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INVARIANT APPROXIMATION PROPERTY FOR DIRECT PRODUCT WITH A
FINITE GROUP

KANKEYANATHAN KANNAN

ABSTRACT. We will study the invariant approximation property in various con-
texts. An interesting question, which we will address next is the behavior of
this property with respect to group extensions. To prepare for that we first
study a relationship of uniform Roe algebras attached to coarsely equivalent
metric spaces in the following case. Let X be a bounded geometry metric space
and assume that there is a bijective coarse equivalence

φ : X −→ Y ×N,

where N is a finite metric space. Then there is an isomorphism

C∗
u(X) ∼= C∗

u(Y )⊗ C∗
u(N)

∼= C∗
u(Y )⊗Mn(C),

where n = |N |. We shall use this result to prove that the invariant approxi-
mation property is preserved under taking direct product with a finite group :
let H be a discrete group with the IAP and K a finite group. Then the direct
product G = H ×K has IAP.

1. INTRODUCTION

The purpose of this paper is to provide an illustration of an interesting and
nontrivial interaction between analytic and geometric properties of a group. We
provide approximation property of operator algebras associated with discrete
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groups. There are various notions of finite dimensional approximation prop-
erties for C∗− algebras and more generally operator algebras. Some of these
(approximation properties) notations will be defined in this paper, the reader
is referred to [3], [8], [9], [10], [2], [12] and [4] for these a beautiful con-
cept: Haagerup discovery that that the reduced C∗− algebra Fn has the metric
approximation property, Higson and Kasparov’s resolution of the Baum-connes
conjecture for the Haagerup groups. We studies analytic techniques from opera-
tor theory that encapsulate geometric properties of a group. On approximation
properties of group C∗− algebras is everywhere; it is powerful, important, back-
bone of countless breakthroughs.

Roe considered the discrete group of the reduced group C∗− algebra of C∗r (G)

is the fixed point algebra {Adρ(t) : t ∈ G} acting on the uniform Roe algebra
C∗u(G) [11]. A discrete group G has natural coarse structure which allows us to
define the the uniform Roe algebra, C∗u(G) [11]. According to [Roe] [11] G has
the invariant approximation property (IAP) if

C∗λ(G) = C∗u(G)G.

We give a general exposition of invariant approximation property(IAP), which
was initiated by Roe [12]. The main result of paper is the following (see Theo-
rem 1.2). Brodzki, Niblo and Wright [1] show that the uniform Roe algebra of
metric space is a coarse invariant up to Mortia equivalence. Next statement can
be made a little more precise in the following situation (see Theorem 3.2).

Theorem 1.1. Let X be a bounded geometry metric space and assume that there
is a bijective coarse equivalence

φ : X −→ Y ×N,

where N is a finite metric space. Then there is an isomorphism

C∗u(X) ∼= C∗u(Y )⊗ C∗u(N)

∼= C∗u(Y )⊗Mn(C).

where n = |N |

We show that the invariant approximation property passes to direct products
(see Theorem 1.2).
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Theorem 1.2. Let H be a discrete group with the IAP and K a finite group, then
the direct product G = H ×K has IAP.

In this paper will have a pretty good feel for most aspects of invariant approx-
imation property. In section 2, we recall coarse geometry, uniform Roe algebras.
In section 3, we show that a relationship between of uniform Roe algebra at-
tached to coarsely equivalence meric space (see Theorem 3.2). In sections 3 we
show that the direct products (see Theorem 3.2).

2. PRELIMINARIES

In this section we shall establish the basic definitions and notations for the
category of coarse metric spaces.

Example 1. [11] Let G be a finitely generated group. Then the bounded coarse
structure associated to any word metric on G is generated by the diagonals

∆g = {(h, hg) : h ∈ G} .

Let X be a discrete metric space.

Definition 2.1. [11] We say that discrete metric space X has bounded geometry
if for all R there exists N in N such that for all x ∈ X , |BR(x)| < N , where
B(x, r) = {x ∈ X : d(y, x) ≤ r}.

Definition 2.2. [11] A kernel φ : X ×X −→ C,

- is bounded if there, exists M > 0 such that |φ(s, t)| < M for all s, t ∈
X;

- has finite propagation if there exists R > 0 such that φ(s, t) = 0 if
d(s, t) > R.

Let B(X) be a set of bounded finite propagation kernels on X × X. Each
such φ defines a bounded operator on `2(X) via the usual formula for matrix
multiplication

φ ∗ ζ(s) =
∑
r∈G

φ(s, r)ζ(r) for ζ ∈ `2(X).

Next, we show the operator associated with a bounded kernel is bounded.

Lemma 2.1. [11] LetX be bounded geometry metric space. An operator associated
with a bounded finite propagation kernel is bounded.
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We shall denote the finite propagation kernels on X by A∞(X).

Definition 2.3. [11] The uniform Roe algebra of a metric space X is the closure
of A∞(X) in the algebra B(`2(X)) of bounded operators on X.

If a discrete group G is equipped with its bounded coarse structure intro-
duced in Example 1 then one can associated with it uniform Roe algebra C∗u(G)

by repeating the above. In this section we will give definition of invariant ap-
proximation property. A discrete group G has a natural coarse structure which
allows us to define the uniform Roe algebra C∗u(G). A group G can be equipped
with either the left or right-invariant of the metric. A choice of one of the de-
termines whether C∗λ(G) or C∗ρ(G) is a sublagebra of the uniform Roe algebra
C∗u(G) of G. Hence any element of C[G] will give use to finite propagation and
this assignment extends to an inclusion

C∗λ(G) ↪→ C∗u(G).

Next if the metric on G is left-invariant then

C∗ρ(G) ⊂ C∗u(G).

Let d1 be the left-invariant metric on G

d1(x, y) = d1(gx, gy) ∀ g ∈ G.

Let us now choose a right invariant metric for G so that C∗λ(G) ↪→ C∗u(G). The
right regular representation ρ gives use to the adjoint action on C∗u(G) defined
by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1

for all t ∈ G, T ∈ C∗u(G). Our remarks above show that elements of C∗λ(G)

are invariant with respect to this action and so C∗λ(G) is contained in invariant
subalgebra C∗u(G)G.

Lemma 2.2 ( [7]). If T ∈ C∗u(G) has kernel A(x, y), then Adρ(t)T has kernel
A(xt, yt).

In general, if T ∈ C∗u(X) then ∀ x, y ∈ G:

〈Ad(ρ(t))Tδx, δy〉 =
〈
ρ(t)Tρ(t−1)δx, δy

〉
=

〈
Tρ(t−1)δx, ρ(t−1)δy

〉
= 〈Tδxt, δyt〉 .
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So the operator T is Adρ− invariant if and only if

∀ x, y ∈ X ∀ t ∈ G 〈Tδxt, δyt〉 = 〈Tδx, δy〉 .

We now define the invariant approximation: property (IAP).

Definition 2.4 ( [11]). We say that G has the invariant approximation property
(IAP) if

C∗λ(G) = C∗u(G)G.

3. THE IAP PASSES TO DIRECT PRODUCTS WITH FINITE GROUP

In this section, we show that the invariant approximation property is pre-
served under taking direct product with finite group. We now recall the defini-
tion of Morita equivalence:

Definition 3.1 ( [1]). We say that two unital C∗-algebras A and B are Morita
equivalent if and only if they are stably isomorphic, which means that A ⊗ K ∼=
B ⊗K, where K denotes the algebra of compact operators.

The following Theorem can be found in [1].

Theorem 3.1 ( [1]). If X and Y are uniformly discrete bounded geometry spaces,
and X is coarsely equivalent to Y then, C∗u(X) is Morita equivalent to C∗u(Y ).

This statement can be made a little more precise in the following situation.

Theorem 3.2. Let X be a bounded geometry metric space and assume that there
is a bijective coarse equivalence

φ : X −→ Y ×N,

where Y is a bounded geometry metric space and N is a finite metric space. Then
there is an isomorphism

C∗u(X) ∼= C∗u(Y )⊗ C∗u(N)

∼= C∗u(Y )⊗Mn(C).

where n = |N |.
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Proof. We shall assume that the bijection φ is implemented by means of two
maps

f : X −→ Y and π : X −→ N

so that
φ(x) = (f(x), π(x)) for all x ∈ X.

The bijection φ gives rise to a unitary isomorphism

`2 (X) ∼= `2 (Y )⊗ `2 (N) .

This induces a continuous isomorphism

Φ : B(`2(X))
∼=−→ B(`2(Y )⊗ `2(N)) ∼= B(`2(Y ))⊗Mn(C),

Where we use the fact that `2 (N) = Cn. We shall show that Φ restricts to an
isomorphism

Φ : C∗u(X) −→ C∗u(Y )⊗Mn(C).

First we need to show that, if T is a finite propagation operator on `2(X) then
Φ(T ) ∈ C∗u(Y ) ⊗Mn(C). For every i = 1 . . . n, let Xi = π−1(i) and note that the
restriction of f to Xi gives a bijection

f |Xi
: Xi

∼=−→ Y.

We shall denote by Vi the corresponding unitary isomorphism

Vi : `2(Xi)
∼=−→ `2(Y ),

and let Pi be the projection

Pi : `2 (X) −→ `2 (Xi) .

Then any operator T ∈ C∗u(X) admits a decomposition

T =
n∑

i,j=1

PiTPj,

where PiTPj is an operator from `2(Xj) to `2(Xi).
Let Si,j = PiTPj. Then

ViSi,jV
∗
j : `2(Y ) −→ `2(Y )

is a unitary isomorphism and we have

Φ(Si,j) = ViSi,jV
∗
j ⊗ Eij,
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where Eij is the (i, j)−th elementary matrix. We want to show that ViSi,jV ∗j is
a finite propagation operator on Y . This fact that f : X −→ Y is a coarse map.
Let y1, y2 ∈ Y . Then〈

ViSi,jV
∗
j δy1 , δy2

〉
=

〈
ViPiTPjV

∗
j δy1 , δy2

〉
=

〈
TPjV

∗
j δy1 , PiV

∗
i δy2

〉
= 〈Tδx1 , δx2〉 ,

where x1 is the preimage of y1 in Xj and x2 is the preimage of y2 in Xi. As T is
a bounded propagation operator, there exists R > 0 so that

〈Tδx1 , δx2〉 = 0 when d(x1, x2) > R.

Since f is a coarse map, ∃ S > 0 such that

dY (f(x1), f(x2)) > S ⇒ dX(x1, x2) > R.

As f is a surjection we now have that for all y1, y2 ∈ Y such that d(y1, y2) > S,
there exist x1 in Xj, x2 in Xi such that d(x1, x2) > R and〈

ViSi,jV
∗
j δy1 , δy2

〉
= 〈Tδx1 , δx2〉 = 0.

So ViSi,jV ∗j ∈ C∗u(Y ) has required. Next, we need to show that Φ is an isomor-
phism and for this we shall construct an inverse map

Φ−1 : C∗u(Y )⊗Mn(C) −→ C∗u(X).

If T ⊗ Eij ∈ C∗u(Y )⊗Mn(C). Then define

Φ−1(T ⊗ Eij) = PiV
∗
i TVjPj.

Using the same argument as before we prove that the operator PiV ∗i TVjPj is of
finite propagation, since f is a coarse equivalence. We extend Φ−1 by linearity
and continuity to a map

Φ−1 : C∗u(Y )⊗Mn(C) −→ C∗u(X).

We need to show that
Φ−1 ◦ Φ = Φ ◦ Φ−1 = Id.

First we have

Φ ◦ Φ−1(T ⊗ Ei,j) = Φ(PiV
∗
i TVjPj)

=
∑
l,k

VkPk(PiV
∗
i TVjPj)PlV

∗
l ⊗ Ek,l.
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Note that 1 ≤ l, k ≤ n

PkPi =

{
0 if k 6= i,

Pi if k = i,

and

PjPl =

{
0 if l 6= j,

Pj if l = j.

Hence the above sum can be simplified as follows

Φ ◦ Φ−1(T ⊗ Ei,j) =
∑
k,l

VkPk(PiV
∗
i TVjPj)PlV

∗
l ⊗ Ek,l

= ViPiV
∗
i TVjPjV

∗
j ⊗ Ei,j .

Since Pj|`2(Xj) = idXj
, we have

VjPjV
∗
j = VjV

∗
j = IdXj

,

and
ViPiV

∗
i = ViV

∗
i = IdXj

,

we have

Φ ◦ Φ−1(T ⊗ Ei,j) = ViPiV
∗
i TVjPjV

∗
j ⊗ Ei,j

= T ⊗ Ei,j .

Moreover:

Φ−1 ◦ Φ(T ) = Φ−1

{∑
l,k

VkPkTPlV
∗
l ⊗ Ek,l

}
=

∑
k,l

PiV
∗
i VlPlTPkV

∗
k VjPj

=
∑
i,j

PiTPj

= T.

Therefore
Φ−1 ◦ Φ = Φ ◦ Φ−1 = Id.

We conclude that

C∗u(X) ∼= C∗u(Y )⊗Mn(C) ∼= C∗u(Y )⊗ C∗u(N).

Hence the result follows. �
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Next we prove that the invariant approximation property is preserved under
taking direct product with finite group.

Theorem 3.3. Let H be a discrete group with the IAP and K a finite group, then
the direct product G = H ×K has IAP.

Proof. Let us denote the identification G = H ×K by φ:

φ : G
∼=−→ H ×K.

Then

C∗u(G) ∼= C∗u(H ×K).

The map φ is G− equivariant we have

C∗u(G)G ∼= (C∗u(H ×K))H×K .

By Theorem 3.2, we have,

C∗u(H ×K) ∼= C∗u(H)⊗ C∗u(K)

so that

C∗u(G)G ∼= (C∗u(H ×K))H×K .

Since the identification G = H ×K is a group isomorphism, the unitary isomor-
phism

`2 (G) = `2 (H)⊗ `2 (K)

induces a unitary equivalence λG ∼= λH ⊗ λK and ρG ∼= ρH ⊗ ρK . This means
H ×K acts on C∗u(H)⊗ C∗u(K) by AdρH ⊗ AdρK and so

C∗u(H ×K)H×K ∼= C∗u(H)H ⊗ C∗u(K)K .

By the same remark,

C∗λ(G) ∼= C∗λ(H)⊗ C∗λ(K)

K is a finite group, so it amenable and so has the IAP, Roe [11]. Since H has
the IAP by assumption

C∗u(G)G = C∗u(H)H ⊗ C∗u(K)K

= C∗λ(H)⊗ C∗λ(K)

= C∗λ(H ×K)

= C∗λ(G).
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Therefore
C∗u(G)G = C∗λ(G).

�
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