is the study of the large scale properties of spaces. The
notion of large scale is quantified by means of a coarse structure. First we
recall the following definitions:

Definition 2.1 ([23]). A coarse structure on a set X is a collection of
subsets of X ×X, called the controlled sets or entourages for the coarse struc-
ture, which contains the diagonal and is closed under the formation of subsets,
inverses, products, and (finite) unions.

It is easy to see that the controlled sets associated to a metric space X
have the following properties:

(1) Any subset of a controlled set is controlled;

(2) The transpose Et = {(x, y) : (y, x) ∈ E} of a controlled set E is con-
trolled;

(3) The composition E1◦E2 of controlled sets E1 and E2 is controlled; where

E1 ◦ E2 := {(x, z) ∈ X ×X : ∃ y ∈ X, (x, y) ∈ E1 and (y, z) ∈ E2} ;

(4) A finite union of controlled sets is controlled;

(5) The diagonal ∆X := {(x, x) : x ∈ X} is controlled.

A set equipped with a coarse structure is called a coarse space. Coarse
geometry is the study of metric spaces (or perhaps more general objects) from
a ‘large scale’ point of view, so that two spaces which ‘look the same from a
great distance’ are considered equivalent. The following is an example of coarse
structure.

Example 2.2 ([23]). LetG be a finitely generated group. Then the bounded
coarse structure associated to any word metric on G is generated by the diag-
onals

∆g = {(h, hg) : h ∈ G}
as g runs over G.

Let us briefly recall basic definitions and facts concerning positive and
negative type kernels and functions.
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Definition 2.3. Let X be a set. A symmetric kernel on X is a function
f : X ×X −→ R with f(x, y) = f(y, x)

Definition 2.4 ([23]). A kernel f has conditionally positive type if for all
m ∈ N, all m-tuples x1, x2, . . . , xm of points of X and for all real scalars
λ1, λ2, . . . , λm, one has

m∑
i,j=1

λiλjf(xi, xj) ≥ 0.

Definition 2.5 ([23]). A kernel f has conditionally negative type if for
all m ∈ N, all m-tuples x1, x2, . . . , xm of points of X, and for all real scalars
λ1, λ2, . . . , λm such that

∑
λi = 0, one has∑
i,j

λiλjf(xi, xj) ≤ 0.

A conditionally negative kernel on a group G is a conditionally negative
kernel on the set of elements of G such that for any g, h, k, in G,

f(gh, gk) = f(h, k).

The following result in [23], which relates positive and negative type kernels,
is known as Schoenberg’s Lemma.

Lemma 2.6 ([23]). Let f be a symmetric kernel on a space X. The fol-
lowing statements are equivalent.

(1) The kernel f is of negative type.

(2) For each t > 0 the kernel exp(−tf) is of positive type.

Remark 2.7 ([23]). Let G be a group; by definition the positive function
on G defined by φ : G −→ R, (x, y) 7−→ φ(x−1y), is a kernel of postive type.

We next recall some basic fact about uniform Roe algebra and metric
property of a discrete group.

Definition 2.8 ([23]). We say that discrete metric space X has bounded
geometry if for all R there exists N in N such that for all x ∈ X , |BR(x)| < N ,
where B(x, r) = {x ∈ X : d(y, x) ≤ r}.

Definition 2.9 ([23]). A kernel φ : X ×X −→ C
• is bounded if there, exists M > 0 such that |φ(s, t)| < M for all s, t ∈ X
• has finite propagation if there exists R > 0 such that φ(s, t) = 0 if
d(s, t) > R.
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Let B(X) be a set of bounded finite propagation kernels on X×X. Each
such φ defines a bounded operator on `2(X) via the usual formula for matrix
multiplication

φ ∗ ζ(s) =
∑
r∈G

φ(s, r)ζ(r) for ζ ∈ `2(X).

Next, we show the operator associated with a bounded kernel is bounded.

Lemma 2.10. Let X be bounded geometry metric space. An operator as-
sociated with a bounded finite propagation kernel is bounded.

Proof. Let φ and ζ ∈ `2(X).
Consider

‖φ ∗ ζ‖22 =
∑
x∈X
|φ ∗ ζ(x)|2

=
∑
x∈X

∣∣∣∣∣∣
∑
y∈X

φ(x, y)ζ(y)

∣∣∣∣∣∣
2

Given x, φ(x, y) 6= 0 for y ∈ BR(x), where R is the propagation of φ. Consider∣∣∣∣∣∣
∑
y∈X

φ(x, y)ζ(y)

∣∣∣∣∣∣ ≤
∑
y∈X
|φ(x, y)| |ζ(y)|

≤
∑
y∈X

M |ζ(y)|

≤ NRM |ζ(y)|

where, by bounded geometry NR is the upper bound on the number of elements
in a ball BR(x). This is independent of x ∈ X, so

‖φ ∗ ζ‖22 ≤
∑
x∈X

N2
RM

2 |ζ(x)|2 = N2
RM

2 ‖ζ‖22

Therefore an operator associated with a bounded kernel is bounded. �

We shall denote the finite propagation kernels on X by A∞(X).

Definition 2.11. The uniform Roe algebra of a metric space X is the
closure of A∞(X) in the algebra B(`2(X)) of bounded operators on X.

If a discrete group G is equipped with its bounded coarse structure in-
troduced in Example 2.2 then one can associated with it uniform Roe algebra
C∗u(G) by repeating the above. Next we recall the left and right regular repre-
sentation: We denote the group ring of G by C[G] with the set multiplication
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defined by (∑
s∈G

ass

)(∑
t∈G

att

)
=
∑
s,t∈G

asatst(∑
s∈G

ass

)∗
=
∑
s,t∈G

ass
−1

The group ring C[G] consists of all finitely supported complex-valued

functions on G, that is of all finite combinations f =
∑
γ∈G

fγδγ with complex

coefficients. Denote B(`2(G)) the C∗-algebra of all bounded linear operator on
Hilbert space `2(G). We may distinguish between the left regular representa-
tion, which is induced by the left multiplication action, and the right regular
representation, which comes from the multiplication on the right.

The left regular representation can be extended to an injective ∗− homo-
morphism C[G] −→ B(`2(H)), which we also denote by λ.

Definition 2.12 ([6]). The left regular representation

λ : C[G]→ B(`2(G))

is defined by

λ(s)δt(r) = δt(s
−1r) = δst(r).

The right regular representation is given by

ρ(s)δt(r) = δt(rs) = δts−1(r) for s, r ∈ G.

The left regular representation λ of the group ring C[G] assigns to each
element f ∈ C[G] a bounded operator λ(f) which acts on any ζ ∈ `2(G) by
convolution:

λ(f)(ζ) = f ∗ ζ.
The image λ(C[G]) of the group ring under the left regular representation is a
∗− sub-algebra of the algebra B(`2(G)) of bounded operators on `2(G). The
reduced C∗-algebra C∗r (G) of a group G (which we shall assume to be discrete)
arises from the study of the left regular representation λ of the group ring C[G]
on the Hilbert space of square-summable functions on the group.

Definition 2.13 ([6]). The reduced group C∗-algebra G, denoted by C∗r (G)
is the completion of C[G] in the norm given, for c ∈ C[G], by

‖c‖r = ‖λ(c)‖

Equivalently, it is the closure of C[G] which is identified with its image
under the left regular representation.
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3. PROPERTY RD AND LENGTH FUNCTIONS

We will explain the basic notations related to property RD for discrete
groups for further details see Jolissaint[11] and Kannan [15–17].

Definition 3.1. Let G be a discrete group. A length function on G is a
map ` : G −→ R taking values in the non-negative reals which satisfies the
following conditions:

(1) `(1) = 0 where 1 is the identity element of the group;

(2) For every g ∈ G, `(g) = `(g−1);

(3) For every g, h ∈ G, `(gh) ≤ `(g) + `(h).

A group equipped with a length function becomes a metric space with
the left-invariant metric d(γ, µ) = `(γ−1µ).

Definition 3.2. Let ` be a length function on G. We define a Sobolev norm
on the group ring of G as follows:

(1) If s ∈ R, the Sobolev space of order s is the set Hs
` (G) of functions ξ on

G such that ξ(1 + `)s belongs to `2(G).

(2) For any length function ` and positive real numbers, we define a Sobolev
norm on the group ring C[G] by:

‖f‖`,s =

√∑
γ∈G
|f(γ)|2 (1 + `(γ))2s.

Definition 3.3. Let H < Γ be a subgroup of Γ and ` a length function on
Γ. The restriction of ` to H induces a length function on H that we call the
induced length function.

Definition 3.4. If `1 and `2 are length functions on G, we say that `2
dominates `1 if there exist a, b ∈ R such that `1 ≤ a`2 + b. If `1 dominates `2
and `2 dominates `1, then `1 and `2 are said to be equivalent.

Lemma 3.5. If `1 and `2 are equivalent then ‖f‖`1,s and ‖f‖`2,s are equiv-
alent.

Proof. Since `1 ≤ a`2 + b, we have

1 + `1 ≤ 1 + a`2 + b

≤ 1 + b+ a (1 + b) `2

≤ c(1 + b) (1 + `2)

where C = max {1, a} Thus,

‖f‖`1,s =
(∑

|f(x)|2 {1 + l1(x)}2s
) 1

2
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≤
(∑

|f(x)|2 (c(1 + b) (1 + l2(x)))2s
) 1

2

≤ Bs ‖f‖`2,s
where Bs = {c(1 + b)}s . Similarly ‖f‖`2,s ≤ ‖f‖`1,s. Therefore ‖f‖`2,s and
‖f‖`1,s are equivalent. �

Example 3.6. Let G be a discrete group with a finite generating set S.
For convenience we will assume that S is symmetric, i.e. S−1 = S. For any
g ∈ G, define

|g|S = min {k : g = s1 . . . sk, si ∈ S} .
This is the algebraic word length function of G induced by the generating set S.

Example 3.7. Consider Z2 with the symmetric generating set

S = {(1, 0), (0, 1), (0,−1), (−1, 0)} .

For (m,n) ∈ Z2, we have the word length function

|(m,n)|S = |m|+ |n| ,

where |m| and |n| are the absolute values of m and n respectively.

Let G be a countable, discrete group with symmetric finite generating
sets S and S′, yielding word-length functions |.|S and |.|S′ respectively. As the
generating sets are different, these length functions, and the metric functions
they induce, are different.

Example 3.8. Let X be a metric space with base point x0 ∈ X and let G
be the group of isometries on X. For every g ∈ G, let Lx0(g) = d(x0, g(x0)).
Then Lx0 is a length function on G.

Lemma 3.9. Let (X, d) be a metric space, and `(x) = d(x, xo) be any
length function where xo is a base point. If f : (X, d1) −→ (X, d2) is a quasi-
isometry then ‖f‖`2,s and ‖f‖`1,s are equivalent. If we change the base point
x0, we again get equivalent norms.

Proof. Let ` be a length function on G. Suppose that (X, d1) ≡ (X, d2),
thus `1(x) = d1(x, xo) ≤ d2(x, xo) = `2(x). Applying Lemma 3.5, we see that
‖f‖`,x0 and ‖f‖`,x′0 are equivalent.

`x0(x) = d(x, x0)

≤ d(x, x′0) + d(x′0, x0)

≤ `x′0(x) + b,

where b is constant. Applying Lemma 3.5, we see that ‖f‖`,x0 and ‖f‖`,x′0 are
equivalent. �
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To define property RD, we first need to introduce the group ring C[G].
This is the set of all finitely-supported functions f : G −→ C, which forms a
ring with respect to pointwise addition and the convolution product defined by

(f ∗ g)(s) =
∑
t∈Γ

f(t).g(t−1s).

We are now ready to define property RD. The following definition is due
to Jolissaint [11] (see also [5])

Definition 3.10 ([11]). Let ` be a length function on a discrete group G.
We say that G has the Rapid Decay property (property RD) with respect to
the length function ` if there exist C≥ 0 and s > 0 such that, for all f ∈ C[G],

‖f‖∗ ≤ C ‖f‖`,s ,

where ‖f‖∗ denotes the operator norm of f acting by left convolution on `2(G).

4. INVARIANT APPROXIMATION PROPERTY

In this section we will give definition of invariant approximation property
Kannan [13, 14, 18] and Roe [23].

A discrete group G has a natural coarse structure which allows us to
define the uniform Roe algebra C∗u(G). A group G can be equipped with either
the left or right-invariant of the metric. A choice of one of the determines
whether C∗λ(G) or C∗ρ(G) is a sublagebra of the uniform Roe algebra C∗u(G) of
G as we now explain. First we show that if the metric on G is right-invariant
then

C∗λ(G) ⊂ C∗u(G).

Let d1 be the right-invariant metric on G

d1(x, y) = d1(xg, yg) ∀ g ∈ G.

For every g ∈ G, the operator λ(g) is given by the matrix.
Let:

Aλg (x, y) =

{
1, if x = yg,
0, otherwise.

Indeed,

Aλgδt(s) =
∑
y∈G

Aλg (s, y)δt(y)

= δt(g
−1s)

= δgt(s).
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Note that Aλg is right-invariant

Aλg (xt, yt) =

{
1, if xt = ygt⇐⇒ x = yg,
0, otherwise.

Therefore:

Aλg (x, y) = Aλg (xt, yt).

If the metric on G is right-invariant, Aλg is of finite propagation and Aλg ∈
C∗u(G), because Aλg (x, y) is non-zero when y−1x = g and so

d1(x, y) = d1(y−1x, e) = d1(g, e).

Hence, any element of C[G] will give use to finite propagation and this assign-
ment extends to an inclusion

C∗λ(G) ↪→ C∗u(G).

Next we show that if the metric on G is left-invariant then

C∗ρ(G) ⊂ C∗u(G).

Let d1 be the left-invariant metric on G

d1(x, y) = d1(gx, gy) ∀ g ∈ G.

For every g ∈ G, the operator ρ(g) is given by the matrix.
Let:

Aρg(x, y) =

{
1, if x = gy,
0, otherwise..

Indeed,

Aρgδt(s) =
∑
y∈G

Aρg(s, y)δt(y)

= δt(sg
−1)

= δtg(s).

Note that Aρg is left-invariant

Aρg(tx, ty) =

{
1, if tx = tgy ⇐⇒ x = gy,
0, otherwise.

Therefore:

Aρg(x, y) = Aρg(tx, ty).

If the metric onG is right-invariant, Aρg is of finite propagation andAρg ∈ C∗u(G),
because Aρg(x, y) is non-zero when xy−1 = g and so

d1(x, y) = d1(xy−1, e) = d1(g, e).
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Hence, any element of C[G] will give use to finite propagation and this assign-
ment extends to an inclusion

C∗ρ(G) ↪→ C∗u(G).

Let us now choose a right invariant metric for G so that C∗λ(G) ↪→ C∗u(G).
The right regular representation ρ gives use to the adjoint action on C∗u(G)
defined by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1

for all t ∈ G, T ∈ C∗u(G). Our remarks above show that elements of C∗λ(G)
are invariant with respect to this action and so C∗λ(G) is contained in invariant
subalgebra C∗u(G)G.

Lemma 4.1. If T ∈ C∗u(G) has kernel A(x, y), then Adρ(t)T has kernel
A(xt, yt).

Proof. We have that:

(Adρ(t)Tζ)(s) = ρ(t)(Tρ(t)∗ζ)(s)

= Tρ(t)∗ζ(st)

=
∑
x∈G

A(st, x)(ρ(t)−1ζ)(x)

=
∑
x∈G

A(st, x)ζ(xt−1).

Now A(st, x) is non-zero whenever x, y, t ∈ G are such that y = xt−1,
so x = yt and we have

(Adρ(t)Tζ)(s) =
∑
x∈G

A(st, yt)ζ(y)

Thus, Adρ(t)T has kernel A(st, yt). �

In general, if T ∈ C∗u(X) then ∀ x, y ∈ G:

〈Ad(ρ(t))Tδx, δy〉 =
〈
ρ(t)Tρ(t−1)δx, δy

〉
=

〈
Tρ(t−1)δx, ρ(t−1)δy

〉
= 〈Tδxt, δyt〉 .

So the operator T is Adρ− invariant if and only if

∀ x, y ∈ X ∀ t ∈ G 〈Tδxt, δyt〉 = 〈Tδx, δy〉 .
We now define the invariant approximation property (IAP)

Definition 4.2 ([23]). We say that G has the invariant approximation
property(IAP) if

C∗λ(G) = C∗u(G)G.
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Definition 4.3 ([23]). We say that a kernel f(x, y) on X is effective if the
sets

{(x, y) : f(x, y) < R} , forR > 0,
generate the coarse structure on X.

Let CE(X × X) denote the algebra of bounded functions f on X × X.
which have the property that for each ε > 0 the set

{(x, y) ∈ X ×X : |f(x, y)| < ε}

is controlled. We assume that X is a uniformly discrete and of bounded geom-
etry. It can be seen that CE(X ×X) is isomorphic to C0(G), where C0(G) is
the algebra of functions vanishing at ∞.

Definition 4.4. A C∗-algebra un is an approximate unit in A, if un ∈ A
and for all a ∈ A; ‖una− a‖ −→ 0 as n −→∞.

Theorem 4.5 ([23]). Let X be a coarse space. The following are equiva-
lent:

(1) X can be coarsely embedded into a Hilbert space.

(2) There is an effective negative type kernel on X.

(3) The algebra CE(X×X) has an approximate unit consisting of a sequence
{un} of normalized positive kernels.

Definition 4.6 ([23]). We say that f is a normalized positive kernel if
f(x, y) = 1, for all x, y ∈ X.

Lemma 4.7 ([23]). Let f be a normalized positive type kernel on a set X.
Then there is a unique unital completely positive map

Mf : B(`2(X)) −→ B(`2(X))

such that
〈(MfT ) δx, δy〉 = f(x, y) 〈Tδx, δy〉 ,

for all T ∈ B(H).

Corollary 4.8 ([23]). Let X be a uniformly discrete bounded geometry
coarse space that is coarsely embeddable in a Hilbert space, and let {un} be an
approximate unit for CE(X ×X) made up of normalized positive type kernels.
Then the corresponding multipliers Mun define a sequence of unital completely
positive maps, C∗u(X) −→ C∗u(X), which converge pointwise to the identity.

The following proposition shows a necessary condition to invariant ap-
proximation property.

Proposition 4.9 ([23]). Suppose that there is an approximate unit for
C0(G) comprised of a sequence of functions φn, such that
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(1) each φn is of positive type and normalized,

(2) the operator Mφn of Schur multiplication by φn maps L(G) into C∗r (G).

Then G has the invariant approximation property.

5. RD AND INVARIANT APPROXIMATION PROPERTY

The following is due to Brodzki and Niblo [1].

Lemma 5.1. Let G be a discrete group satisfying the rapid decay property
with respect to a conditionally negative length function `. Let φn be any function
on G such that

N = sup
γ∈G
|φn(γ)| (1 + `(γ))s ≤ ∞.

Then φn is a multiplier of C∗r (G) −→ C∗r (G) and ‖Mφn‖ ≤ CN.

The following is a proof of the result found in Roe [23].

Proposition 5.2 ([23]). Let G be a discrete group satisfying the rapid
decay property with respect to a length function `. If∑

g∈G
|bg|2 <∞ and ag = φn(g)bg, φn(g) = exp(−`(g)/n)

then ∑
g∈G
|ag|2 (1 + `(g))2s <∞

and so ∑
g∈G

agλ(g)

converges in norm to an element of C∗r (G).

We show the following important remark, which is used for the main
result of this Chapter.

Remark 5.3. Let T in L(G). T gives rise to a square summable sequence
{bg}g∈G as above. Indeed, in L(G),

Tn −→ T ⇐⇒ ∀ x, y ∈ `2(G) 〈Tnx, y〉 −→ 〈Tx, y〉 .

Take ∑
g∈G

bgλ(g) ∈ λ(C[G]) ⊂ B(`2(G))

and consider 〈∑
g∈G

bgλ(g)δs, δt

〉
=

〈∑
g∈G

bgδgs, δt

〉
= |bts−1 | .
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Then by Pythagoras’ theorem for Hilbert space,

‖Tδs‖2 =
∑
g∈G
|〈bgλ(g)δs, δt〉|2 .

∞ > ‖Tδs‖2 =
∑
t∈G
|bst−1 |2

=
∑
t′∈G
|bt′ |2 .

So the Fourier coefficients bg of T form a square-summable sequence.

We now prove the main result of this paper.

Theorem 5.4. Let G be a discrete group satisfying the rapid decay prop-
erty with respect to a conditionally negative length function `. Then the reduced
C∗-algebra C∗r (G) has the invariant approximation property.

Proof. We will use the following results from above: Proposition 4.9,
Proposition 5.2, Corollary 4.8 and Remark 5.3. Let φn(γ) = exp(−`(γ)/n).
Then φn(γ) is of positive type, normalized and (by Schoenberg’s Lemma)
φn −→ 1 as n −→ ∞. It is clear that φn forms an approximate unit for
C0(G). It remains to show that the map

Mφn : L(G) −→ C∗r (G)

T 7−→MφnT

sends to T to an element of C∗r (G). Let φn : X −→ C be a normalized positive
type kernel on X. We define the multiplier map

Mφn : B(`2(X)) −→ B(`2(X))

such that

〈(MφnT ) δg, δh〉 = φn(g−1h) 〈Tδg, δh〉
for all T in L(G). Let {ag}g∈G be a square summable sequence function on G,
we define

f : G −→ C[G]

f(g) = ag
such that ‖f‖s <∞,

‖f‖2s =

√∑
g∈G
|f(g)|2 (1 + `(g))2s

=

√∑
g∈G
|ag|2 (1 + `(g))2s.
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Thus, ∑
g∈G
|ag|2 (1 + `(g))2s <∞,

and by Proposition 5.2 above,∑
g∈G

agλ(g) ∈ C∗r (G).

If T in L(G), then T =
∑
g∈G

bgλ(g) such that
∑
g∈G
|bg|2 <∞ and so

T 7−→
∑
g∈G

φn(g)bgλ(g).

Again by Proposition 5.2,∑
g∈G

φn(g)bgλ(g) ∈ C∗r (G).

Therefore
T 7−→MφnT

sends to T an element of C∗r (G), and by Proposition 4.9, G has the invariant
approximation property. �

We now use this to show the following examples: First, we first recall the
definitions of hyperbolicity for metric space.

Definition 5.5. A metric space (X, d) is said to be hyperbolic if there is a
constant δ ≥ 0 such that for any points w, x, y, z ∈ X we have that:

d(w, x) + d(y, z) ≤ max {d(w, y) + d(x, z), d(w, z) + d(x, y)}+ δ

Jolissaint showed that classical hyperbolic groups have property RD [11].
Faraut and Harzallah showed that the natural metrics on these hyperbolic
spaces are conditionally negative and they give rise to conditionally negative
length function on these group [1]. Hence, we obtain the following example:

Example 5.6. Let G be a classical hyperbolic group satisfying the rapid
decay property with respect to a conditionally negative length function `. Then
the reduced C∗-algebra C∗r (G) has the invariant approximation property.

We note that Ozawa has a more general result for hyperbolic groups [21].

Theorem 5.7 ([21]). Hyperbolic groups have the invariant translation ap-
proximation property.

We recall the definitions of a finite-dimensional cube complex is a CAT(0)
cube complex:
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Definition 5.8. A finite-dimensional cube complex is a CAT(0) cube com-
plex if the geodesic metric satisfies the CAT(0) inequality, according to which
a geodesic triangle in the complex is thinner than a triangle in Euclidean space
with the same side lengths.

Let G be a CAT(0) cubical group, which means G acts properly and co-
compactly on a CAT(0) cube complex [20]. Alternatively G acts properly on a
CAT(0) cube complex and there is a bound on the size of point stabilizers [20].
Now according to Niblo and Reeves [20] given a group acting on a CAT(0) cube
complex, they obtain a conditionally negative length kernel on the group which
gives rise to a conditionally negative length function. Chatterji and Ruane [5]
proved that CAT(0) cube complexes have property RD with respect to this
length function provided that the action is properly discontinuous, stabilizers
are uniformly bounded and the cube complexes have finite dimension. We de-
duce that CAT(0) cubical groups have the invariant translation approximation
property.

Example 5.9. Let G be a CAT(0) cubical group satisfying the rapid decay
property with respect to a conditionally negative length function `. Then the
reduced C∗-algebra C∗r (G) has the invariant approximation property.

We recall the definitions of coxeter group:

Definition 5.10 ([10]). A coxeter group is a discrete group G given by the
presentation with a finite set of generators W = {wi, . . . , wn} and a finite set
of relations defined as follows:

w2
i = 1 = (wiwj)

mi,j ,

where mi,j is either ∞ or an integer ≥ 2.

Chatterji proved that coxeter groups have property RD [3]. Jolissaint
showed that finitely generated coxter groups have conditionally negative length
function [12].

Example 5.11. Let G be a finitely generated coxeter group satisfying the
rapid decay property with respect to a conditionally negative length function `.
Then the reduced C∗-algebra C∗r (G) has the invariant approximation property.

First we recall the definition of the free product G1 ∗ G2 of two groups,
G1 and G2.

Definition 5.12. We say that the free product of G1 ∗G2 of two groups G1

and G2 is the set consisting of the empty word (denoted by e) together with
all reduced words w = a1, a2, . . . an, where the aj ’s are elements of either G1
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or G2 different from the identity and satisfy the condition:

aj ∈ Gi, implies aj+1 ∈ G3−i (1 ≤ j ≤ n− 1, i = 1, 2).

Definition 5.13. We say that the free product of A ∗ B of two unital
C∗-algebras A,B which is a unital ∗-algebras. A ∗B −→ B(H) is the ∗-repre-
sentations of A ∗B

‖c‖r = sup {‖π(c)‖ ∗ −representation of A ∗B}
Theorem 5.14 ([12]). If G1 and G2 have property RD then so does their

free product G = G1 ∗G2.

Example 5.15. Let G be a free product two groups G1 and G2, which
satisfy the rapid decay property with respect to a conditionally negative length
function `. By using Theorem 5.14, G = G1 ∗G2 have RD. And also Jolissaint
showed that, if G1 and G2 have conditionally negative length function then
their free product G1 ∗G2 also has conditionally negative length function [12]
by using Theorem 5.4. Then reduced C∗-algebra C∗r (G) has the invariant
approximation property.
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