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1. Introduction
The purpose of this paper is to provide an illustration of an interesting and nontrivial interaction
between analytic and geometric properties of a group. We provide approximation property
of operator algebras associated with discrete groups. There are various notions of finite
dimensional approximation properties for C∗-algebras and more generally operator algebras.
Some of these (approximation properties) notations will be defined in this paper, the reader is
referred to [1–8,10,11] for these a beautiful concept: Haagerup discovery that that the reduced
C∗-algebra Fn has the metric approximation property, Higson and Kasparov’s resolution of the
Baum-connes conjecture for the Haagerup groups. We studies analytic techniques from operator
theory that encapsulate geometric properties of a group. On approximation properties of group
C∗-algebras is everywhere; it is powerful, important, backbone of countless breakthroughs.

Roe [9] considered the discrete group of the reduced group C∗-algebra of C∗
r (G) is the fixed

point algebra {Adρ(t) : t ∈ G} acting on the uniform Roe algebra C∗
u(G). A discrete group G
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has natural coarse structure which allows us to define the the uniform Roe algebra, C∗
u(G).

According to Roe [9] G has the Invariant Approximation Property (IAP) if

C∗
λ(G)= C∗

u(G)G .

We give a general exposition of Invariant Approximation Property (IAP), which was initiated by
Roe. The main result of paper is the following (see Theorem 3.1). We give a general exposition
of Invariant Approximation Property (IAP), which was initiated by Roe [9].

This paper is organized as follows: Section 2 contains basic definitions and results concering
IAP. In section 3, the IAP passes to subgroup is studied in detail.

2. Preliminaries
In this section, we shall establish the basic definitions and notations for the category of coarse
metric spaces [1–8,10,11].

Example 2.1. Let G be a finitely generated group. Then the bounded coarse structure associated
to any word metric on G is generated by the diagonals

∆g = {(h,hg) : h ∈G} .

Let X be a discrete metric space.

Definition 2.2. We say that discrete metric space X has bounded geometry if for all R there
exists N in N such that for all x ∈ X , |BR(x)| < N , where B(x, r)= {x ∈ X : d(y, x)≤ r}.

Definition 2.3. A kernel φ : X × X −→C

• is bounded if there, exists M > 0 such that |φ(s, t)| < M for all s, t ∈ X .

• has finite propagation if there exists R > 0 such that φ(s, t)= 0 if d(s, t)> R.

Let B(X ) be a set of bounded finite propagation kernels on X × X . Each such φ defines a
bounded operator on `2(X ) via the usual formula for matrix multiplication

φ∗ζ(s)= ∑
r∈G

φ(s, r)ζ(r), for ζ ∈ `2(X ).

Next, we show the operator associated with a bounded kernel is bounded.

Lemma 2.4. Let X be bounded geometry metric space. An operator associated with a bounded
finite propagation kernel is bounded.

We shall denote the finite propagation kernels on X by A∞(X ).

Definition 2.5. The uniform Roe algebra of a metric space X is the closure of A∞(X ) in the
algebra B(`2(X )) of bounded operators on X .

If a discrete group G is equipped with its bounded coarse structure introduced in Example 2.1
then one can associated with it uniform Roe algebra C∗

u(G) by repeating the above. In this
section, we will give definition of invariant approximation property. A discrete group G has a
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natural coarse structure which allows us to define the uniform Roe algebra C∗
u(G). A group

G can be equipped with either the left or right-invariant of the metric. A choice of one of
the determines whether C∗

λ
(G) or C∗

ρ(G) is a sublagebra of the uniform Roe algebra C∗
u(G) of G.

Hence any element of C[G] will give use to finite propagation and this assignment extends to
an inclusion

C∗
λ(G) ,→ C∗

u(G).

Next if the metric on G is left-invariant then

C∗
ρ(G)⊂ C∗

u(G).

Let d1 be the left-invariant metric on G

d1(x, y)= d1(gx, gy), for all g ∈G.

Let us now choose a right invariant metric for G so that C∗
λ
(G) ,→ C∗

u(G). The right regular
representation ρ gives use to the adjoint action on C∗

u(G) defined by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1,

for all t ∈ G, T ∈ C∗
u(G). Our remarks above show that elements of C∗

λ
(G) are invariant with

respect to this action and so C∗
λ
(G) is contained in invariant subalgebra C∗

u(G)G .

Lemma 2.6. If T ∈ C∗
u(G) has kernel A(x, y), then Adρ(t)T has kernel A(xt, yt).

In general, if T ∈ C∗
u(X ) then ∀ x, y ∈G:

〈Ad(ρ(t))Tδx,δy〉 = 〈ρ(t)Tρ(t−1)δx,δy〉
= 〈Tρ(t−1)δx,ρ(t−1)δy〉
= 〈Tδxt,δyt〉.

So the operator T is Adρ-invariant if and only if

∀ x, y ∈ X , ∀ t ∈G, 〈Tδxt,δyt〉 = 〈Tδx,δy〉.
We now define the invariant approximation property (IAP)

Definition 2.7. We say that G has the Invariant Approximation Property (IAP) if

C∗
λ(G)= C∗

u(G)G .

3. The IAP Passes to Subgroups
The main result of paper is the following:

Theorem 3.1. Any subgroup H of a discrete group G with the invariant approximation property
has the invariant approximation property.

Proof. Let us fix a set of representatives R of the right cosets G/H so that for every element
g ∈ G there is a unique representation g = hgrg where hg ∈ H and rg ∈ R. We then have the
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isomorphism of Hilbert spaces:

`2(G)∼= `2(H)⊗`2(G/H),

given by

δg 7−→ δhg ⊗δrg ,

with the converse map given by,

δh ⊗δr 7−→ δhr .

The uniform Roe algebra C∗
u(H) acts on this space by T ⊗1 for every T ∈ C∗

u(H), which gives an
embedding, i.e.

C∗
u(H) ,→ C∗

u(G) by T 7−→ T ⊗1.

Using this inclusion, we shall show that

C∗
u(H)H ∼= C∗

u(H)G .

First, it is clear that a G-invariant operator in C∗
u(H) is also H-invariant operator, restricting

the Adρ action from G to H. To show the converse,

C∗
u(H)H ⊆ C∗

u(H)G ,

we proceed as follows. We want to extended an kernel on H×H which is invariant with respect
to the AdρH action to a kernel on G ×G which is invariant with respect to the AdρG action.
Given a(h,h′) we define A : G×G −→C as follows: for every s, t ∈G

A(s, t)=
{

a(h,h′), if there exists r ∈ R s.t. (s, t)= (hr,h′r),
0, otherwise.

Now, we need to show that A(s, t) is AdρG -invariant. If we write

rt = h1r1, for h1 ∈ H, r, r1 ∈ R

we get,

AdρG(t)A(hr,h′r)= A(hrt,h′rt)

= A(hh1r1,h′h1r1)

= a(hh1,h′h1)

= a(h,h
′
)

= A(hr,h′r).

Given that invariant Roe kernels form a dense subset of C∗
u(H)H , it follows that

C∗
u(H)H ⊆ C∗

u(H)G ,

and so we have an isomorphism,

C∗
u(H)H ∼= C∗

u(H)G .

Let T ∈ C∗
u(H)G . Then T ∈ C∗

u(G)G and T ∈ C∗
u(H), and we have

C∗
u(H)G ⊆ C∗

u(G)G ∩C∗
u(H).
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Since

C∗
u(G)G ∩C∗

u(H)⊆ C∗
u(H)G ,

we have

C∗
u(H)G = C∗

u(G)G ∩C∗
u(H).

We now want to show that a similar isomorphism holds for the regular C∗− algebras:

C∗
λ(H)∼= C∗

λ(G)∩C∗
u(H).

First there is an inclusion

C[G]−→ A∞(G),

g 7−→Ug(x, y),

where,

Ug(x, y)=
{

1, if gx = y,
0, otherwise.

This extends to a ring homomorphism so we have

C[G] ,→ A∞(G) ,→ C∗
u(G),

where, A∞(G) is the uniform translation algebra. Since H is normal subgroup of G. We have an
inclusion

C[H] ,→C[G].

Then

Φ :C[H]
∼=−→C[G]∩ A∞(H)

By taking completion of both sides, we have

C∗
λ(H)∼= C∗

λ(G)∩C∗
u(H).

We now suppose that G has IAP. Then

C∗
u(G)G = C∗

λ(G),

and using the above results we have that,

C∗
u(H)H ∼= C∗

u(H)G

= C∗
u(G)G ∩C∗

u(H)

= C∗
λ(G)∩C∗

u(H)
∼= C∗

λ(H).

Hence

C∗
u(H)H ∼= C∗

λ(H)

and so the IAP passes to subgroups.
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4. Conclusion
Any subgroup of a discrete group with the invariant approximation property has the invariant
approximation property.
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