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Abstract: The rising demand for electricity, economic benefits, and environmental pressures related
to the use of fossil fuels are driving electricity generation mostly from renewable energy sources.
One of the main challenges in renewable energy generation is uncertainty involved in forecasting
because of the intermittent nature of renewable sources. The demand also varies according to the
time of day, the season, the location, the climate, and the availability of resources. Microgrids offer
a potential solution for the integration of small-scale renewable energy sources and loads along
with energy storage systems and other non-renewable sources. However, intermittent generation
and varying demand need to be matched to provide stable power to consumers. Therefore, it is
crucial to design an energy management system to effectively manage the energy sources and supply
loads for reliable and efficient operation. This paper reviews different techniques proposed in the
literature to achieve the objectives of a microgrid energy management system. The benefits of existing
energy management systems and their challenges are also discussed. The challenges associated with
uncertainties and methods to overcome them are critically reviewed.

Keywords: energy management; forecast uncertainties; microgrids; optimization; renewable
energy integrations

1. Introduction

In the last two decades, the electric power industry strived to increase the electricity
generation from renewable energy sources (RES) due to the environmental issues associated
with the use of fossil fuels and associated economic benefits. Being proven cost-effective
technologies, currently solar PV and wind are the fastest deployed RESs in power genera-
tion [1]. However, solar PV power generation is impacted by changing weather conditions
and passing cloud cover, while the amount of energy generated by wind varies with wind
speed. The intermittent nature of renewable energy resources complicates power system
operation and control. These uncertainties introduced to the generation of resources, in
addition to the varying electric demand, make energy management more challenging.

The microgrid (MG) concept, schematically illustrated in Figure 1, has become a
smart candidate for integrating RESs, as it can be operated as a single controllable system.
A microgrid is usually comprised of energy resources, energy storages, and loads and
operated within a clearly defined electrical boundary. The energy mix of a microgrid
usually includes solar PV and wind as primary sources of renewable energy, and a few
non-renewable resources, such as diesel generators, micro turbines, and gas turbines are
also used as backup energy resources. Various energy storages, such as batteries, super
capacitors, fuel cells, are considered to ensure the availability of power throughout the
entire time horizon [2–4].
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A microgrid can be either connected to or isolated from the grid and operate with
full controllability. The output power from energy sources must, therefore, meet the
requirements of local loads in the islanded mode. In the grid-connected mode, the microgrid
shares the energy with the main grid (supply or absorb) via the point of common coupling
(PCC). Microgrids can be classified based on voltage, such as AC microgrids, DC microgrids,
and hybrid AC/DC microgrids. In AC microgrids, DC generating RES such as solar PV
and wind are connected via DC/AC power inverters. The DC microgrid is similar to its
AC counterpart, possessing a common DC bus. A hybrid microgrid is a combination of
both AC and DC microgrids, offering the best solution for grid integration of RES. Various
models and layouts are used to describe the microgrid operations in the literature [5].

A microgrid control system is responsible for ensuring desired voltages, currents,
and frequency through proper management and control, including performing economic
dispatch, balancing power supply and demand, demand side management, etc., under all
modes of microgrid operation. An energy management system (EMS) is usually designed
to optimize power generation to meet the demand at the minimum operational cost while
maintaining the integrity of the system. Among the various definitions, the IEC 61970
standard has defined EMS as “a computer system comprising a software platform provid-
ing basic support services and a set of applications providing the functionality needed for
the effective operation of electrical generation and transmission facilities so as to assure
adequate security of energy supply at minimum cost” [6]. Microgrid energy management
systems (MG EMS) also have the same aforementioned features to provide the required
functions to ensure safe and efficient operation. An energy management problem is typ-
ically formulated as an optimization problem with the objective of minimizing the total
cost of operation over a chosen time horizon (often over 24 h), subjected to operational
constraints. The optimization is based on the forecasted load variation. When intermittent
generation is involved, a resource forecast is also required to solve the optimization prob-
lem. The MG energy management is complicated by forecast uncertainties. The forecast
uncertainty, which is the deviation of actual load and renewable generation from their
respective forecast values, affects optimum scheduling and raises new challenges in micro-
grid systems with a high penetration of renewables. Therefore, uncertainty management
needs to be incorporated into the energy management problems.

Several comprehensive reviews related to MG EMS can be found in the literature, and
they address different aspects of energy management function. The review of microgrid
EMS presented in [7] is organized based on four categories: (1) the optimization techniques
employed, (2) the type of grid taken into consideration, (3) the mode of operation of the
microgrid, and (4) the software used as a platform for solving the EMS problems. Two major
categories of microgrid energy management strategies are discussed, including classical and
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intelligent methods for residential applications in [8]. A comparative and critical analysis
of the literature on decision-making strategies and their solution methods for MG EMSs
is presented in [6]. A comprehensive description of control and optimization methods to
identify the most common and effective methods for MG EMS is highlighted in [9]. In [10],
the review is conducted in terms of uncertainty modeling approaches, objective functions,
constraints, optimization techniques, and simulation and experiment results for EMSs.
However, the uncertainty issues are not comprehensively addressed. Recent techniques
to model the uncertainties from renewable energy sources and loads in microgrids are
reviewed in [11]. Methods of uncertainty management, parameter modelling, simulation
tools, and test system in unit commitment in power systems are discussed in [12]. Methods
for uncertainty modelling in power systems, comparison between these methods, strengths,
and weaknesses are studied in [13]. A standard classification of uncertainty handling
methods is proposed in [14], where the models are compared, and their strengths and
weaknesses are investigated.

Proper modelling and managing forecast uncertainties are an important aspect of an
efficient and effective energy management system for a microgrid with high penetration
of renewables. The main objective of this paper is to present a comparative review of
effective energy management methods used in microgrids along with forecast uncertainty
management. This study identifies the techniques used for managing forecast uncertainties
and modeling those uncertainties in microgrid systems. The paper is organized as follows:
the concept of a microgrid energy management system is discussed in Section 2. Energy
management problem formulation and solution approaches are discussed in Sections 3
and 4, respectively. Section 5 addresses the potential challenges caused by the uncertainties
from forecasted data along with managing methods in MG EMS. Section 6 discusses the
application of artificial intelligence (AI) and machine learning (ML) in MG EMS. The paper
concludes with future research opportunities related to microgrid energy management
under source and load uncertainties.

2. Microgrid Energy Management System (MG EMS): The Concept

A microgrid energy management system (MG EMS) performs a variety of functions for
the efficient and effective operation of the system. Energy management is an optimization
problem with the target of properly scheduling the short-term operation of production by
generators, storage, as well as controllable loads, to cover the system demand and minimize
the generation costs. The EMS generates a schedule of unit commitment and the optimized
output of each source considering the results of the optimization. Figure 2 illustrates the
overall outline of the MG EMS.
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Control Systems Used in EMS

The control system associated with MG EMS can be implemented using centralized,
decentralized, and hierarchical control methods [7,15,16]. In centralized control-based EMS,
a single central controller that receives all the information, such as RES energy generation,
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load profile, market price, weather conditions, etc., is used. Based on the inputs, a central
controller decides the optimum microgrid energy schedule and then sends these decisions
to all local controllers. The basic structure of the centralized control is shown in Figure 3.
However, the failure of the central control could cause the entire system to fail. Unlike
centralized control-based EMS, in decentralized control shown in Figure 4, a few local
connections are needed, and only local measurements are used to make control decisions.
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Hierarchical control approaches are used to provide a compromise between totally
centralized and decentralized control structures, and they includes primary, secondary, and
tertiary controls. The primary control provides local voltage and current control, as well
as power sharing control. It generally follows the instructions of higher-level controllers.
The secondary control is responsible for the power management of the system. It is also
used for microgrid synchronization to the main grid when switching from islanded to grid
connected mode. Tertiary control is used to control the power flow. It can also be used
for other objectives, such as islanding detection. The hierarchical control approach is the
most widely used conventional method, and its objective is to enhance the efficiency and
effectiveness of microgrid operation [17]. However, hierarchical control is challenging with
the consideration of the intermittency of RES. Recent studies have extensively focused on
hierarchical control approaches to improve the energy management aspects of microgrid
systems. A typical hierarchical control scheme is illustrated in Figure 5.
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Table 1 summarizes the features, advantages, and disadvantages of implementing
EMS based on different control aspects.

Table 1. Comparison of control methods used in EMS.

Features Advantages Disadvantages

C
en

tr
al

iz
ed

co
nt

ro
l

Centralized control has complete
knowledge of the entire system and is in
charge of ensuring its optimal operation.

It provides wide control over the entire system.
Established control approach.

Simple architecture.
Easy to implement and maintain.

It ensures optimal decision.

It requires a high performance
computing unit and

communication network.
The failure of central control could

cause the entire system to fail.
Computational complexity is high.

Low flexibility.

D
ec

en
tr

al
iz

ed
co

nt
ro

l

Functions provided by centralized
control are realized

in a decentralized way.
Local decisions contribute to achieving

the goal.

It does not require a high performance computing
unit and a high-level connectivity.

Easy realization of plug-and-play functionality.

It requires an effective method to
ensure corporation among

local controllers.
Low performance compared to
centralized control due to low
response time and incomplete

information about the total microgrid
system installation.

High implementation complexity.

H
ie

ra
rc

hi
ca

lc
on

tr
ol

Ba
se

d
m

et
ho

ds Each level provides supervisory control
over lower-level systems.

Three layers: tertiary, secondary, and
primary control layers.

The bandwidths of different control
levels are separated.

Combining the centralized and
decentralized controllers.

Higher levels attempt to optimize the
microgrid operation.

Local controls regulate the voltage and current.
It simplifies modelling and analysis of

microgrid systems.

Proper coordination of all three
layers is required.

3. Microgrid Energy Management: Problem Formulation

Microgrid energy management is used to either minimize or maximize an objective or
set of objectives while ensuring the constraints of individual units and the system as a whole.
These objectives are quantitative in nature and usually include cost reduction, emission
reduction, increased renewable energy integration, etc. The associated constraints include
power balance, individual unit ratings, charge and discharge rates of ESS, maximum and
minimum limits of the state of charge (SOC) of ESS, power import and export limits, and
other technical constraints of the microgrid. Most of the existing literature focuses on
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microgrid cost minimization in a single-objective format. The considered cost factors are
related to fuel, start-up, shut-down, maintenance, degradation, utility purchases, etc. When
several objectives are optimized, the optimization framework is formulated in a multi-
objective framework. In such cases, each objective is assigned a weighting factor. These
weighting factors are usually assigned based on the significance of individual objectives in
relation to the final objective function.

Various solving techniques, such as mixed integer linear and non-linear programming
(MILP and MINLP) methods, heuristic optimization methods, etc. are used to solve
the optimization problem, sometimes together with rule-based and fuzzy logic control
methods to simplify the problem. These optimization strategies use various optimization
time windows (horizon) on different time scales. A suitable selection is used to improve
the energy management system. Recently, the rolling horizon is considered to reduce the
impact of uncertainties from the renewable energy output and load forecasting.

The design of an EMS for a microgrid includes the task of the mathematical formulation
of objective functions and constraints, selection of the optimization time horizon and the
time step, as well as choosing an optimization technique to solve the problem.

The typical mathematical representation of the EMS problem is shown below:
Objective function:
Minimize the total cost of the microgrid operation;

• Operational cost = fuel cost + maintenance cost + startup cost of the thermal unit + shutdown
cost of the thermal unit + cost of buying and selling power to the main grid + load
shedding penalty cost + losses cost

• Environmental cost = carbon emission + penalties for emissions
• Energy storage cost = charging cost + discharging cost + degradation cost
• Constraints:
• Power balance: load demand at each time must be equal to the summation of power

from microgrid resources and receiving/sending power from the main grid.
• Emission constraints: emissions caused by each fossil-fueled thermal generators cannot

exceed the maximum limits at each time.
• Capacity limits: each RESs, ESS, and interconnection has a maximum and minimum

capacity during the operating mode.
• Limit of ESS: charging and discharging power rates for batteries during operation

mode and the operating SOC range must be limited as it may affect battery life time.
• Operating reserve: extra storage and generation capacity
• Generator start/stop limits: the number of generator starts/stops cannot exceed a

certain number.
• Ramp rate power limit: the maximum power fluctuation of each unit is defined.

System variables:

• Load profile: the demand forecast varies according to time, geographical location,
season, weather, and other factors.

• PV and wind sources: the wind and PV power availability depends on wind speed fore-
casts and solar irradiation forecasts, respectively. Seasonal and local weather impacts
these forecasts, and there is always some uncertainty associated with the forecasts.

• Electricity price: it is related to the price of the buying/selling power to the main grid.
Prices may be time-sensitive.

The energy management problem in a microgrid becomes a mono objective when a
single cost function is presented. The problem becomes multiple objectives when it simul-
taneously presents a solution to the competing technical, economic, and environmental
problems. The weighting coefficients of each function must be properly defined when
multiple objectives, such as operational cost minimization, emission reduction, and other
objectives, are taken into account for the optimization problem. Effectively setting the
weighting factors of the objective function is still being researched.
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In addition to the typical objectives and constraints, there are other elements that
needs to be incorporated into the MG EMS. Some such aspects include real-time or time-
varying electricity tariffs and demand response, which add further benefits for both energy
providers and consumers. From the consumer perspective, consumer comfort and a prof-
itable electricity bill are important considerations. From the energy providers’ perspective,
efficient load profile reshaping is essential. Techniques such as peak clipping, valley filling,
and load shifting can be employed to successfully execute the reshaping of the load profile
while considering factors such as cost, dependability, control strategies, targeted customers,
and supporting infrastructure [18]. The impact of electric vehicles (EVs) is an emerging
factor because the use of EVs is expected to significantly increase in the next decade, causing
a major increase in demand and demand pattern. Energy storage available in EV batteries
can be used in the MG EMS with proper infrastructure for EV charging. Consumer comfort
maximization can be defined as one of the objective functions in the formulation of the MG
energy management problem, which includes demand response and EV energy storage.
However, it makes optimization tasks computationally complex. The proposed method
in [19] ensures customer satisfaction by optimal allocation of demand in a distribution
feeder using autonomous decision-making entities.

4. Microgrid Energy Management: Solution Approaches

The selection of EMS methods depends on the microgrid system and the requirements.
The solution methods for energy management problems can be classified in various ways.
In this paper, those EMS solution methods are classified as shown in Figure 6.
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4.1. Mixed Integer Linear and Non-Linear Programming Methods

Mixed integer programming methods deal with optimization problems where vari-
ables can be discrete and continuous. Therefore, the methods fit perfectly for applications
in microgrid EMS. In mixed integer linear programming (MILP) based EMS, mathematical
models of microgrid components are developed using MILP to optimize the cost function.
The MILP model considers wind speed and irradiation, loads, and cost parameters of the
components. For MILP methods, the objective function and constraints are linear, but for
mixed integer non-linear programming (MINLP) methods, they are non-linear. Typically,
MINLP models make use of approximations to obtain a linear model. In MINLP models,
continuous variables are the power imported/exported at PCC, the power generation from
available generators, and the power injection of the ESS. When considering the power
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flow equation of microgrids, they introduce non-linearity and complexity to the energy
management problem and increase the computational burden.

In [20], considering a distribution network with radial structure, power flow of a line
(referred to as Sij(t)) is expressed using Equation (1), which shows non-linearity.

Sij(t) = Vi(t) I∗ij(t) (1)

dVi (t)e2 × dIij (t)e2 = Pij
2 + Qij

2 (2)

Thus, voltage is considered equal to a constant value as voltage changes are very small.
With the said assumption, a linear approximation of the current in power flow is calculated
using the piecewise linearization method. In a similar manner, nonlinear constraints and
equations are converted into linear form to simplify.

Mixed integer linear and non-linear optimizers are often used because of their high
efficiency and modelling flexibility. However, complex problems with a large number of
variables take a long time to calculate. The MILP and MINLP-based EMS are applied in a
variety of ways in the reported literature [21,22].

4.2. Heuristic Optimization Methods

There are many heuristic optimization methods that can be applied to the MG EMS
optimization problem. Among them, the genetic algorithm (GA) and particle swarm
optimization (PSO) are used frequently to solve energy management optimization prob-
lems. Similar techniques, such as the ant colony algorithm [23], Lagrange algorithm [24],
crow search algorithm [25], and simulated annealing [26] are also utilized for microgrid
energy management.

a. Genetic Algorithm

The genetic algorithm (GA) is a frequently used heuristic optimization method to solve
optimization problems, and it has the capacity to optimize multi-dimensional problems.
The genetic algorithm is developed through various stages, as shown in Figure 7. The GA
repeatedly modifies a population of individual solutions. Individuals can be defined as
arrays, trees, or lists of variable values to be optimized. Solutions are typically represented
as strings of zeros and ones in binary, but other representations are also available. In a
binary implementation of genetic algorithms, GA starts from a population of randomly
created individuals. The objective function of every individual in a population will be
evaluated and ranked. Selection determines which ones are to be selected from the current
population and allowed to reproduce. There are various approaches to implementing selec-
tion in GA, such as roulette selection, tournament selection, stochastic universal selection,
and Boltzmann selection. Frequently used genetic operators are crossover and mutation.
Crossover is a recombination operator by swapping the values between two strings to
create new solutions from the existing population. There are various crossover methods,
such as uniform crossover, arithmetic crossover, permutation encoding crossover, value en-
coding crossover, tree encoding crossover etc., being applied based on the application [27].
A new population is full of individuals after selection and crossover. Some are formed by
crossover, while others are directly copied. Mutation is the change of a small amount or
the replacement of a value with a new one in order to ensure genetic variability among the
population. The probability of a mutation is typically 1 to 2%.
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In order to solve the optimization problem for MG EMS, GA considers the system
variables, constraints, parameters, and the objective function, as shown in Figure 7. The
GA is developed to schedule the generators, battery storage systems, and controllable
loads. The total running cost, microgrid emission, and other objectives are optimized while
satisfying all equality and inequality requirements using a suitable ON or OFF state. The
GA optimizes with continuous or discrete variables, and it can also optimize variables in
an extremely complex problem. It can handle a large number of variables. However, the
challenges associated with GA are the long calculation time involved and the possibility of
ending up with one or more solutions. Each run could produce a different result. In the
case of EMS in microgrids, it is challenging to find the optimal solution through GA.

b. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based heuristic optimization
technique and can be deployed in a wide range of microgrid-related applications. Particles
use both the personal best solution and the best solution found by the swarm to collectively
move towards the optimum. Figure 8 illustrates the typical PSO algorithm used for
microgrid energy management applications.

The system starts with a population of random solutions and then updates generation
to search for an optimum solution. It can handle a wide range of problems while achieving
a set of goals, such as minimizing energy costs and reducing emissions. It is feasible to
update the PSO objective function at a smaller interval. In PSO methods, it is important
to define parameters such as population size, maximum number of iterations, etc. The
initial particles are selected randomly between the minimum and maximum values of the
variables. Each particle is evaluated using the objective function to find the best solution.
The performance of PSO depends on the selection of suitable PSO parameters and stopping
criteria. The main advantage of PSO-based EMS is its fast convergence time, which is
essential for real-time energy management applications. The PSO is also used by many
researchers to solve microgrid optimal sizing problems [28,29].
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4.3. Rule-Based Methods

With the rule-based methods, the inter-dependability of the resources of the microgrid
are defined using predefined logical rules. If-then-else rules are applied for assigning
values to binary decision variables used in the optimization procedure of the microgrid
operation. Load, PV generation, and wind generation values are not affected by values
from the present or the past. However, changes in battery storage have an impact on
future schedules. Rule-based algorithms can also be used to develop a method for BESS
scheduling to determine the optimal charge/discharge of the battery. Such methods use
the energy generated by RESs and the battery SOC level to determine whether the battery
energy storage system (BESS) should be charged or discharged. Rules also ensure that SOC
is kept under allowable levels while performing perfect dispatch. The analysis takes into
account a variety of operational modes. For example, in the case of islanded microgrids,
if the output power from renewable resources (solar and wind) is higher than the power
demand, the excess power will be used to charge the battery storage up to its maximum
capacity. If the generation is higher than the demand and the battery is at its maximum
capacity, the remaining power will be discarded to a dump load. Similarly, rules are
developed for the optimum operation of microgrid systems. The rule-based method is easy
to execute on various storage types once the essential rules have been established [30,31].
The rule-based method allows for a significant reduction in computational complexity.

4.4. Fuzzy Logic Control Methods

Figure 9 shows the block diagram of a fuzzy logic system. The fuzzy logic controller
(FLC) contains mainly three parts: the fuzzifier, the fuzzy interface, and the defuzzifier.
The fuzzifer converts the input into a linguistic variable, and this process is referred to as
fuzzification. The defuzzifier returns the output by converting from linguistic variable, and
the process is called defuzzification. The interface system is a rule-based system. Fuzzy
controllers do not require complex mathematical modelling.
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Fuzzy logic-based energy management is used for various objectives. Fuzzy logic
controller generates the output whether the battery should be charged or discharged, as
well as the charging or discharging rates. The fuzzy logic control is designed to meet energy
demands and maintain the SOC of the energy storage level within predefined margins
while attempting to optimize the utilization cost and lifetime of the ESS [32]. The fuzzy
controller is also used to find the status of the power received or supplied from the grid. An
optimal fuzzy-based EMS for a residential grid-connected microgrid is used to minimize
grid fluctuation and to preserve the storage system lifetime in [33].

In microgrid operations, hybridization of fuzzy logic with other methods such as
GA and PSO are used. The problem of energy flow management system optimization
in a microgrid is investigated using a fuzzy-GA paradigm in [34]. A hybrid approach
combining a fuzzy approach and a neural network is used in EMS presented in [35].

The advantages and disadvantages of the energy management solution approaches
discussed above are summarized in Table 2.

Table 2. Advantages and disadvantages of optimization techniques.

Techniques Advantages Disadvantages

Mixed integer linear and non-linear
programming methods

Availability of efficient software packages.
Most flexible modelling.

Optimal solution.
Computational complexity.

Generic algorithm
Possibility to use complex formulation.

It can handle many objectives and constraints.
Widely used in many fields.

GA is unable to ensure mathematical
optimality in its output.

Particle swarm optimization (PSO)

It has fast convergence time.
Commonly used in the sizing

of distributed generators.
It can handle a wide range of problems while

achieving a set of goals.

PSO is unable to ensure mathematical
optimality in its output.

Rule-based methods

The approach allows for a significant
reduction in computational complexity.

The method is easy to execute on various
storage types once the essential rules have

been established.

Solution could be a sub-optimal solution.

Fuzzy logic control methods
Gain more flexibility.

It can be easily incorporated with
other methods.

Solution could be a sub-optimal solution.
High-quality processing unit is required.

5. Uncertainties in Microgrid Energy Management

Power generation from the RESs offers an intermittent and uncertain power supply.
Solar and wind are the most popular and widely used resources among all the renewable
energy resources used in microgrid applications. However, the intermittent nature of
solar and wind energy is always a challenge. Solar energy is only available during the
day, and it also varies with other factors such as cloud movements and shadow. Wind
patterns change according to the weather. Consumer loads connected to the grid are also
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continuously varying, and these variations can become more complex with the introduction
of demand response and EV charging. The high intermittency leads to an uncertain
operational environment for microgrids. Therefore, one of the main challenges is to handle
the uncertainty of renewable energy generation and power demand.

In this regard, it is important to properly model the uncertainties in the parameters
and components. Researchers consider a variety of sources of uncertainty, such as wind
power, load demand, electricity prices, PV generation, EV demand, etc. [36]. In MG EMS,
the uncertainty from renewable energy sources and load demand are important factors. To
address uncertainty management, modelling the uncertainty of renewable sources and load
becomes the consequential issue. Accurate modelling has a high effect on the operational
cost of a microgrid. Modelling uncertainty is always a challenge; hence, several approaches
are employed to model these uncertainties with respect to their applications. This section
provides an overview of all recent uncertainty modeling approaches used by an EMS.

a. Monte Carlo Simulation (MCS)

The MCS is used to calculate the probabilities of various outcomes in a process that
is difficult to forecast because it contains random variables. This method can accurately
handle the uncertainty variable. For each input parameter, a sample is generated using
its probability density function (PDF), and the sample generation process is repeated for
many iterations. Therefore, the method is computationally complex. Most of the studies
are focused on developing uncertainty models for PV, wind power, and load demand [12].

b. Worst Case Scenario Method

Even though it is not a new concept, the worst-case scenario approach is frequently
used in recent studies. The worst-case scenario approach restricts the range of the random
variables to a set of predetermined uncertainty with defined upper and lower boundaries.
Prediction intervals (PIs) are calculated to evaluate the measure of prediction uncertainty.
Upper and lower limits are used to define PIs [11].

c. Point Estimate Method (PEM)

The PEM is one of the approximate methods with a low computation burden. The
method focuses the statistical data of a random variable on a specific number (K) of points
in order to create a connection between input and output variables. Solar radiation and
wind speed are treated as two random variables, and the function is developed using
power flow equations in [37]. In [38], PEM is used to determine power exchanges between
MGs and evaluates the optimal solutions in terms of accuracy and computational effort.

d. Fuzzy Method

Each uncertain parameter can be assigned a degree of membership based on fuzzy
theory by using membership functions. After a suitable fuzzy membership function is
applied to each parameter, the defuzzification will be carried out. The fuzzy method is
used to model the uncertainty in forecasting day-head demand in [39]. Although uncer-
tainty is handled in fuzzy systems, the issue of randomness is not properly accounted for.
Approaches, such as probabilistic fuzzy systems, have been introduced for overcoming
this issue [18].

e. Autoregressive Moving Average

It is another model used in recent days to model uncertainties from load demand and
wind power. The autoregressive moving average model is a combination of auto regression
and moving average. This method can be used to forecast future estimates of a variable if
historical data of the variable with uncertainty is presented by a time series, such as load
demand, wind, etc. A significant amount of historical data, as well as data mining and
analysis, are required for developing proper autoregressive models, and the predictions
with these models are valid only over a short horizon [11].
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Other methods, such as kernel density estimation, hyper-heuristics, and two stage
scheduling strategy, are also used to model these uncertainties. Each model has its own
advantages and disadvantages that determine its application.

There are various approaches that could be used to deal with different sources of
uncertainty. Generally, optimization under uncertainties can be broadly categorized as
stochastic programming [40,41], robust optimization [42,43], and other methods, such
as model predictive control and chance constrained programming. These methods are
implemented as either a single-layered or multi-layered framework.

5.1. Stochastic Optimization

In stochastic programming methods, uncertain parameters are described using proba-
bilistic distributions. Stochastic optimization, which is based on statistical data, is widely
used for energy scheduling under uncertainty due to its effective performance in the
case of uncertainties [44]. Stochastic programming can be classified into four main meth-
ods, including the three-point estimating technique, the Monte Carlo simulation-based
method (MCS), the scenario-based modelling approach, and the approximate analytical
method. The scenario-based modelling approach is utilized to handle the uncertainties
from wind in [45–47].

However, there are significant limitations to stochastic optimization in some situations,
such as the large presence of uncertain data, dependence between uncertain parameters,
and a lack of historical data. The computational complexity of the model also increases
along with its scale. Stochastic programming methods may lead to an infeasible solution
due to the constrained violation [12].

5.2. Robust Optimization (RO)

Robust optimization (RO) is an interval-based approach, and RO methods do not
require prior knowledge of the probability distribution of the uncertain parameter. The
RO method addresses data uncertainty by considering a single worst-case scenario over
an uncertainty set, and it can improve the performance of MG EMS even under the lack
of full information on the nature of uncertainty. The typical extreme cases in real-world
applications can be included in the uncertainty set in the RO methods. Robust optimiza-
tion has significantly reduced the computational complexity compared with stochastic
approaches [48]. The RO method has received attention for being able to handle the uncer-
tainty optimization problem. However, complexities in deriving the uncertainty set can
lead to a computationally intractable solution. Additionally, focusing on the worst-case
scenario can lead to a more conservative resource-handling option degrading the benefits
achievable through an optimized solution.

A two-stage robust optimization approach is proposed for the islanded microgrid
system to reduce the uncertainty impacts from energy sources and loads in [49]. Uncertain
parameters were used to classify decision variables for two stages: (1) the day ahead stage
decision (pre-scheduling) and (2) the real-time stage decision (rescheduling). This approach
is moderately effective in reducing the impact of uncertain factors.

5.3. Chance Constrained Programming (CCP)

The chance constrained programming (CCP) approach is also used to solve energy
management problems under uncertainties. It is a mathematical program containing chance
constraints which only needs to be satisfied with a probability. The requirement for power
balance in the microgrid is formulated as chance constraints. Approximated methods have
been commonly employed to solve the CCP. In general, CCP is employed only for special
cases due to being computationally challenging, conservative, or incapable of guaranteeing
the satisfaction of chance constraints [50].
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5.4. Model Predictive Control

The traditional deterministic frameworks have a feedback mechanism to adjust the
initial dispatch solution to compensate for variations in the uncertain decision variables.
Among them, model predictive control (MPC) is gaining considerable attention in microgrid
systems as a promising control scheme with several advantages, such as the possibility
of incorporating optimization techniques and the ability to integrate the constraints and
disturbances in forecasted control decisions. The MPC is a discrete time control scheme
in which each time step solves an open-loop optimal control problem for a chosen control
horizon. Figure 10 illustrates the block diagram of a typical MPC structure.
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Model predictive control is usually implemented by developing a model with relevant
and controllable variables and then minimizing a cost function between reference values
and candidate values of controlled variables. The minimal difference to actuate the next
period is chosen. The general MPC-based optimization process is shown in Figure 11.
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The MPC framework models for microgrids have advantages, as they use the dy-
namic behavior of microgrid components, particularly the battery charge and discharge
models [51]. Typical control methods are no longer effective against fluctuations, but MPC
has received more attention due to its flexibility to include constraints and non-linearity [52].
Another advantage of MPC over other control techniques is its simple expansion to the
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multivariable case. The MPC method can provide a receding prediction horizon with a
feedback mechanism that also effectively reduces the impacts of uncertainties [53]. Model
predictive control is typically used for MG EMS with a prediction horizon of 24 h, con-
sidering the daily periodicity of generation and load profiles. The performance of MPC
is affected by the selection of the prediction horizon. One of the main drawbacks of MPC
is that computational complexity increases with a larger prediction horizon [54]. With
significant development in recent years, MPC with its variations is used at different levels.

A model predictive control-based energy management is proposed in [55] to provide
an economically optimal operation, and the system is represented by a linear invariant
discrete time model. In this study, the minimization of the cost of energy consumed from
the main grid is considered to be an optimization objective. When renewable generation is
insufficient to supply demand, the battery will start supplying the load. If this energy also
becomes insufficient, EMS has to acquire energy from the main grid. Another economic
MPC is proposed in order to achieve optimal economic performance in terms of the
operational cost of a microgrid in [56].

A MPC rolling horizon approach for the optimal operation of a microgrid for residen-
tial network is proposed in [57]. The MPC problem is formulated using a MILP model used
to optimize the total cost of the microgrid. The objective of the problem is to minimize the
total cost for the DER system over the prediction horizon. Heat and electricity storage terms
are additionally included in the objective function. The overall planning and performance
could have been improved if the uncertainty on solar irradiance and energy demands was
considered in the modelling of the network.

The conventional MPC approach, with techniques such as robust optimization and
stochastic optimization methods, directly incorporate uncertainty in the optimization
models to achieve effective and efficient operation of microgrids.

Stochastic MPC methods are used to take uncertainty due to the stochastic behavior
of renewable energy generation and demand into consideration. A two-stage stochastic
programming-based MPC strategy for microgrid energy management under uncertainties
is proposed in [45]. Stochastic programming is used for the inclusion of uncertainties in
the optimization model. The MPC can effectively compensate for the disturbances in load
profile and power delivered from renewable sources that are connected to the AC microgrid
through a feedback mechanism. The cost of the microgrid is commonly formulated using
start-up/shut down costs, the fuel cost of diesel generators, the degradation cost of a
battery, and the power purchase cost from the utility grid. Here, uncertainties of solar PV,
wind, and load are also considered in the formulation of microgrid cost. In the first stage,
decisions are made before the actual realization of available uncertainty. In the second
stage, correction decisions are made after a particular realization.

Sliding mode control (SMC) is a reliable control technique that can address uncer-
tainties. The combination of MPC and SMC can be applied for the effective and efficient
operation of microgrids. A suboptimal second-order SMC is designed as a low-level
controller to track the power references generated by a high-level MPC component for
EMS [58]. Nonlinear MPC is implemented using nonlinear models that include non-linear
constraints on the state and control variables, as well as the cost functions. The nonlin-
ear MPC type control is implemented for energy management of the batteries and load
shedding purposes in [59].

The reviewed literature shows successful applications of using MPC for handling
uncertainties related to microgrid energy management.

Researchers in this field have been motivated by recent developments in machine
learning techniques to work on more realistic predictive strategies. The MPC is formulated
based on the predictions generated by the predictive model and possible desired targets.
The MPC performance is directly impacted by the modelling quality and accuracy of the
predictive model. This is one of the challenges when using the MPC scheme. When the
MPC strategy is used, the prediction method must be considered. Various methods, such
as physics-based models, the Markov chain, neural networks, the Kalman filter, etc., can be
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used for prediction. For example, in terms of Markov chain prediction, the future value de-
pends on the current value and the transition probabilistic matrix, which is calculated based
on a historical statistical data set. In real-time operation, actual measurements are continu-
ously updated. To predict load demands and renewable outputs, online learning Markov
chain prediction can be used. However, quite often, a physics-based model is needed
for repetitively predicting the MG system behavior. It constitutes high computational
complexity, depending on the type and complexity of the models used.

In MPC-based energy management problems, the design, arrangement, and allocation
of all the control objectives, along with the proper constraints, can reduce the computational
burden. Furthermore, the MPC-based energy management problem formulation can be
simplified by using methods such as fuzzy logic control, rule-based methods, PSO, etc.

The MPC optimization problems are resolved by moving the time horizon window
ahead. Once new predictions are available, the optimization problems can then be recalcu-
lated and resolved. The time horizon is often determined according to multiple factors. One
of the most challenging aspects of MPC is that it needs to deal with short sampling times
for the power electronic technology, and it also needs long-time horizons to improve the
robustness and accuracy of the model. Combining short and long-time horizons at different
stages is an approach used to obtain better system performance. Receding time horizon
methods are also found in recent research because they aid in dealing with uncertainty and
achieving effective performance [60].

Scalability is crucial to address the changing requirements when moving from indus-
trial plants to very large-scale systems with operational and managerial independence.
Distributed model predictive control (DMPC) [61] attempts to address this issue through
the development of multi-level, multi-scale models. The goal is to avoid redesigning the
overall energy management system (EMS) when the additional sources and storage are
connected. In DMPC, the power of each energy source is optimized using an individual
subsystem-based MPC to make the plug-and-play property easier to achieve and to reduce
the computational load [60].

DMPC could be a suitable strategy for large-scale systems to solve the resulting
economic optimization problem. Many researchers are focusing on using stochastic and dis-
tributed model predictive control techniques to optimize large-scale microgrid systems [59].
Another study, in [62], proposes fully distributed water-filling distributed algorithms that
scale to large-scale situations. A decentralized charging control is formulated for large
populations of plug-in EVs [63]. Approaches used to handle uncertainties in microgrid
system are summarized in Table 3.

Table 3. Approaches used to handle uncertainties in microgrid system.

Proposed Approach Modelling Uncertainty Uncertainty Handling Scalability Handling Possibility

Optimal probabilistic energy
management in a typical microgrid
based on robust optimization and

point estimate method [37]

Uncertainties of wind, solar, and load
are used.

PEM and RO are used. The data
determined from PEM are used in the

PSO-based energy management
algorithm. RO generates and transfers

the load demand scenarios to
the PSO algorithm.

The proposed algorithm is used in
order to perform an optimal operation
on a low voltage (LV) MG, including
renewables and conventional DGs, as

well as a battery bank.

Two-stage stochastic programming
based MPC strategy for microgrid

energy management under
uncertainties [45]

Load, PV, and wind uncertainties
are used.

Two stage scheduling strategy is used.
The first stage makes a decision before

the actual reality of the uncertainty
becomes available, and the second

stage makes a correction decision to
compensate for infeasibilities from

the first stage.

The proposed method combines the
advantages of both two-stage SP

and MPC.

A two-stage robust optimization
method based on the expected
scenario for islanded microgrid

energy management [50]

Uncertainties of wind, solar, and load
are considered.

Two stage scheduling strategy is used.
Prescheduling stage and rescheduling
stage are applied to reduce the impact

of uncertain factors.

To manage various constraints during
the optimization process and ensure
the feasibility of individuals in the

evolving population, a
constraint-handling technique

is developed.
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Table 3. Cont.

Proposed Approach Modelling Uncertainty Uncertainty Handling Scalability Handling Possibility

Optimal operation of a smart
residential microgrid based on model

predictive control by considering
uncertainties and storage impacts [59]

Uncertainties from solar, wind, load,
and electricity price are used.

The MILP problem is incorporated
into a MPC framework for

compensating the
potential disturbances.

Stochastic and distributed model
predictive control techniques can be

used to optimize large-scale
microgrid systems.

Distributed MPC for grid-connected
microgrid power management [60]

Uncertainty related to the availability
wind and load are considered.

The MPC-based EMS is implemented
under a distributed framework.

Receding horizon methods are used to
mitigate uncertainties.

The optimization problem is
decomposed into several small-scale
nonlinear continuous optimization

problems and several integer
programming problems.

A two-layer stochastic MPC scheme
for microgrids [64]

Uncertainties from wind and PV
are considered.

Shrinking-horizon MPC is
implemented. A stochastic MPC runs

at a higher frequency at the lower
layer to compensate for uncertainties
and maintain the energy exchange as
close as to the desired value over each

sampling period.

Stochastic MPC is used with
high-level off-line

economic optimization.

Stochastic programming and market
equilibrium analysis of microgrid
energy management systems [65]

Load, PV, and wind uncertainties
are used.

Two-stage stochastic programming
model is used. In the first stage, the
decision for investment in microgrid
devices is deter-mined, and energy

management strategies are
determined in the second stage.

A general algebraic modeling system
is designed for solving large-scale,
complex optimization problems.

Energy management system for
hybrid PV-wind-battery microgrid
using convex programming, model

predictive and rolling horizon
predictive control with

experimental validation [66]

Uncertainties from solar, wind, load
and electricity price are used.

A rolling horizon predictive controller
with a MPC at the lower control layer

with a one-minute sampling time
reduces the impact of prediction and

model uncertainties.

A rolling-horizon predictive controller
does not require a complex

optimization process.

Analysis of robust optimization for
decentralized microgrid energy

management under uncertainty [67]

Uncertainty related to the availability
wind and load are considered.
Prediction intervals are used.

The impact of different levels of
uncertainty is evaluated.

Agent-based modelling (ABM) is used
to describe the system, with each

stakeholder modeled by
an individual agent.

Robust optimization for dynamic
economic dispatch under wind power

uncertainty with different levels of
uncertainty budget [68]

Wind uncertainties is used.
A robust optimization method with an

adjustable uncertainty budget with
different levels is proposed.

Constraint handling technique is also
proposed to handle various

constraints and ensure the feasibility
of individuals in the

evolutionary population.

Robust optimization of microgrid
based on renewable distributed power

generation and
load demand uncertainty [69]

Uncertainties of wind, solar, and load
are considered.

A two stage scheduling strategy is
used. Robust adjustment parameters
are optimized to make the microgrid

have a reasonable robustness.

The robustness of grid operation is
guaranteed by the proposed solution,
which is more in line with technical

realities and has better practical value.

6. Application of Artificial Intelligence and Machine Learning

The use of machine learning and data-driven techniques for MG energy management
is becoming increasingly popular due to the recent development of machine learning
(ML) and artificial intelligence (AI), as well as the availability of advanced processing
in modern control systems. For example, ML has been introduced as a methodology
either for energy management in microgrids or for forecasting weather conditions and
loads. A hybrid approach of a nonlinear MPC controller integrating machine learning
models is presented in [70]. A two-layer ensemble machine learning technique is used to
construct a data-driven multi-model wind forecasting system [71]. Utilizing the statistically
different characteristics of each machine learning algorithm is the focus of this two-layer
model. Additionally, many of the heuristic optimization techniques used in MG EMSs
are considered under the umbrella of AI. The opportunities for ML extend far beyond
forecasting, model improvement, and adaption.

7. Conclusions

The literature review highlighted energy management methods, modelling uncer-
tainties, and forecast uncertainty management in microgrids. The microgrid energy man-
agement systems are developed considering factors such as the operating mode, control
system, intermittent nature of renewable sources, economic and environmental aspects, and
other factors. Different approaches can be used to design microgrid energy management.
It is necessary to choose proper methods based on the required application. This paper
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reviewed recent energy management strategies for microgrids. Several EMS methods
were discussed, including MILP and MINLP methods, heuristic optimization methods,
rule-based methods, fuzzy logic control methods, MPC methods, and others based on
numerous studies. The suitable EMS method is determined by the microgrid system and
its requirements. The MILP methods deal with optimization problems when variables
may be either discrete or continuous. However, it takes a long time to calculate complex
problems with a large number of variables. The GA and PSO are frequently used to solve
heuristic optimization problems due to convenience in application to multidimensional
problems. Finding the optimal solution through GA is difficult. Fast convergence time,
which is necessary for real-time energy management applications, is the main advantage
of PSO-based EMS. Many researchers also use the PSO to address issues with microgrid
optimum sizing. Rule-based methods allow for a significant reduction in computational
complexity compared to other methods. Fuzzy logic control methods gain more flexibility,
and they can be easily incorporated with other methods.

It has been identified that the uncertainty present in microgrid systems must be consid-
ered for proper energy management. Recently, to model the uncertainty, the Monte Carlo
simulation, worst case scenario method, point estimate method, fuzzy method, and auto
regressive method were used. Few uncertainty modelling techniques depend on the latest
data recorded for future projection. Some uses present forecast errors. There is still a lot of
scope for the development of new techniques. Many approaches are used in the reviewed
research to overcome the uncertainty problem. Generally, uncertainty optimization can be
broadly categorized as stochastic programming, robust optimization, and other methods
that include MPC. Among those methods, MPC methods have gained more attention,
especially in the application of MG EMS because of its ability to manage future behavior as
well as the feedback mechanism. The feedback mechanism introduced through the MPC
partially compensates for the uncertainty associated with the microgrid system. To adopt
future power systems, MPC-based research and development must be established. The
MPC has been improved with multi levels and different time horizons, and it has been
incorporated into other methods to mitigate uncertainties and to improve performance.

Uncertainty may also result from stochastic electricity price fluctuations and demand
response. The MG EMS can be formulated to take into account such other sources of
uncertainty; however, when more factors are considered in the formulation of the problem,
it becomes more complex. Possible corrective measures to decrease this complexity require
more investigations.

The use of machine learning and data-driven techniques for MPC is becoming in-
creasingly popular due to the recent development of machine learning (ML) and artificial
intelligence (AI), as well as the availability of advanced processing in modern control
systems. There is great potential for applying machine learning (ML) to MG energy man-
agement for various tasks to improve solutions and computational efficiency.

This paper highlights the research areas in energy management, considering forecast un-
certainty from renewable sources and load in microgrid environment, for further investigation.
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Abbreviations

AC Alternative Current
AI Artificial Intelligence
BESS Battery Energy Storage System
CCP Change Constrained Programming
DC Direct Current
DER Distributed Energy Resources
EMS Energy Management System
ESS Energy Storage System
EV Electric Vehicles
FLC Fuzzy Logic Controller
GA Generic Algorithm
IEC International Electrotechnical Commission
MCS Monte Carlo Simulation
MG Microgrid
MG LC Microgrid Local Controller
MG EMS Microgrid Energy Management System
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
ML Machine Learning
MPC Model Predictive Control
PCC Point of Common Coupling
PDF Probability Density function
PEM Point Estimate Method
PI Prediction Interval
PSO Particle Swarm Optimization
PV Photo Voltaic
RES Renewable Energy Sources
RO Robust Optimization
SOC State of Charge
SOWGP Sparse Online Warped Gaussian Process
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