
obvious that manually classifying 
something is time consuming, high 
cost and also less accurate. To over-
come this issue, vision based Auto-
matic Surface Inspection (ASI) meth-
ods are proposed, as they are fast, 
highly accurate, and significantly re-
duce the labour intensity.

In ASI, cameras are attached to 
the production line to capture the 
surface images. These recordings 
can be made by a number of camer-
as from different perspectives. Then 
captured images will be further ana-
lysed for the inspection using appli-
cations. Industrial applications will 
require well-structured data of pos-
sible defect types for the analysis. 
Various systems are proposed for 
different industrial applications, e.g., 
steel surface inspection, fabric/tex-
ture inspection, tile surface inspec-
tion, Aluminium profile surface in-
spection, and inspection of 
electronic commutators. However, 
developing a comprehensive and 
large data set for the classification is 

Quality control is a process 
for maintaining standards in manu-
factured products by testing the 
output samples against the specifi-
cations. Surface defects have an ad-
verse effect on quality and perfor-
mance of industrial products. 
Surface defects sometimes affect 
the functions of a component and 
also spoil the appearance. The re-
sponsibility of industry is to reduce 
the complaints that arise from 
crashes, scratches etc. So that sur-
face analysis plays an important role 
in the industrial world. During the 
surface inspection, the shells of the 
surfaces are commonly checked 
manually by the trained workers. Es-
pecially, companies that produce 
products in large numbers are hard 
to inspect one by one manually. It is 

a challenging task as uneven light, 
strong reflection and also complex 
materials may appear on the sur-
face.

There are publicly available 
benchmark datasets for researchers 
for this domain. In the Northeastern 
University (NEU) surface defect da-
tabase [1], six kinds of typical surface 
defects of the hot-rolled steel strip 
are collected, i.e., rolled-in scale, 
patches, crazing, pitted surface, in-
clusion and scratches. Figure 2 
shows some of the example images 
from each category of this dataset. 
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Figure 1: Example image of defected surface

Figure 2: Example images from NEU dataset

Figure 2:

Example images

for surface

texture dataset

TECHNICAL ARTICLE



Another dataset is Texture data-
set [2] which contains 64 classes from 
three public datasets. Figure 3 
shows some of the example images 
from the surface texture dataset.

In recent years, deep learning in 
neural networks has achieved tre-
mendous success in analysis of vari-
ous domains. There are two main 
classification techniques in machine 
learning namely supervised learning 
and unsupervised learning. Super-
vised learning relies on labelled 
data, whereas unsupervised learn-
ing can handle unlabelled data for 
the classification. In supervised 
learning, the model learns from the 
labelled dataset and then is used to 
categorise new events. In an unsu-
pervised scenario, the algorithm 
finds the similarity between differ-
ent input data. The semi-supervised 
approach is something in between 
these two. The semi-supervised 
learning, using both labelled and 
unlabelled samples, provides anoth-
er approach for training. 

In the past, many studies have 
investigated the machine vision 
techniques for the surface defects 
classification. These methods mainly 
focused on traditional image pro-
cessing and machine learning meth-
ods which are based on hand craft-
ed features or shallow learning. 
Shallow learning techniques gener-
ally consist of two independent 
steps: feature extraction and classi-
fication. In the feature extraction 
step a set of hand-crafted features 
(e.g. Local Binary Patterns, Histo-
gram of Oriented Gradients) are ex-
tracted to describe each image. 
These features are then used to 
learn a classifier (e.g. Nearest Neigh-
bour, Support Vector Machines). Th-

abelled data, approximate labels 
will be given on the basis of the la-
belled data. Figure 4 depicts the 
steps involved in semi-supervised 
learning with Pseudo labelling.

 

The semi-supervised learning re-
quires a small amount of labelled 
data for model training and unla-
belled data can be used to improve 
the performance of the model. Here, 
the challenge is how to determine 
whether the predicted labels (pseu-
do-labels) are true labels or not. 
There are various weighting 
schemes [4] proposed to weigh the 
contribution of the unlabelled sam-
ples for the training. These schemes 
are based on the prediction proba-
bilities and confidence in the pre-
diction of a given unlabelled image. 
We determine the confidence of pre-
diction of an unlabelled image 
based on how well an image is clas-
sified into one class compared to 
another class. So, the images with 
high confidence in prediction should 
get higher weights and the images 
with lower confidence in the predic-
tion should get lower weights. In this 
way, a pseudo label image could be 
weighted and considered for the 
training to improve the perfor-
mance.

There are several other direc-
tions that can be focused in this 
specific domain. Segmenting the de-
fects improves classification accura-
cy and also contours of defects can 
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ese approaches have several limita-
tions: As the features are not 
learned from the data they may not 
capture the domain-specific charac-
teristics.

In recent years, researchers have 
begun to use deep learning in Con-
volutional Neural Network (CNN) 
which has achieved tremendous 
success in various domains as they 
can learn the feature extractor and 
the classifier together in an 
end-to-end learning setting. Since 
the features are learned from the 
given training data, they can be 
highly discriminative, and capture 
domain specific information. Howev-
er, deep learning requires a large 
amount of data for training. To over-
come this, transfer learning ap-
proaches are widely used, where a 
network trained using a large data-
set (e.g. ImageNet) is fine-tuned for 
a specific domain. Recently, most of 
the proposed approaches are based 
on supervised learning. But the 
problem with supervised learning is 
it requires a large amount of la-
belled data. Labelling a large 
amount of data is time consuming 
and expensive as it requires expert 
knowledge to classify them.

Several state-of-the-art ap-
proaches have been proposed for 
this defect classification. Generative 
Adversarial Network (GAN) based 
approaches[5] have been used as 
they can generate new images and 
provide a way for augmenting the 
training set. Self-training[6] is anoth-
er popular approach for semi-su-
pervised learning. Pseudo labelling[3] 
is a simple and efficient method of 
semi-supervised learning for deep 
neural networks. Here, instead of 
manually labelling the unl-

Figure 4: Steps that involved in [seudo labelling

technique



be extracted from the image.
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